拉曼光谱传递与定量分析技术研究及其工业应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉曼光谱技术是一种重要的分析手段,正在得到越来越广泛的应用。本文对拉曼光谱的标准化以及不同仪器之间的传递进行了深入研究,对传统定量分析方法进行了改进,相关研究成果被应用于分体式在线拉曼分析仪的数据分析软件。本文主要研究内容包括:
     (1)色散型拉曼光谱仪容易受到环境温度的影响,使测得的光谱重复性变差,产生波数漂移以及分辨率变化的现象。为此,本文提出了一种基于高斯函数卷积的光谱校正方法。该方法利用标准物质获得光谱仪在不同温度下的仪器响应函数,并以此构造高斯函数,通过卷积运算对温度造成的波数漂移以及分辨率变化进行校正。该方法直接基于拉曼谱分析,机理性强,无需选择一组传递样本。实验结果表明,该方法能有效去除温度对色散型拉曼光谱仪的影响,使得不同温度下测得的光谱一致性大幅提高。
     (2)本文研究了基于仪器信号响应函数的拉曼光谱传递,提出了一个将拉曼光谱从高分辨率传递至低分辨率光谱仪的简便方法。该方法无需选择一组有代表性的样本建立统计模型,只需构建一个高斯函数进行卷积运算,就能消除源机与目标机在分辨率上的区别;同时,结合现有的波数校正方法与相对拉曼强度校正方法,即可实现拉曼光谱的传递。实验结果表明,该方法借助于校正光源与标准荧光片,就能较好的实现拉曼光谱在一台仪器上或者不同仪器之间的传递。
     (3)为了实现拉曼数据库在不同仪器之间的应用,本文提出了一种基于分段直接标准化(PDS)的拉曼光谱传递方法。该方法无需对光谱仪信号响应进行机理分析,只要通过少数传递样本建立统计模型,就能获得不同仪器间的拉曼光谱转换系数。对于传递样本的选择,使用了基于马氏距离的Kennard-Stone样本选择方法。实验将离线分析仪测得的汽油样本光谱传递至在线分析仪上,建立了辛烷值(RON)的拉曼分析模型。结果表明,传递模型达到了与重建模型相近的性能,基于PDS的拉曼光谱传递方法具有实际应用价值。
     (4)针对常用软建模、硬建模方法的各自局限,本文提出了一种基于拉曼光谱合成的定量分析方法。该方法利用各组分光谱的线性叠加拟合混合物的拉曼光谱,并以此计算组分的浓度。建立定量模型时无需获得大量真实样本,计算方便,适合于工艺稳定、变化缓慢的分析对象。将拉曼光谱合成模型应用于甲醇汽油的甲醇含量分析,并与PLS方法进行了比较。结果表明,在建模样本数量有限时,拉曼光谱合成模型的整体预测性能与PLS模型接近,但在外推时具有更低的风险。
     (5)本文介绍了一种基于拉曼光谱的在线分析仪表,适用于甲醇汽油的调和过程。在线分析仪的主机安置于远离现场的操作室,利用长光纤与工业现场的拉曼探头连接。采用分体式的设计使得工业现场无电气信号,主机无需防爆设计,大大简化了系统。分析软件中,结合了先进的光谱数据预处理以及定量分析算法,对油样进行质量分析。现场运行结果表明,该分析仪能对调和成品油中的甲醇含量进行连续监控,具有分析速度快、精度高、维护简便的优点,为企业稳定、优化生产提供了一个重要手段。
Raman spectroscopy is an important tool for chemical and physical analysis, and has been widely applied. The aim of this thesis is to research on Raman spectra standardisation or transfer between different instruments, and to make improvement on traditional quantitative analysis methods. Some achievements have been implemented in the software for our online Raman analyzer. The main contents of this thesis are:
     1. Dispersive Raman spectrometer is sensitive to the temperature of environment, which affects the consistency of measured spectra. To solve the problem, a novel method is proposed for correcting the temperature effect on instruments by applying convolution with a Gaussian function. A standard sample is used to represent the instrumental response functions under various temperature conditions, and a Gaussian function for convolution is built, then wave number drift and resolution variation are corrected. Based on spectral analysis and curve fitting, this method does not need to measure a set of well-prepared samples. Results show that it is an effective method to reduce temperature influence on dispersive Raman spectrometer, and the consistency of Raman spectra measured at different temperatures is greatly improved after correction.
     2. This thesis proposes a calibration transfer method based on the instrument response function, allowing transfer of Raman spectra from higher to lower resolution. No need to measure a set of well-prepared samples to construct a statistical transfer model, the method can correct the instrumental differences from source to target by convolution with a Gaussian function. Combined with exsiting methods for wavenumber calibration and relative intensity correction, an integrated procedure for Raman spectra transfer is presented. Experiment results show that, with a calibration source and a standard luminescence glass, this procedure can be applicable for all kinds of Raman spectra transfer.
     3. To transfer well-established Raman database, a spectra transfer method based on piecewise direct standardization (PDS) is proposed. This method needs no analysis of instrumental response function but a few transfer samples, to build a transfer model linking two Raman spectrometers. A Mahalanobis distance based Kennard-Stone method is used for transfer samples selection. Gasoline sample spectra acquired by a laboratory spectrometer are transferred to an online spectrometer, and a quantitative model predicting RON number is built with transferred sample. The experiment results show that, the transfer model performs as well as the rebuilt model, which means this transfer method for Raman spectra has practical value.
     4. A quantitative analysis method based on Raman spectra combination is proposed to avoid the limitation in commonly-used soft modeling and hard modeling methods. In this method, the mixture spectrum is represented by a linearly combination of each component spectrum, and each component content is determined by the weighting coefficient. Only a few real samples are needed for the calibration method, which is suitable to the analysis of sample which varies little. This method is used to predict methanol content in methanol gasoline, and the results are compared with a PLS model. It shows that, when the number of calibration samples is limited, the general performance is similar with PLS model, but the extrapolation risk is lower.
     5. An online Raman analyzer is introduced for process monitoring of methanol gasoline blending. The Raman spectrometer is placed in an operating room far from the production unit, and a couple of long optic Fibers are used to connect with the probe on the sample line. With separated structure, there are no electrical signal in production unit and no explosion-proof equipment for spectrometer. The above spectral data processing and quantitative analysis algorithms are implemented in the analysis software. Application results show that, the online analyzer is capable of continuously monitoring the methanol content in the production oil. With the advantages of rapid analysis, high accuracy and less maintenance, this analyzer can provide an efficient tool to the enterprise for stable and optimal production.
引文
[1]朱明华,胡坪.仪器分析.北京:高等教育出版社,2008:333-338.
    [2]McCreery R L. Raman Spectroscopy for Chemical Analysis. New York:John Wiley & Sons,2000:1-14.
    [3]杨序刚,吴琪琳.拉曼光谱的分析与应用.北京:国防工业出版社,2008:1-3.
    [4]Ingle J D, Crouch S R. Spectrochemical Analysis. New Jersy:Prentice-Hall,1988: 499-502.
    [5]Long D A. Raman Spectroscopy. New York:McGraw-Hill,1977.
    [6]潘家来.激光拉曼光谱在有机化学上的应用.北京:化学工业出版社,1986.
    [7]程光煦.拉曼布里渊散射(第二版).北京:科学出版社,2007.
    [8]Bakeev K A. Process Analytical Technology. Oxford:Blackwell Publishing,2005: 133-169.
    [9]Matousek P, Morris M D. Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields. New York:Springer,2010:1-24.
    [10]Smith E, Dent G. Modern Raman Spectroscopy-A Practical Approach. Chichester:John Wiley & Sons,2005.
    [11]McNay G, Eustace D, Smith W E, et al. Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS):A Review of Applications. Appl. Spectrosc.,2011,65(8):825-37.
    [12]Gerrard D L. Raman Spectroscopy. Anal. Chem.,1994,66(12):R547-R557.
    [13]Ferraro J R. A History of Raman Spectroscopy. Spectroscopy,1996,11 (3):18-25.
    [14]李淑玲.拉曼光谱仪及其应用进展.岩矿测试,1998,17(4):312-316.
    [15]胡军,胡继明.拉曼光谱在分析化学中的应用进展.分析化学,2000,28(6):761-771.
    [16]伍林,欧阳兆辉,曹淑操.拉曼光谱技术的应用及研究进展.光散射学报,2005,17(2):180-186.
    [17]Williams K P J, Aries R E, Cutler D J, et al. Determination of Gas Oil Cetane Number and Cetane Index Using Near-Infrared Fourier Transform Raman Spectroscopy. Anal. Chem.,1990,62:2553-2556.
    [18]Chung W M, Wang Q, Sezerman U, et al. Analysis of Aviation Turbine Fuel Composition by Laser Raman Spectroscopy. Appl. Spectrosc.,1991,45: 1527-1532.
    [19]Clarke R H, Chung W M, Wang Q, et al. Determination of Aromatic Composition of Fuesl by Laser Raman Spectroscopy. J. Raman. Spectrosc.,1991,22:79-82.
    [20]Schrader B. Raman Spectroscopy of Mineral Oil Products. Part Ⅰ:NIR/FT Raman Spectra of Polycyclic Aromatic Hydrocarbons. Appl. Spectrosc.,1991, 45(8):1230-1232.
    [21]Cooper J B, Wise K L, Groves J, et al. Determination of Octane Numbers and Reid Vapor Pressure of Commercial Petroleum Fuels Using FT-Raman Spectroscopy and Partial Least-Squares Regression Analysis. Anal. Chem.,1995, 67:4096-4100.
    [22]Cooper J B, Flecher P E, Vess T M, et al. Remote Fiber-optic Raman Analysis of Xylene Isomers in Mock Petroleum Fuels Using a Low-Cost Dispersive Instrument and Partial Least-Squares Regression Analysis. Appl. Spectrosc.,1995, 49(5):586-592.
    [23]Cooper J B, Wise K L, Welch W T, et al. Determination of Weight Percent Oxygen in Commercial Gasoline:A Comparison between FT-Raman, FT-IR, and Dispersive Near-IR Spectroscopy. Appl. Spectrosc.,1996,50(7):917-921.
    [24]Cooper J B, Wise K L, Welch W T, et al. Comparison of Near-IR, Raman, and Mid-IR Spectroscopies for the Determination of BTEX in Petroleum Fuels. Appl. Spectrosc.,1997,51(11):1613-1620.
    [25]覃旭松,戴连奎.小波变换在Ramani气油辛烷值测定仪中的应用.化工自动化及戊表,2004,31(5):65-68.
    [26]包鑫,戴连奎.汽油多参数拉曼光谱分析中的稳健支持向量机方法.戊器戊表学报,2009,30(9):1829-1835.
    [27]淡图南,戴连奎.结合异常样本检测的汽油族组成拉曼光谱分析.光谱学与 光谱分析,2010,30(4):979-983.
    [28]林艺玲,戴连奎,阮华.基于低分辨率色散型拉曼光谱仪的汽油苯含量快速分析.光谱学与光谱分析,2010,30(11):3002-3006.
    [29]Marteau P, Zanier-Szydlowski N, Aoufi A, et al. Remote Raman Spectroscopy for Process Control. Vib. Spectrosc.,1995,9:101-109.
    [30]阮华,戴连奎,徐忠仪.在线拉曼分析仪的研制及其在PX装置中的应用.化工自动化及仪表,2012,39(4),467-470.
    [31]Faraji H, MacLean W J. CCD Noise Removal in Digital Image. IEEE Trans. Image Process.,2006,15(9):2676-2685.
    [32]Savitzky A, Golay M J E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem.,1964,36(8):1627-1639.
    [33]Smit H C. Specification and Estimation of Noisy Analytical Signals:Part I. Characterization, Time Invariant Filtering and Signal Approximation.Chemom. Intell. Lab. Syst.,1990,8(1):15-27.
    [34]梁逸曾,俞汝勤.分析化学手册(10)-化学计量学.北京:化工出版社,2001.
    [35]Ehrentreich F, Summchen L. Spike Removal and Denoising of Raman Spectra by Wavelet Transform Methods. Anal. Chem.,2001,73:4367-4373.
    [36]Shao X G, Leung A K M, Chau F T. Wavelet, A New Trend in Chemistry. Acc. Chem. Res.,2003,36:276-283.
    [37]皱文龙,蔡志坚,吴建宏.拉曼光谱测量中的荧光抑制方法综述.光学仪器,2010,32(5):89-94.
    [38]Mosier-Boss P A, Lieberman S H, Newbery R. Fluorescence Rejection in Raman Spectroscopy by Shifted-Spectra, Edge Detection, and FFT Filtering Techniques. Appl. Spectrosc.,1995,49(5):630-637.
    [39]Cai W S, Wang L Y, Pan Z X, et al. Application of Wavelet Transform Method in Quantitative Analysis of Raman Spectra. J. Raman Spectrosc.,2001,32:207-209.
    [40]Tan H W, Brown S. Wavelet Analysis Applied to Removing Non-Constant Varying Spectroscopy Background in Multivariate Calibration. J. Chemometr.,2002,16: 228-240.
    [41]Lieber C A, Mahadevan-Jansen A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc.,2003,57(11): 1363-1368.
    [42]Ruan H, Dai L K. Automated Background Subtraction Algorithm for Raman Spectra Based on Iterative Weighted Least Squares, Asian J. Chem.,2011,23(12): 5229-5234.
    [43]Pelletier M J. Quantitative Analysis Using Raman Spectrometry. Appl. Spectrosc., 2003,57(1):20A-42A.
    [44]Clarkson J, Mason S M, Williams K P J. Bulk Radical Homo-Polymerisation Studies of Commercial Acrylate Monomers Using Near Infrared Fourier Transform Raman Spectroscopy. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 1991,47(9-10):1345-1351.
    [45]Agbenyega J K, Claybourn M, Ellis G. A Study of the Autoxidation of Some Unsaturated Fatty Acid Methyl Esters Using Fourier Transform Raman Spectroscopy. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.,1991,47(9-10): 1375-1388.
    [46]Qu J Y, Wilson B C, Suria D. Concentration Measurements of Multiple Analytes in Human Sera by Near-Infrared Laser Raman Spectroscopy. Appl. Opt.,1999, 38(25):5491-5498.
    [47]van Staden J F, Makhafola M A, de Waal D. Kinetic Study of the Decomposition of Nitrite to Nitrate in Acid Samples Using Raman Spectroscopy. Appl. Spectrosc., 1996,50(8):991-994.
    [48]Niemczyk T M, Delgado-Lopex M M, Allen F S. Quantitative Determination of Bucindolol Concentration in Intact Gel Capsules Using Raman Spectroscopy. Anal. Chem.,1998,70(13):2762-2765.
    [49]许禄,邵学广.化学计量学方法(第二版).北京:科学出版社,2004.
    [50]褚小立.化学计量学方法与分子光谱分析技术.北京:化学工业出版社,2011.
    [51]Thomas E V, Haaland D M. Comparison of Multivariate Calibration Methods for Quantitative Spectral Analysis. Anal. Chem.,1990,62(10):1091-1099.
    [52]Wu Z L, Zhang C, Starir P C. Influence of Absorption on Quantitative Analysis in Raman Spectroscopy. Catal. Today,2006,113:40-47.
    [53]尹建华.溶液浓度对单分子拉曼光谱散射截面影响的研究.吉林大学博士学们论文,2005.
    [54]Chang S Y, Baughman E H, McIntosh B C. Implementation of Locally Weighted Regression to Maintain Calibrations on FT-NIR Analyzers for Industrial Processes. Appl. Spectrvsc.,2001,55:1199-1206.
    [55]Balabin R M, Lomakina E I, Safieva R Z. Neural Network (ANN) Approach to Biodiesel Analysis:Analysis of Biodiesel Density, Kinematic Viscosity, Methanol and Water Contents Using Near Infrared (NIR) Spectroscopy. Fuel,2011,92: 2007-2015.
    [56]Santos V O, Oliveira F C C, Lima D G. A Comparative Study of Diesel Analysis by FTIR, FTNIR and FT-Raman Spectroscopy Using PLS and Artificial Neural Network Analysis. Anal. Chim.Acta,2005,547(2):188-196.
    [57]Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    [58]Suykens J A K, Vandewalle J, De Moor B. Optimal Control by Least Squares Support Vector Machines. NeuralNetw.,2001,14(1):23-35.
    [59]Maddams W F. The Scope and Limitations of Curve Fitting [to Vibrational Band Systems]. Appl. Spectrosc.,1980,34(3):245-267.
    [60]Antonov L, Nedeltcheva D. Resolution of Overlapping UV-Vis Absorption Bands and Quantitative Analysis. Chem. Soc. Rev.,2000,29(3):217-227.
    [61]Higinbotham I, Marshall J. NMR Lineshapes and Lineshape Fitting Procedure. Annu. Rep. NMR Spectrosc.,2001,43:59-120.
    [62]Martens H, Naes T. Multivariate Calibration. NewYork:JohnWiley and Sons, 1992.
    [63]Maeder M. Evolving Factor Analysis for the Resolution of Overlapping Chromatographic Peaks. Anal. Chem.,1987,59(3):527-530.
    [64]Jiang J H, Liang Y, Ozaki Y. Principles and Methodologies in Self-Modeling Curve Resolution. Chemom. Intell. Lab. Syst.,2004,71:1-12.
    [65]Malinowski E R. Window Factor Analysis:Theoretical Derivation and Application to Flow Injection Analysis Data.J. Chemom.,1992,6(1):29-40.
    [66]Tauler R. Multivariate Curve Resolution Applied to Second Rrder Data. Chemometr. Intell. Lab. Syst.,1995,30(1):133-146.
    [67]Windig W, Guilment J. Interactive Self-Modeling Mixture Analysis. Anal. Chem., 1991,63(14):1425-1432.
    [68]Alsmeyer F, KoB H J, Marquardt W. Indirect Spectral Hard Modeling for the Analysis of Reactive and Interacting Mixtures. Appl. Spectrosc.,2004,58(8): 975-985.
    [69]Alsmeyer F, Marquardt W. Automatic Generation of Peak-Shaped Models. Appl. Spectrosc.,2004,58(8):986-994.
    [70]Kriesten E, Alsmeyer F, Bardow A, et al. Fully Automated indirect Hard Modeling of Mixture Spectra. Chemom. Intell. Lab. Syst.,2008,91:181-193.
    [71]Kriesten E, Mayer D, Alsmeyer F, et al. Identification of Unknown Pure Component Spectra by Indirect Hard Modeling. Chemom. Intell. Lab. Syst.,2008, 93:108-119.
    [72]Ruan H, Dai L k. Modified Hard Modeling for Non-Invasive Raman Measurements Containing Surface Interference. Anal. Sci.,2012,28:283-289.
    [73]de Noord O E. Multivariate Calibration Standardization. Chemom. Intell. Lab. Syst.,1994,25(2):85-97.
    [74]Feudale R N, Woody N A, Tan H, et al. Transfer of Multivariate Calibration Models:A Review. Chemom. Intell. Lab. Syst.,2002,64(2):181-192.
    [75]褚小立,袁洪福,陆婉珍.光谱多元校正中的模型传递.光谱学与光谱分析,2001,21(6):881-885.
    [76]Swierenga H, de Weijer A P, van Wijk R J, et al. Strategy for Constructing Robust Multivariate Calibration Models. Chemom. Intell. Lab. Syst.,1999,49:1-17.
    [77]Swierenga H, de Weijer A P, Buydens L M C. Robust Calibration Model for On-Line and Off-Line Prediction of Poly(Ethylene Terephthalate) Yarn Shrinkage by Raman Spectroscopy.J. Chemometr.,1999,13:237-249.
    [78]Olsen E, Baustad C, Egelandsdal B. Long-term Stability of a Raman Instrument Determining Iodine Value in Pork Adipose Tissue,Meat Sci.,2010,85:I-6.
    [79]Barman I, Kong C, Dingari N. Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose. Anal. Chem.,2010,82(23):9719-9726.
    [80]Osborne B G, Fearn T. Collaborative Evaluation of Universal Calibrations for the Measurement of Protein and Moisture in Flour by Near Infrared Reflectance. Int. J. Food Sci. Technol.,1983,18(4):453-460.
    [81]Wang Y D, Veltkamp D J, Kowalski B R. Multivariate Instrument Standardization. Anal. Chem.,1991,63:2750-2756.
    [82]Gryniewicz-Ruzicka C M, Arzhantsev S, Pelster L N, et, al. Multivariate Calibration and Instrument Standardization for the Rapid Detection of Diethylene Glycol in Glycerin by Raman Spectroscopy. Appl. Spectrosc.,2001,65(3): 334-341.
    [83]Kompany-Zareh M, van den Berg F. Multi-Way Based Calibration Transfer Between Two Raman spectrometers. Analyst,2010,135:1382-1388.
    [84]Tedesco J M, Davis K L. Calibration of Dispersive Raman Process Analyzers. Proc. SPIE,3537:200-212.
    [85]Fountain A W, Vickers T J, Mann C K. Factors that Affect the Accuracy of Raman Shift Measurements on Multichannel Spectrometers. Appl. Spectrosc.,1998,52(3): 462-468.
    [86]Carter D A, Pemberton J E. Frequency/Wavelength Calibration of Multipurpose Multichannel Raman Spectrometers. Part I:Instrumental Factors Affecting Precision. Appl. Spectrosc.,1995,49,1550-1560.
    [87]Carter D A, Thompson W R, Taylor C E, et al. Frequency/Wavelength Calibration of Multipurpose Raman Spectrometers. Part Ⅱ:Calibration Fit Considerations and Calibration Standards.Appl. Spectrosc.,1995,49,1561-1576.
    [88]ASTM E1840-96(2002). Standard Guide for Raman Shift Standards for Spectrometer Calibration. ASTM International:2002.
    [89]Craig N C, Levin I W. Calibrating Raman Spectrometers with Plasma Lines from the Argon Ion Laser. Appl. Spectrosc.,1979,33(5):475-476.
    [90]Vickers T J, Mann C K. Raman Shift Calibration of a Compact Multichannel Spectrometer.Appl. Spectrosc.,1999,53(12):1617-1622.
    [91]Tseng C H, Ford J F, Mann C K, et al. Wavelength Calibration of a Multichannel Spectrometer.Appl. Spectrosc.,1993,47(11):1808-1813.
    [92]Fryling M, Frank C J, McCreery R L. Intensity Calibration and Sensitivity Comparisons for CCD/Raman Spectrometers. Appl. Spectrosc.,1993,47(12): 1965-1974.
    [93]Ray K G, McCreery R L. Simplified Calibration of Instrument Response Function for Raman Spectrometers Based on Luminescent Intensity Standards. Appl. Spectrosc,1997,51(1):108-116.
    [94]Frost K. J, McCreery R L. Calibration of Raman Spectrometer Instrument Response Function with Luminescence Standards:An Update. Appl. Spectrosc. 1998,52(12):1614-1618.
    [95]Etz E S, Choquette S J, Hurst W S. Development and Certification of NIST Standard Reference Materials for Relative Raman Intensity Calibration. Microchim. Acta,2005,149,175-184.
    [96]Choquette S J, Etz E S, Hurst W S, et al. Relative Intensity Correction of Raman Spectrometers:NIST SRMs 2241 Through2243 for 785 nm,532 nm, and 488 nm/514.5 nm Excitation. Appl. Spectrosc.,2007,61(2):117-129.
    [97]Singh R K, Verma A L. Estimation of Slit Width from Observed Raman Spectra.J. Raman Spectrosc.,1997,28:301-304.
    [98]Fukura S, Mizukami T, Odake S, et al. Factors Determining the Stability, Resolution, and Precision of a Conventional Raman Spectrometer. Appl. Spectrosc.,2006,60(8):946-950.
    [99]Mann C K, Vickers T J. Instrument-to-Instrument Transfer of Raman Spectra. Appl. Spectrosc.,1999,53(7):856-861.
    [100]Rodriguez J D, Westenberger B J, Buhse L F, et al. Standardization of Raman Spectra for Transfer of Spectral Libraries Across Different Instruments. Analyst, 2011,136:4232-4240.
    [I01]Hutsebaut D, Vandenabeele P, Moens L. Evaluation of an Accurate Calibration and Spectral Standardization Procedure for Raman Spectroscopy. Analyst,2005, 130,1204-1214.
    [102]Shaheen M, Manoharan R. Raman Process Analyzer Calibration Transfer Through Analyzer Standardization. Proc. SPIE,3859,24-28.
    [103]Quang H N, Jouan M, Dao N Q. A Simplified Calibration Model of Spectral Data for Quantitative Analyses with Different Raman Spectrometers. Analyt. chim. Acta.,1999,379:159-167.
    [104]Clarke R H, Londhe S, Premasiri W R, Kagi H. Low-Resolution Raman Spectroscopy:Instrumentation and Applications in Chemical Analysis. J. Raman Spectrosc.,1999,30(9):827-832.
    [105]Mestari A, Gaufres R, Huguet P. Behaviour of the Calibration of a Raman Spectrometer with Temperature Changes. J. Raman Spectrosc.,1997,28(10): 785-789.
    [106]Meier R J. On Art and Science in Curve-Fitting Vibrational Spectra. Vib. Spectrosc,2005,39(2),266-269.
    [107]Wells R J. Rapid Approximation to the Voigt/Faddeeva Function and its Derivatives. J. Quant. Spectrosc. Ra.,1999,62(1),29-48.
    [108]Bowie B T, Griffiths P R. Determination of the Resolution of a Multichannel Raman Spectrometer Using Fourier Transform Raman Spectra. Appl. Spectrosc. 2003,57,190-196.
    [109]刘照军,赵存华,韩礼刚等.现代高分辨拉曼光谱仪的配置及应用研究.光谱学与光谱分析,2010,30(2):567-570.
    [110]More J J. The Levenberg-Marquardt Algorithm:Implementation and Theory. Lect. Notes Math.,1978,630,105-116.
    [111]Despagne F, Massart D L, Jansen M, et al. Intersite Transfer of Industrial Calibration Models. Anal. Chim. Acta.,2000,406:233-245.
    [112]Honorato F A, Galvao R K H, Pimentel M F, et al. Robust Modeling for Multivariate Calibration Transfer by the Successive Projections Algorithm. Chemom. Intell. Lab. Syst.,2005,76,65-72.
    [113]Ozdemir D, Mosley M, Williams R. Hybrid Calibration Models:An Alternative to Calibration Transfer. Appl. Spectrosc,1998,52:599-603.
    [114]Pereiraa C F, Pimentela M F, Galvao R K H, et al. Calibration Transfer and Measurement Stability of Near-Infrared Spectrometers.Anal.Chim.Acta.,2008,611:41-47.
    [115]Shenk J S, Westerhaus M O. US Patent 4866644.1989.
    [116]Saleh B E A, Teich M C. Fundamentals of Photonics. New York:John Wiley & Sons,1991.
    [117]Tanabe K, Hiraishi J. Experimental Determination of True Raman Linewidths from Measurements of Linewidths Observed at Different Slit Openings. Appl. Spectrosc.,1981,35:436-438.
    [118]Bergman E, Brage H, Josefson M, et al. Transfer of NIR calibrations for pharmaceutical formulations between different instruments. J. Pharm. Biomed. Anal,2006,41(1):89-98.
    [119]Alamar M C, Bobelyn E, Lammertyn J, et al. Calibration Transfer Between NIR Diode Array and FT-NIR Spectrophotometers for Measuring the Soluble Solids Contents of Apple. Postharvest Biol. Technol.,2007,45(1):38-45.
    [120]Barboza F D, Poppi R J. Determination of Alcohol Content in Beverages Using Short-Wave Near-Infrared Spectroscopy and Temperature Correction by Transfer Calibration Procedures. Anal. Bioanal. Chem.,2003,377(4):695-701.
    [121]Sulub Y, LoBrutto R, Vivilecchia R, et al. Near-Infrared Multivariate Calibration Updating Using Placebo:A Content Uniformity Determination of Pharmaceutical Tablets. Vib. Spectrosc.,2008,46(2):128-134.
    [122]Wang Y, Kowalski B R. Calibration Transfer and Measurement Stability of Near-Infrared Spectrometers. Appl. Spectrosc.,1992,46(5):764-771.
    [123]Bouveresse E, Massart D L. Improvement of the Piecewise Direct Standardisation Procedure for the Transfer of NIR Spectra for Multivariate Calibration. Chemom. Intell. Lab. Syst.,1996,32:201-213.
    [124]Kennard R W, Stone L A. Computer Aided Design of Experiments. Technometrics,1969,11:137-148.
    [125]李华,王菊香,邢志娜等.改进的K/S算法对近红外光谱模型传递影响的研究.光谱学与光谱分析,2011,31(2):362-365.
    [126]王亮,刘娟,郑长征等.新型燃料甲醇汽油应用现状及性能改进.化学工业,2011,29(5):26-29.
    [127]刘圣华,李晖,吕胜春等.甲醇-汽油混合燃料对汽油机性能和排放的影响.西安交通大学学报,2006,40(1):1-4.
    [128]褚小立,袁洪福,陆婉珍.用于石化工业的光谱和波谱类过程分析技术.现代科学仪器,2006,(3):8-13.
    [129]Bodoc M.D, Prat L, Xuereb C, et al. Online Monitoring of Vinyl Chloride Polymerization in a Microreactor Using Raman Spectroscopy. Chem. Eng. Technol.,2012,35(4):705-712.
    [130]Vergote G J, De Beer T R M, Vervaet C, et al. In-Line Monitoring of a Pharmaceutical Blending Process Using FT-Raman Spectroscopy. Eur. J. Pharm. Sci.,2004,21(4):479-485.
    [131]康建爽,蒋书波,程明霄等.基于Raman技术的辛烷值在线检测系统应用.传感器与微系统,2010,29(7):121-123.
    [132]Bussian B M, Harale W. Robust Smoothing Applied to White Noise and Single Outlier Contaminated Raman Spectra. Appl. Spectrosc,1984,38(2):309-312.
    [133]Zhang D M, Jallad K N, Ben-Amotz D. Stripping of Cosmic Spike Spectral Artifacts Using a New Upper-Bound Spectrum Algorithm. Appl. Spectrosc,2001, 55(11):1523-1531.
    [134]Li S, Dai L K. An Improved Algorithm to Remove Cosmic Spikes in Raman Spectra for Online Monitoring. Appl. Spectrosc.,2011,65(11):1300-1306.