拉曼光谱的数学解析及其在定量分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉曼光谱技术以其高灵敏性、快速性以及样本无需预处理等诸多优势,成为非接触式检测领域中的一种关键技术。然而,作为一种间接性的检测技术,拉曼定量分析系统的实际应用常会遇到光谱重叠、光谱非线性变化以及训练样本数量较少等问题。为此,本文在深入研究拉曼光谱分析技术原理的基础上,基于拉曼光谱解析建模的数学理论,针对实际问题提出了一系列创新性的拉曼光谱定量分析方法,具体内容包括:
     1)光谱解析算法的首要任务是建立拉曼光谱的数学解析模型,将拉曼光谱表示为多个Voigt峰函数的叠加形式。光谱建模的精确程度直接影响定量分析模型的准确性,而这一过程往往是一个高维寻优问题,需要同时对几十个乃至几百个参数进行同时寻优,这导致巨大的运算开销并有可能令优化问题呈现“病态性”。为了降低优化问题维数,提高计算效率,提出了一种快速光谱解析算法,该算法通过对峰的重叠性进行判断,在迭代过程中大大减少了待优化的参数数量。实验结果表明快速解析算法与传统方法相比具有运行时间短、模型精确度高等优点。
     2)针对混合溶液中不同成分的特征峰相互重叠问题,提出了一种基于Voigt谱峰函数的定量分析方法——直接硬建模算法(Direct hard modeling)。该方法首先将混合溶液光谱解析为Voigt峰的累加和形式,然后通过对峰高与待测成分浓度之间进行相关性分析找到待测成分在混合物中的特征峰,最后利用特征峰强度与待测成分浓度之间建立线性模型。以对二甲苯(PX)装置吸附塔进料成分的定量分析为例,进行了对比研究。实验结果表明,与传统建模方法相比,该算法具有训练样本数量少、回归模型的外推性强等优点。
     3)针对待测成分在混合物拉曼光谱中可能出现的非线性变化以及混合物中可能存在其它未知成分等复杂情况,提出了一种基于光谱解析的定量分析算法。该算法首先将待测成分的拉曼光谱表示为数学解析形式,然后通过对解析参数的调整来拟合待测成分光谱在混合物中的非线性变化。当混合物中存在未知成分时,该算法利用多个峰函数的叠加形式对未知成分所产生的光谱形态进行拟合并将拟合结果从混合物光谱中扣除,消除了未知成分光谱贡献对定量分析的干扰作用。将该算法应用于甲醇汽油中甲醇浓度的定量分析,实验结果表明,在基础油种类已知和未知的两种情况下,均可得到较准确的分析结果。与偏最小二乘和最小二乘支持向量机算法相比,基于光谱解析模型的定量分析算法只需较少的训练样本即可建立预测精度较高的回归模型。
Raman spectroscopy has been revealed as an important technique in nondestructive testing field. This fact is associated with its main characteristics, such as analytical sensitive, high analytical speed and minimum sample preparation. However, there are still some difficulties in practical application of quantitative analysis based on Raman spectra, such as overlapping band of different components in a mixture, nonlinear mixture effects of spectra, shorting of training samples and so on. To overcome these problems, a series of Raman spectra quantitative analysis methods have been presented in this thesis, which were proposed based on the theory of spectral analytic model. The thesis specifically including:
     1) The primary task of spectral hard modeling method is to represent the measured spectrum as a sum of Voigt peaks. The precision of the spectral model has immediate impact on the accuracy of the regression model. A spectrum often includes dozens or even hundreds of Voigt peaks, which mean that the spectral modeling process is an optimization problem with high dimensionality in fact. So, the computational process is time consuming and the results may not be the optimal solution due to ill-condition of the optimization problem. Herein, a rapid spectral modeling method was proposed, which reduces the dimensionality of optimization problem by only adjusting the parameters of overlapping peaks in stead of all peaks in the process of spectrum modeling. Experimental results showed that the spectral model built by the new method is more accuracy and need much shorter running time than the conventional method.
     2) A new characteristic peaks extracting and quantitative analysis method (Direct hard modeling, DHM) based on Voigt function was proposed to overcome the problem of strong spectral overlap in mixture. By DHM algorithm, the spectra of mixtures were modeled as a sum of Voigt functions at first; and then the characteristic peaks of every pure component in mixture can be extracted by analyzing the linear correlation between the intensity of Voigt peaks and the concentration of components; a linear calibration model will be built based on the intensity of characteristic peaks and the concentration of pure-components at last. Comparative studies were taken on to quantitatively analysis the incoming stock components of paraxylene absorption tower. Experimental results showed that the DHM algorithm has the advantages of generalization and requiring less training samples compared to partial least squares algorithm.
     3) The quantitative analysis based on Raman spectra will become very difficult if there are some unknown components in mixture and the spectral profile of tested component present nonlinear changes. To overcome these problems, a new quantitative analysis method based on spectral model was proposed. At first, the spectral profile of tested component is modeled mathematically, and then the nonlinear effect on spectrum of tested component can be handled by adjusting the parameters of its spectral model. If there are some unknown components in mixture, the spectrum produced by unknown components can be fitted by a sum of Voigt peaks during an iterative algorithm, and then the fitting spectral profile can be deducted to eliminate the undesired signal come from unknown components. This method was applied to determine the methanol concentration in methanol gasoline and the analysis results were satisfied no matter the type of base gasoline is known or unknown. Compared with partial least squares and least squares support vector machine algorithms, the new method has the advantages of accuracy of prediction and requiring less training samples.
引文
[1]Sorak D, Herberholz L, Iwascek S, et al. New Developments and Applications of Handheld Raman, Mid-Infrared, and Near-Infrared Spectrometers[J]. Applied Spectroscopy Reviews,2012,47(2):83-115.
    [2]Werle P, Slemr F, Maurer K, et al. Near-and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering,2002,37(2):101-114.
    [3]Scharf T, Briand D, Buhler S, et al. Miniaturized Fourier transform spectrometer for gas detection in the MIR region[J]. Sensors and Actuators B:Chemical,2010, 147(1):116-121.
    [4]Long D A, Long D A. Raman spectroscopy[M]. New York:McGraw-Hill,1977.
    [5]Ferraro J R. Introductory raman spectroscopy[M]. Academic press,2002.
    [6]Bakeev K A. Process Analytical Technology:Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries[M], Oscord:Blackwell Publishing,2005,133-169.
    [7]Dopner S, Hildebrandt P, Grant Mauk A, et al. Analysis of vibrational spectra of multicomponent systems. Application to pH-dependent resonance Raman spectra of ferricytochrome [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1996,52(5):573-584.
    [8]Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature,1928, 121:501-502.
    [9]朱自莹,顾仁敖,陆天虹.拉曼光谱在化学中的应用[M1.东北大学出版社,1998,8-11.
    [10]Efremov E V, Ariese F, Gooijer C. Achievements in resonance Raman spectroscopy:review of a technique with a distinct analytical chemistry potential[J]. Analytica chimica acta,2008,606(2):119-134.
    [11]张莹莹,张锦.共振增强拉曼光谱技术在单壁碳纳米管表征中的应用[J].化学学报,2012,70(22):2293-2305
    [12]Vermeulen N, Debaes C, Thienpont H. Coherent anti-Stokes Raman scattering in Raman lasers and Raman wavelength converters[J]. Laser & Photonics Reviews, 2010,4(5):656-670.
    [13]Nafie L A. Recent advances in linear and nonlinear Raman spectroscopy. Part Ⅵ[J]. Journal of Raman Spectroscopy,2012,43(12):1845-1863.
    [14]Cialla D, Marz A, Bohme R, et al. Surface-enhanced Raman spectroscopy (SERS):progress and trends[J]. Analytical and bioanalytical chemistry,2012, 403(1):1-28.
    [15]Bell S E J, Sirimuthu N M S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides[J]. Journal of the American Chemical Society,2006,128(49):15580-15581.
    [16]Chrit L, Bastien P, Sockalingum G D, et al. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream[J]. Skin pharmacology and physiology,2006,19(4):207-215.
    [17]倪培,饶冰,丁俊英,等.人工合成包裹体的实验研究及其在激光拉曼探针测定方面的应用[J].岩石学报,2003,19(2):319-326.
    [18]许振华FT-Raman光谱及其应用[J].光谱学与光谱分析,1993,13(1):83-90.
    [19]Burgio L, Clark R J H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2001,57(7):1491-1521.
    [20]Gamsjaeger S, Baranska M, Schulz H, et al. Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola x wittrockiana) by FT-Raman spectroscopy[J]. Journal of Raman Spectroscopy,2011,42(6): 1240-1247.
    [21]Palyvoda O Y. Raman spectroscopy and related techniques in Biomedicine[J]. Biosensors & Bioelectronics,2012,2(4):14-16.
    [22]阮华.在线拉曼分析系统关键技术研究与工业应用[Dl,浙江大学博士学位 论文,2012,6-7
    [23]Dierker S B, Murray C A, Legrange J D, et al. Characterization of order in Langmuir-Blodgett monolayers by unenhanced Raman spectroscopy [J]. Chemical physics letters,1987,137(5):453-457.
    [24]Kalasinsky K S, Minyard Jr J P, Kalasinsky V F, et al. Quantitative analysis of kerosines by Raman spectroscopy[J]. Energy & fuels,1989,3(3):304-307.
    [25]Williams K P J, Aries R E, Cutler D J, et al. Determination of gas oil cetane number and cetane index using near-infrared Fourier-transform Raman spectroscopy[J]. Analytical Chemistry,1990,62(23):2553-2556.
    [26]Chung W M, Wang Q, Sezerman U, et al. Analysis of aviation turbine fuel composition by laser Raman spectroscopy[J]. Applied spectroscopy,1991,45(9): 1527-1532.
    [27]Clarke R H. Hydrocarbon analysis based on low resolution raman spectral analysis[P], U.S., Patent,5139334.1992-8-18.
    [28]Marteau P, Zanier-Szydlowski N, Aoufi A, et al. Remote Raman spectroscopy for process control[J]. Vibrational Spectroscopy,1995,9(1):101-109.
    [29]Cooper J B, Wise K L, Groves J, et al. Determination of octane numbers and Reid vapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis[J]. Analytical Chemistry,1995,67(22): 4096-4100.
    [30]Cooper J B, Flecher P E, Vess T M, et al. Remote fiber-optic Raman analysis of xylene isomers in mock petroleum fuels using a low-cost dispersive instrument and partial least-squares regression analysis[J]. Applied spectroscopy,1995, 49(5):586-592.
    [31]Cooper J B, Wise K L, Welch W T, et al. Determination of weight percent oxygen in commercial gasoline:a comparison between FT-Raman, FT-IR, and dispersive near-IR spectroscopies[J]. Applied spectroscopy,1996,50(7): 917-921.
    [32]Gresham C A, Gilmore D A, Denton M B. Direct comparison of near-infrared absorbance spectroscopy with Raman scattering spectroscopy for the quantitative analysis of xylene isomer mixtures[J]. Applied spectroscopy,1999,53(10): 1177-1182.
    [33]Tiwari V S, Khijwania S K, Yueh F Y, et al. Optical fiber Raman sensor for monitoring hydrocarbon in fuel and industrial chemical processing[C]. SPIE Proceedings,2004,5589:8-13.
    [34]Pacenti, M, Lofrumento, C, Dugheri, S. Physicochemical characterization of exhaust particulates from gaoline and diesel engines by solid-phase micro extraction sampling and combined Raman micro spectroscopic[J]. European Journal of Inflammation,2009,7(1):25-37
    [35]覃旭松,戴连奎.小波变换在Raman汽油辛烷值测定仪中的应用[J].化工自动化及仪表2004,31(5):65-68.
    [36]包鑫,戴连奎.汽油多参数拉曼光谱分析仪中的稳健支持向量机方法[J].仪器仪表学报,2009,30(9):1829-1835.
    [37]史永刚,粟斌,李华峰,等.拉曼光谱及其在石油产品分析中的应用[J].现代仪器,2010(6):9-13.
    [38]李晟,戴连奎.基于拉曼光谱的汽油牌号快速识别[J].光谱学与光谱分析,2010,30(11):2993-2997.
    [39]Xu Q, Ye Q, Cai H, et al. Determination of methanol ratio in methanol-doped biogasoline by a fiber Raman sensing system[J]. Sensors and Actuators B: Chemical,2010,146(1):75-78.
    [40]王艳斌,郭庆洲,陆婉珍,等.近红外分析方法测定润滑油基础油的化学族组成[J].石油化工,2001,30(3):224-227.
    [41]齐小明,张录达.主成分-逐步回归-BP算法在近红外光谱定量分析中应用的研究[J].北京农学院学报,1999,14(3):47-52.
    [42]Wu D, Chen X, Zhu X, et al. Uninformative variable elimination for improvement of successive projections algorithm on spectral multivariable selection with different calibration algorithms for the rapid and non-destructive determination of protein content in dried laver[J]. Analytical Methods,2011,3(8): 1790-1796.
    [43]Delfino I, Camerlingo C, Portaccio M, et al. Visible micro-Raman spectroscopy for determining glucose content in beverage industry[J]. Food Chemistry,2011, 127(2):735-742.
    [44]McShane M J, Cameron B D, Cote G L, et al. A novel peak-hopping stepwise feature selection method with application to Raman spectroscopy[J]. Analytica chimica acta,1999,388(3):251-264.
    [45]Lavine B K, Davidson C E, Moores A J. Genetic algorithms for spectral pattern recognition[J]. Vibrational Spectroscopy,2002,28(1):83-95.
    [46]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542.
    [47]Faraji H, MacLean W J. CCD noise removal in digital images[J]. Image Processing, IEEE Transactions on image processing,2006,15(9):2676-2685.
    [48]Clupek M, Matejka P, Volka K. Noise reduction in Raman spectra:Finite impulse response filtration versus Savitzky-Golay smoothing[J]. Journal of Raman Spectroscopy,2007,38(9):1174-1179.
    [49]Hu Y, Liang J K, Myerson A S, et al. Crystallization monitoring by Raman spectroscopy:simultaneous measurement of desupersaturation profile and polymorphic form in flufenamic acid systems[J]. Industrial & engineering chemistry research,2005,44(5):1233-1240.
    [50]Breuzard G, Angiboust J F, Jeannesson P, et al. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells[J]. Biochemical and biophysical research communications,2004,320(2): 615-621.
    [51]Spalter S, Burk M, Strossner U, et al. Photon number squeezing of spectrally filtered sub-picosecond optical solitons[J]. EPL (Europhysics Letters),2007, 38(5):335.
    [52]闵顺耕,谢秀娟.近红外漫反射光谱的小波变换滤波[J].分析化学,1998,26(1):34-37.
    [53]Ehrentreich F. Wavelet transform applications in analytical chemistry[J]. Analytical and Bioanalytical chemistry,2002,372(1):115-121.
    [54]樊美公,姚建年,佟振合.分子光化学与光功能材料科学[M].北京:科学出版社,2009
    [55]邹文龙,蔡志坚,吴建宏.拉曼光谱测量中的荧光抑制方法综述[J].光学仪器2010,5:028.
    [56]Friedman J M, Hochstrasser R M. The use of fluorescence quenchers in resonance Raman spectroscopy[J]. Chemical Physics Letters,1975,33(2): 225-227.
    [57]Macdonald A M, Wyeth P. On the use of photobleaching to reduce fluorescence background in Raman spectroscopy to improve the reliability of pigment identification on painted textiles[J]. Journal of Raman Spectroscopy,2006,37(8): 830-835.
    [58]姚启钧.光学教程[M].北京:高等教育出版社,1981:384-385.
    [59]Asher S A. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry[J]. Analytical chemistry,1993,65(4):201-210.
    [60]Jirasek A, Schulze H G, Hughesman C H, et al. Discrimination between UV radiation-induced and thermally induced spectral changes in AT-paired DNA oligomers using UV resonance Raman spectroscopy[J]. Journal of Raman Spectroscopy,2006,37(12):1368-1380.
    [61]Hirschfeld T, Chase B. FT-Raman spectroscopy:development and justification[J]. Applied spectroscopy,1986,40(2):133-137.
    [62]Arguello C A, Mendes G F, Leite R C. Simple technique to suppress spurious luminescence in Raman spectroscopy[J]. Applied Optics,1974,13(8):1731-1732
    [63]Shreve A P, Cherepy N J, Mathies R A. Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique[J]. Applied spectroscopy,1992,46(4):707-711
    [64]McCain S T, Willett R M, Brady D J. Multi-excitation Raman spectroscopy technique for fluorescence rejection[J]. Optics Express,2008,16(15): 10975-10991.
    [65]Tahara T, Hamaguchi H O. Picosecond Raman spectroscopy using a streak camera[J]. Applied spectroscopy,1993,47(4):391-398.
    [66]Matousek P, Towrie M, Stanley A, et al. Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating[J]. Applied Spectroscopy,1999, 53(12):1485-1489.
    [67]Martyshkin D V, Ahuja R C, Kudriavtsev A, et al. Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera[J]. Review of scientific instruments,2004,75(3):630-635.
    [68]Mosier-Boss P A, Lieberman S H, Newbery R. Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques[J]. Applied spectroscopy,1995,49(5):630-638.
    [69]Cai W, Wang L, Pan Z, et al. Application of the wavelet transform method in quantitative analysis of Raman spectra[J]. Journal of Raman Spectroscopy,2001, 32(3):207-209.
    [70]Ramos P M, Ruisanchez I. Noise and background removal in Raman spectra of ancient pigments using wavelet transform[J]. Journal of Raman Spectroscopy, 2005,36(9):848-856.
    [71]Vickers T J, Wambles R E, Mann C K. Curve fitting and linearity:data processing in Raman spectroscopy[J]. Applied Spectroscopy,2001,55(4): 389-393.
    [72]Lieber C A, Mahadevan-Jansen A. Automated method for subtraction of fluorescence from biological Raman spectra[J]. Applied spectroscopy,2003, 57(11):1363-1367.
    [731 Zhao J, Lui H, McLean D I, et al. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy[J]. Applied spectroscopy,2007,61(11):1225-1232.
    [74]Zhang Z M, Chen S, Liang Y Z, et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy[J]. Journal of Raman Spectroscopy,2009,41(6):659-669.
    [75]Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst,2010,135(5):1138-1146.
    [76]Rowlands C, Elliott S. Automated algorithm for baseline subtraction in spectra[J]. Journal of Raman Spectroscopy,2010,42(3):363-369.
    [77]Ruan H, Dai L K. Automated background subtraction algorithm for Raman spectra based on iterative weighted least squares[J]. Asian Journal of Chemistry, 2011,23(12):5229-5234
    [78]Rank D H, Scott R W, Fenske M R. Qualitative and Quantitative Analysis of Hydrocarbon Mixtures by Means of Their Raman Spectra[J]. Industrial and Engineering Chemistry,1942,14(10):816-819.
    [79]Lipp E D and Grosse R L.. On-Line Monitoring of Chlorosilane Streams by Raman Spectroscopy[J]. Applied Spectroscopy,1998,52(1):42-46.
    [80]Borysow J and Fink M. NIR Raman spectrometer for monitoring protonation reactions in gaseous hydrogen. Journal of Nuclear Materials,2005,341(2): 224-230.
    [81]陆婉珍,袁洪福等.(2007).现代近红外光谱分析技术[M].北京:中国石化出版社.37-39
    [82]Brown C W, Lynch P F, Obremski R J, Lavery D S. Matrix representations and criteria for selecting analytical wavelengths for multicomponent spectroscopic analysis[J]. Analytical Chemistry,1982,54:1472-1479.
    [83]Luco J M, Ferretti F H. QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. Journal of Chemical Information and Modeling,1997,37(2):392-401.
    [84]Malecha M, Bessant C, Saini S. Principal components analysis for the visualisation of multidimensional chemical data acquired by scanning Raman microspectroscopy[J]. Analyst,2002,127(9):1261-1266.
    [85]Naes T, Martens H. Principal component regression in NIR analysis:viewpoints, background details and selection of components[J]. Journal of chemometrics, 1988,2(2):155-167.
    [86]Wold H. Soft modelling by latent variables:the non-linear iterative partial least squares (NIPALS) approach[J]. Perspectives in Probability and Statistics: papers in honor of M.S. Bartlett, Lodon:Academic Press,1975:117-144.
    [87]Heise H M, Damm U, Lampen P, et al. Spectral variable selection for partial least squares calibration applied to authentication and quantification of extra virgin olive oils using Fourier transform Raman spectroscopy[J]. Applied spectroscopy, 2005,59(10):1286-1294.
    [88]Hedegaard M, Krafft C, Ditzel H J, et al. Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using K-means clustering and partial least squares-discriminant analysis of Raman maps[J]. Analytical chemistry,2010,82(7):2797-2802.
    [89]Thomas E V, Haaland D M. Comparison of multivariate calibration methods for quantitative spectral analysis[J]. Analytical Chemistry,1990,62(10):1091-1099.
    [90]Bertran E, Blanco M, Maspoch S, et al. Handling intrinsic non-linearity in near-infrared reflectance spectroscopy[J]. Chemometrics and intelligent laboratory systems,1999,49(2):215-224.
    [91]Wold S, Sjostrom M, Eriksson L. PLS-regression:a basic tool of chemometrics[J]. Chemometrics and intelligent laboratory systems,2001,58(2): 109-130.
    [92]何梅,李通化.用数值遗传算法改进非线性PLS法进行构效关系研究[J].高等学校化学学报,1997,18(06):854-859.
    [93]Baffi G, Martin E B, Morris A J. Non-linear projection to latent structures revisited:the quadratic PLS algorithm[J]. Computers & chemical engineering, 1999,23(3):395-411.
    [94]Balabin R M, Lomakina E I, Safieva R Z. Neural network (ANN) approach to biodiesel analysis:Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy[J]. Fuel,2011,90(5): 2007-2015.
    [95]Santos V O, Oliveira F C C, Lima D G, et al. A comparative study of diesel analysis by FTIR, FTNIR and FT-Raman spectroscopy using PLS and artificial neural network analysis[J]. Analytica chimica acta,2005,547(2):188-196.
    [96]Marengo E, Bobba M, Robotti E, et al. Modeling of the polluting emissions from a cement production plant by partial least-squares, principal component regression, and artificial neural networks[J]. Environmental science & technology, 2006,40(1):272-280.
    [97]Vapnik V N. Statistical Learning Theory. New York:John Wiley,1998
    [98]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural processing letters,1999,9(3):293-300.
    [99]Thissen U, Pepers M, Ustiin B, et al. Comparing support vector machines to PLS for spectral regression applications[J]. Chemometrics and Intelligent Laboratory Systems,2004,73(2):169-179.
    [100]Balabin R M, Lomakina E I. Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry Comparison of nonlinear methods on near infrared (NIR) spectroscopy data[J].Analyst,2011,136(8):1703-1712.
    [101]Ramsay D A. Intensities and shapes of infrared absorption bands of substances in the liquid phase[J]. Journal of the American Chemical Society, 1952,74(1):72-80.
    [102]Maddams W F. The scope and limitations of curve fitting[J]. Applied Spectroscopy,1980,34(3):245-267.
    [103]Antonov L, Nedeltcheva D. Resolution of overlapping UV-Vis absorption bands and quantitative analysis[J]. Chemical Society Reviews,2000,29(3): 217-227.
    [104]Coma L, Breitman M, Ruiz-Moreno S. Soft and hard modelling methods for deconvolution of mixtures of Raman spectra for pigment analysis. A qualitative and quantitative approach[J]. Journal of Cultural Heritage,2000,1(8):273-276.
    [105]Higinbotham J, Marshall I. NMR lineshapes and lineshape fitting procedures[J]. Annual Reports on NMR Spectroscopy,2001,43:59-120.
    [106]Alsmeyer F, Koβ H J, Marquardt W. Indirect spectral hard modeling for the analysis of reactive and interacting mixtures[J]. Applied spectroscopy,2004, 58(8):975-985.
    [107]Kriesten E, Mayer D, Alsmeyer F, et al. Identification of unknown pure component spectra by indirect hard modeling[J]. Chemometrics and Intelligent Laboratory Systems,2008,93(2):108-119.
    [108]Scharfer P, Schabel W, Kind M. Mass transport measurements in membranes by means of in situ Raman spectroscopy-First results of methanol and water profiles in fuel cell membranes[J]. Journal of Membrane Science,2007,303(1): 37-42.
    [109]Kiefer J, Seeger T, Steuer S, et al. Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant[J]. Measurement Science and Technology,2008,19(8):085408.
    [110]Bardow A, Goke V, KoB H J, et al. Concentration-dependent diffusion coefficients from a single experiment using model-based Raman spectroscopy[J]. Fluid phase equilibria,2005,228:357-366.
    [111]Bardow A, Goke V, KoB H J, et al. Ternary diffusivities by model-based analysis of Raman spectroscopy measurements[J]. AIChE journal,2006,52(12): 4004-4015.
    [112]Heinemann M, Meinberg H, Buchs J, et al. Method for quantitative determination of spatial polymer distribution in alginate beads using Raman spectroscopy[J]. Applied spectroscopy,2005,59(3):280-285.
    [113]Poggendorf S, Adama Mba G, Engel D, et al. Diffusion of poly (ethylene glycol) and ectoine in NIPAAm hydrogels with confocal Raman spectroscopy[J]. Colloid & Polymer Science,2011,289(5):545-559.
    [114]Kiefer J. Dual-wavelength Raman spectroscopy approach for studying fluid-phase equilibria using a single laser[J]. Applied spectroscopy,2010,64(6): 687-689.
    [115]Crockford D J, Keun H C, Smith L M, et al. Curve-fitting method for direct quantitation of compounds in complex biological mixtures using 1H NMR: application in metabonomic toxicology studies[J]. Analytical chemistry,2005, 77(14):4556-4562.
    [116]Brown A J. Spectral curve fitting for automatic hyperspectral data analysis[J]. Geoscience and Remote Sensing, IEEE Transactions on,2006,44(6):1601-1608.
    [117]Liu H, Yan L, Chang Y, et al. Spectral Deconvolution and Feature Extraction With Robust Adaptive Tikhonov Regularization[J]. Instrumentation and Measurement, IEEE Transactions on,2013,62(2):315-327.
    [118]Antonov L, Petrov V. Quantitative analysis of undefined mixtures-" fishing net" algorithm[J]. Analytical and bioanalytical chemistry,2002,374(7): 1312-1317.
    [119]Chen X, Grandbois M. In situ Raman spectroscopic observation of sequential hydrolysis of stannous chloride to abhurite, hydroromarchite, and romarchite[J]. Journal of Raman Spectroscopy.2012,44(3):501-506
    [120]Ruan H, Dai L. K. Modified Indirect Hard Modeling for Non-invasive Raman Measurements Containing Surface Interference[J]. Analytical Sciences, 2012,28(3):283-283.
    [121]Martens H, Naes T. Multivariate calibration[M]. Wiley,1992.
    [122]王湘中,喻寿益.适用于高维优化问题的改进进化策略[J].控制理论与应用,2006,23(1):148-151
    [123]Thompson W J. Numerous neat algorithms for the Voigt profile function[J]. Computers in Physics,1993,7(6):627-627.
    [124]Luque J M, Calzada M D, Saez M. A new procedure for obtaining the Voigt function dependent upon the complex error function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,94(2):151-161.
    [125]Letchworth K L, Benner D C. Rapid and accurate calculation of the Voigt function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2007, 107(1):173-192.
    [126]Schreier F, Kohlert D. Optimized implementations of rational approximations-A case study on the Voigt and complex error function[J]. Computer Physics Communications,2008,179(7):457-465.
    [127]Abrarov S M, Quine B M, Jagpal R K. Rapidly convergent series for high-accuracy calculation of the Voigt function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2010,111(3):372-375.
    [128]Newsam J M, Deem M W, Freeman C M. Accuracy in Powder Diffraction Ⅱ[J]. NIST special publication,1992,846:80-91.
    [129]Thome A, Litzen U, Johansson S. Spectrophysics:principles and applications[M]. Springer,1999.
    [130]Wertheim G K, Butler M A, West K W, et al. Determination of the Gaussian and Lorentzian content of experimental line shapes[J]. Review of Scientific Instruments,1974,45(11):1369-1371.
    [131]Budil D E, Lee S, Saxena S, et al. Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm[J]. Journal of magnetic resonance. Series A, 1996,120(2):155-189.
    [132]Antonov L, Nedeltcheva D. Resolution of overlapping UV-Vis absorption bands and quantitative analysis[J]. Chemical Society Reviews,2000,29(3): 217-227.
    [133]Alsmeyer F, Marquardt W. Automatic generation of peak-shaped models[J]. Applied spectroscopy,2004,58(8):986-994.
    [134]Maddams W F. The scope and limitations of curve fitting[J]. Applied Spectroscopy,1980,34(3):245-267.
    [135]Kriesten E, Alsmeyer F, Bardow A, et al. Fully automated indirect hard modeling of mixture spectra[J]. Chemometrics and Intelligent Laboratory Systems,2008,91(2):181-193.
    [136]Bardow A, Marquardt W, Goke V, et al. Model-based measurement of diffusion using Raman spectroscopy[J]. AIChE journal,2003,49(2):323-334.
    [137]Jiang J H, Liang Y, Ozaki Y. Principles and methodologies in self-modeling curve resolution[J]. Chemometrics and intelligent laboratory systems,2004, 71(1):1-12.
    [138]Kumabe K, Fujimoto S, Yanagida T, et al. Environmental and economic analysis of methanol production process via biomass gasification[J]. Fuel,2008, 87(7):1422-1427.
    [139]Liu S, Cuty Clemente E R, Hu T, et al. Study of spark ignition engine fueled with methanol/gasoline fuel blends[J]. Applied Thermal Engineering,2007, 27(11):1904-1910.