数字大小影响时间知觉的神经机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字加工是一种关于表征编码的组合,涉及如视觉、视空间和言语等因素。而时间知觉是个体对直接作用在感觉器官的客观事件持续性和顺序性的认知。时距知觉是时间知觉的一个重要组成部分,反映了个体对短暂时间内(0-5s)出现的客观事件持续性的知觉。数字、时间和空间与我们的生活息息相关,作为人类的基本认知功能已经引起了研究者的极大兴趣。特别是数字和时间之间的关系,从1890年开始起,就得到了研究者的关注,近年来越来越多的研究证明了在不同的认知系统中存在着数字和时间的交互作用。
     Oliveri等人发现,用数字为载体呈现的时距,会使被试的主观相等点发生偏移。表现为小数字呈现的时距主观相等点向右偏移,而大数字呈现的时距主观相等点向左偏移。这种小数字引起低估,而大数字引起高估的现象得到了很多研究者的证明。研究发现,改变数字的大小范围或者是语种等材料类别;秒下或者是1-5秒的时间进程;或者是给数字赋予背景信息,这种效应都稳定存在。Xuan等人运用ERP手段对这一现象的影响阶段和神经机制进行了探讨。结果发现在CNV成分上,小数字比大数字的波幅大。这一结果和对随后发生事件的期望有关。但是这一研究存在缺陷,1.从ERP结果来看,大小数字在早期N1成分和晚期的CNV成分上均存在差异,也就是说,数字影响时间判断任务可能贯穿于从知觉到决策的整个认知过程,而研究者认为这一影响阶段位于知觉加工的较早阶段。
     2.研究者认为CNV反映了对未发生事件的期望水平。相比大数字,小数字的期望水平更高。但是该实验范式是数字和时间同时出现,同时存在,同时消失(如数字4呈现800ms)。因此,这种对未发生事件的期望是否存在值得怀疑。
     3.人类在时间任务中可以同时加工数字和时间信息。并且表现出数字的敏感性比时间要高,自动化加工的程度更高。根据这一结论,尽管是实验中告知被试数字与当前任务无关,只是作为注意线索存在,但是这一过程存在数字加工。Oliveri发现了在时间知觉中数量信息的自动激活,而研究者将N1的差异解释为数字的知觉辨认,这或许正是数字加工的明证。因此,现有研究可能混杂了数字加工和时间信息加工,使得结果并不能精确反映知觉数字对时间判断任务的影响。
     时间认知分段综合模型强调人类对时间的认知具有分段性,无论对哪一种时距的认知均受多种因素的影响;而Walsh的数量理论认为,数字、时间、空间三者是一个普遍性数量系统的组成部分,具有共同的神经加工机制。根据这两个模型,本研究拟在分离数字加工和时间加工的条件下,探讨数字加工影响时间知觉的神经机制。
     研究一考察方块(小概率)的时间判断是否会受到数字(大概率)的时间判断任务的影响,采用二分任务,被试判断时距接近于标准短时间还是标准长时间。结果发现,在数字刺激中,被试会低估小数字呈现的时距,而高估大数字呈现的时距。而在数字背景下的方块刺激中,被试仍然会低估小数字背景下的方块时距,而高估大数字背景下的方块时距。数字的背景因素会干扰被试的时距判断。
     研究二在研究一的基础上,分离数字加工和时间加工两个因素探讨数字加工影响时间加工的神经机制。采用双选择oddball范式,被试的任务为判断标准刺激(数字条件)和偏差刺激(方块条件)呈现的时间长短。结果发现,在数字组中,大小数字的N1、P2和CNV三成分差异均显著,而在方块组中只有CNV成分差异显著。该结果说明早期成分的差异由数字加工引起,而晚期CNV成分的差异则说明在排除数字加工的条件下,数字对时间的影响在决策判断水平。
     本研究认为,数字加工影响时间知觉的阶段位于决策加工水平,而不是知觉加工水平。在时间分段综合模型的指导下,应该综合考虑刺激的物理特征、认知因素和人格特征等因素对时间知觉的影响。
Number encoding is a combination of characterization coding, Involving such as visual, depending on the space and words, and other factors. Temporal order perception is the successive perception of sensory events, which is an important part of temporal perception, including simultaneity, unsimultaneity and sequence. Duration perception is an important part of time perception. It is range of 0-5s. Number, time and space are related to our life, as the basic human cognitive function has caused the researchers of great interest. Especially the relationship between digital and time, from the beginning of 1890, got the attention of researchers, in recent years, more and more research has shown in different cognitive system exist in digital and time interaction.
     Oliveri found that participants performed more accurately when shorter durations were defined by lower numeric value number and longer durations were defined by higher value number. The phenomenon of digital cause subject time perception got a lot of researchers proof. They found that this effect is stable exist regardless whatever the attributes of stimulate physical, time course, or the background of it. Xuan used ERP to explore the influence stage and neural mechanisms. They found that CNV were enhanced compared small number to big number. One explanation of it is that subsequent expectation may be involved in this modulation. But this research has deficiencies.
     1. Small number and big number has significant difference in both Nl and CNV, range from early perceptual processing to late decision making, but they reported that the effect is only focus on early stage.
     2. They found that compared to big digits, small number has a higher subsequent expectation, but in the current paradigm, number 4 present 800ms, time and number factor appeared and disappear meanwhile, its authenticity is questionable.
     3. Humans can process task digital and time information meanwhile in time task. The sensitivity and show that digital automation higher than time higher levels of processing. According to this, although is experiments with current digital subjects were told nothing, just as attention task clues, but the process existing digital processing. Oliveri discovered automatically activated in time the amount of information consciousness, but they explain it as perception identify. So, the existing research may hybrid digital processing and time information processing.
     Range-synthetic Model of Temporal Cognition agreed that man with piecewise for time, regardless of cognition for which a timescales cognitive are influenced by many factors. And Walsh's ATOM argued that time, space and number are parts of a comprehensive system, shared same neural mechanism. According to this, this research aim to separate time processing and number processing to explore the Neural Mechanism of Number Processing Affecting Time perception.
     Study one investigated whether the Small probability's time perception is affected by big probability. It use bisection task, subjects judge current time were close to standard short time or standard long time. The result is that Small probability's time perception is affected by big probability. Whatever the stimulation is, subject is prone to underestimate the small number's time and overestimate the big number's time.
     Study two separates time processing and number processing to explore the Neural Mechanism of Number Processing Affecting Time perception. It used two-choice oddball paradigm, subjects' task is judging the time course. The result is that in square stimulation, small number and big number have a significant in CNV, and in number stimulation, mall number and big number have a significant both in N1, P2 and CNV.
     The present study explores that number processing affect the decision making level, not the perceptual level. It is ought to integrate time perception with other factors, such as the physical features of stimuli, cognitive factors and personality traits.
引文
陈有国.(2010).时间知觉自动加工与受控加工的神经机制.博士学位论文.西南大学.
    黄希庭.(2007).心理学导论(第二版).北京:人民教育出版社.
    黄希庭,李伯约,张志杰(2003).时间认知分段综合模型的探讨.西南师范大学学报:人文社会科学版,29,5-9.
    黄希庭,杨宗义,刘中华.(1980).5至9岁儿童时间观念发展的实验研究.西南师范学院学报(自然科学版).1,67-76
    孙延超,李秀艳,王东,高卫星,赵仑.(2008).珠心算训练儿童加法心算的ERP早成分研究.心理发展与教育.3,21-25
    刘超,傅小兰(2004).不同注意条件下大数与小数的加工差异.心理学报,36(003),307-314.
    徐晓东,刘昌(2006).数字的空间特性.心理科学进展,14(006),851-858.
    杨珍,黄希庭(2005).时间认知神经科学研究进展.心理科学,28(006),1506-1509.
    张志杰,尹华站,黄希庭(2007).时间知觉和关联负变化.心理科学进展,15(2).
    张红川,董奇,周新林(2007).前运动皮质与数字加工:脑功能成像研究的元分析研究.心理科学,30(001),250-252.
    Agrillo, C., Ranpura, A., & Butterworth, B. (2010). Time and numerosity estimation are independent: Behavioral evidence for two different systems using a conflict paradigm. Cognitive Neuroscience,1(2),96-101.
    Allan, L. (1998). The influence of the scalar timing model on human timing research. Behavioural Processes,44(2),101-117.
    Andres, M., Ostry, D., Nicol, F., & Paus, T. (2008). Time course of number magnitude interference during grasping. Cortex,44(4),414-419.
    Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B:Biological Sciences, 364(1525),1831.
    Buhusi, C., & Meek, W. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience,6(10),755-765.
    Burr, D., & Morrone, C. (2006). Time perception:space-time in the brain. Current Biology,16(5), R171-R173.
    Burr, D., Tozzi, A., & Morrone, M. (2007). Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nature Neuroscience,10(4),423-425.
    Campbell, J. I. D., & Epp, L. J. (2004). An Encoding-Complex Approach to Numerical Cognition in Chinese-English Bilinguals* 1. Canadian journal of experimental psychology,58(4), 229-244.
    Cappelletti, M., Freeman, E., & Cipolotti, L. (2009). Dissociations and interactions between time, numerosity and space processing. Neuropsychologia,47(13),2732-2748.
    Casarotti, M., Michielin, M., Zorzi, M., & Umilt, C. (2007). Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition,102(1),101-117.
    Casasanto, D., & Boroditsky, L. (2008). Time in the mind:Using space to think about time. Cognition,106(2),579-593.
    Chen, Q., & Verguts, T. (2010). Beyond the mental number line:a neural network model of number-space interactions. Cognitive psychology,60(3),218-240.
    Chen, Y., Huang, X., Yang, B., Jackson, T., Peng, C., Yuan, H., et al. (2010). An event-related potential study of temporal information encoding and decision making. NeuroReport,21(2), 152.
    Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology,84(2),132-147.
    Conson, M., Cinque, F., Barbarulo, A. M., & Trojano, L. (2008). A common processing system for duration, order and spatial information:evidence from a time estimation task. Experimental brain research,187(2),267-274.
    Correa, a., Lupia ez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychonomic bulletin & review,12(2),328.
    Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Learning, Memory,21(2),314-326.
    Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology General,122,371-371.
    Dormal, V., Andres, M., & Pesenti, M. (2008). Dissociation of numerosity and duration processing in the left intraparietal sulcus:a transcranial magnetic stimulation study. Cortex,44(4), 462-469.
    Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration interference:A Stroop experiment. Acta psychologica,121(2),109-124.
    Droit-Volet, S., Clement, A., & Fayol, M. (2003). Time and number discrimination in a bisection task with a sequence of stimuli:A developmental approach. Journal of experimental child psychology,84(1),63-76.
    Fischer, M., Castel, A., Dodd, M., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6),555-556.
    Fischer, M., Shaki, S., & Cruise, A. (2009). It Takes Just One Word to Quash a SNARC. Experimental Psychology (formerly" Zeitschrift fur Experimentelle Psychologie"),56(5), 361-366.
    Fraisse, P. (1984). Perception and estimation of time. Annual review of psychology,35(1),1-37.
    Gallistel, C., & Gelman, R. (2000). Non-verbal numerical cognition:From reals to integers. Trends in Cognitive Sciences,4(2),59-65.
    Gil, S., Rousset, S., & Droit-Volet, S. (2009). How Liked and Disliked Foods Affect Time Perception. Emotion,9(4),457-463.
    Griffin, I., Miniussi, C., & Nobre, A. (2002). Multiple mechanisms of selective attention: Differential modulation of stimulus processing by attention to space or time. Neuropsychologia,40(13),2325-2340.
    Harrington, D., Haaland, K., & Knight, R. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience,18(3),1085.
    Hillyard, S., Hink, R., Schwent, V., & Picton, T. (1973). Electrical signs of selective attention in the human brain. Science,182(4108),177.
    Hinton, S., Harrington, D., Binder, J., Durgerian, S., & Rao, S. (2005). Neural systems supporting timing and chronometric counting:an FMRI study. Cognitive Brain Research,21(2), 183-192.
    Hubbard, E., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience,6(6),435-448.
    Ishihara, M., Keller, P., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: evidence for the STEARC effect. Cortex,44(4),454-461.
    Keus, I., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect:Evidence for a response-related origin. Memory & Cognition,33(4),681.
    Kiesel, A., & Vierck, E. (2009). SNARC-like congruency based on number magnitude and response duration. Journal of Experimental Psychology:Learning, Memory, and Cognition,35(1), 275.
    Lange, K., R sler, F., & R der, B. (2003). Early processing stages are modulated when auditory stimuli are presented at an attended moment in time:An event-related potential study. Psychophysiology,40(5),806-817.
    Lu, A., Hodges, B., Zhang, J., & Zhang, J. (2009). Contextual effects on number-time interaction. Cognition.
    Macar, F., & Vidal, F. (2003). The CNV peak:an index of decision making and temporal memory. Psychophysiology,40(6),950-954.
    Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time processing:a review. Journal of Psychophysiology,18(2),89-104.
    Meck, W. H. (2005). Neuropsychology of timing and time perception. Brain and cognition,58(1), 1-8.
    Mohl, W. (1991). The role of the right parietal region in a movement time estimation task. NeuroReport,2(6),309.
    Moyer, R., & Landauer, T. (1967). Time required for judgements of numerical inequality.
    Niemeier, M., Stojanoski, B., & Greco, A. (2007). Influences of time and spatial frequency on the perceptual bias:Evidence for competition between hemispheres. Neuropsychologia,45(5), 1029-1040.
    Oliveri, M., Vicario, C., Salerno, S., Koch, G., Turriziani, P., Mangano, R., et al. (2008). Perceiving numbers alters time perception. Neuroscience letters,438(3),308-311.
    Paivio, A. (1975). Perceptual comparisons through the mind's eye. Memoiy & Cognition.
    Pfeuty, M., Ragot, R., & Pouthas, V. (2005). Relationship between CNV and timing of an upcoming event. Neuroscience letters,382(1-2),106-111.
    Piazza, M., Giacomini, E., Le Bihan, D., & Dehaene, S. (2003). Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic resonance imaging. Proceedings of the Royal Society of London. Series B:Biological Sciences,270(1521), 1237.
    Pretz, J., & Totz, K. (2007). Measuring individual differences in affective, heuristic, and holistic intuition. Personality and Individual Differences,43(5),1247-1257.
    Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience,4(3),317-323.
    Roitman, J., Brannon, E., Andrews, J., & Platt, M. (2007). Nonverbal representation of time and number in adults. Acta psychologica,124(3),296-318.
    Salillas, E., El Yagoubi, R., & Semenza, C. (2000). Sensory and cognitive processes of shifts of spatial attention induced by numbers:An ERP study. Journal of Cognitive Neuroscience,12, 840-847.
    Schwarz, W., & Heinze, H. (1998). On the interaction of numerical and size information in digit comparison:A behavioral and event-related potential study. Neuropsychologia,36(11), 1167-1179.
    Schwarz, W., & Ischebeck, A. (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology:Human Perception and Performance,29(3),507-522.
    Stavy, R., & Tirosh, D. (2000). How students (mis-) understand science and mathematics:Intuitive rules:Teachers College Pr.
    Thomas, K., & Handley, S. (2008). Anchoring in time estimation. Acta psychologica,127(1),24-29.
    Turconi, E., Jemel, B., Rossion, B., Seron, X.,2004. Electrophysiological evidence for differential processing of numerical quantity and order in humans. Brain Research.21,22-38.
    Vallesi, A., Binns, M., & Shallice, T. (2008). An effect of spatial-temporal association of response codes:Understanding the cognitive representations of time. Cognition,107(2),501-527.
    Vallesi, A., McIntosh, A., & Stuss, D. (2008). How Time Modulates Spatial Responses. Cognition, 106,579-593.
    Verguts, T., & Fias, W. (2008). Symbolic and nonsymbolic pathways of number processing. Philosophical Psychology,21(4),539-554.
    Vicario, C., Caltagirone, C., & Oliveri, M. (2007). Optokinetic stimulation affects temporal estimation in healthy humans. Brain and cognition,64(1),68-73.
    Vicario, C., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. Plos One,5(3), 1716.
    Vicario, C. M. (2009). Reaction time to judge the temporal inequality of digits numbers.
    Walsh, V. (2003). A theory of magnitude:common cortical metrics of time, space and quantity. Trends in Cognitive Sciences,7(11),483-488.
    Walter, W., Cooper, R., Aldridge, V., McCallum, W., & Winter, A. (1964). Contingent negative variation:an electric sign of sensori-motor association and expectancy in the human brain. Nature,203,380-384.
    Wood, G., Nuerk, H., & Willmes, K. (2006). Neural representations of two-digit numbers:A parametric fMRI study. Neurolmage,29(2),358-367.
    Xuan, B., Chen, X., He, S., & Zhang, D. (2009). Numerical magnitude modulates temporal comparison:An ERP study. Brain research,1269,135-142.
    Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision,7(10).
    Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture,5,1(2), 165-190.