胰腺癌组织VEGF-C、VEGFR-3的表达及siRNA抑制胰腺癌细胞VEGF-C表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是一种凶险的恶性肿瘤,在我国年发病率为5.1/10万,居全身恶性肿瘤的第8位,并呈逐年上升的趋势。胰腺癌的显著特点是恶性程度高,淋巴结转移发生早,即使接受根治性手术切除及放射、化学药物治疗,局部复发及转移的发生率仍很高,胰腺癌的大多数胰腺癌患者切除术后预后差。美国国立卫生研究院报告,胰腺癌1年生存率为8%,5年生存率为3%,中位生存期仅2~3月。我国的统计资料显示,5年生存率在5%左右。大量研究表明,胰腺导管腺癌细胞主要向周围淋巴结、胰内神经、胰周结缔组织及肠系膜上动脉周围神经丛进行侵袭和转移,淋巴结转移与神经侵犯是影响患者预后最重要的因素之一,因此在探索胰腺癌的有效治疗方法方面,如能有效的预防和控制胰腺癌的淋巴转移,将有望大大提高为胰腺癌的综合治疗效果。
     长期以来淋巴管被视为肿瘤转移最重要的路径。2000年以后,淋巴管上皮特异性单抗的出现,大大推进了肿瘤组织中微淋巴管的研究。大部分的研究结果都显示肿瘤诱导的新生淋巴管与肿瘤侵袭、转移及预后有密切的相关性。近年来的研究发现,血管内皮生长因子(vascular endothelial growth factor,VEGF)C、D能够通过激活血管内皮生长因子受体3(vascular endothelial growth factor receptor,VEGFR-3)刺激淋巴管新生,与包括胰腺癌在内的多种实体瘤淋巴结转移和局部侵犯有密切关系。在促进肿瘤转移的机制上,淋巴管新生相关因子可能不仅仅增加肿瘤相关新生淋巴管的数量,而且可能激活淋巴上皮分泌化学性因子、粘附分子以及受体来参与肿瘤细胞与淋巴内皮之间的相互作用,从而促进肿瘤的扩散,目前淋巴管新生的分子介导,无论是临床还是实验上都认为VEGF-C/D-VEGFR-3信号传导通路是新生淋巴管的主要调节环节,有迹象研究表明VEGF-C与肿瘤的淋巴结转移呈正相关而通过阻断VEGF-C/D-VEGFR-3信号传导通路,能够抑制淋巴管生成及淋巴结转移。
     RNA干扰(RNA interference,RNAi)是广泛存在于生物体内的一种通过双链RNA,(double-stranded RNA,dsRNA)来抵抗病毒入侵和调节基因表达的自然机制,RNAi自1998年首先提出以来立即成为了分子生物学领域的研究热点,近几年的研究基本阐明了RNAi的机制,RNAi可分为3个阶段,即较长dsRNA经RnaseⅢ酶Dicer的切割,RNA诱导沉默复合物(RNA-induced silencing complex,RISC)的组装和目的mRNA的降解。目前在RNAi作用特征和应用的研究上也取得了较大进展,小分子干涉siRNA(small interfering,RNA)在哺乳动物细胞中能够介导转录后基因沉默(post-transcriptional gene silencing,PTCG),因其具有高效性和序列特异性,已经成为功能基因组学研究的有力工具之一,尤其在肿瘤相关基因的研究和肿瘤基因治疗研究领域取得了突破性进展。
     本实验利用RT-PCR的方法对胰腺癌组织以及癌旁组织和正常胰腺组织中淋巴管新生相关因子VEGF-C,VEGFR-3的表达进行研究,比较与淋巴管密度的相关性,最后进行VEGF-C基因靶向RNAi抑制VEGF-C表达的实验研究,为探寻基因治疗抑制胰腺癌淋巴管生成及淋巴结转移,提高胰腺癌治疗效果及远期生存率的新方法进行一定的实验基础。
     第一部分:胰腺癌组织淋巴管新生因子VECF-C、VEGFR-3的表达的测定
     目的:分析胰腺癌组织、癌旁组织以及正常胰腺组织中淋巴管新生因子VEGF-C、VEGFR-3表达的差异及与临床病理特点的关系。方法:选至长海医院胰腺外科2007.3-2007.6切除胰腺肿瘤组织标本共20例,手术切除后30s内迅速以液氮保存肿瘤组织、肿瘤边缘3mm内的癌周组织,以及远离肿瘤的阴性切缘的正常组织,运用RT-PCR方法测定这三种不同组织中淋巴管新生相关因子表达的差异以及与临床病理特点的关系。结果:VEGF-C、VEGFR-3在胰腺癌组织、癌旁组织、正常组织中表达量差异显著(p<0.05),其中VEGF-C在肿瘤组织组织中表达明显高于癌旁组织即正常胰腺组织,VEGFR-3在癌旁组织明显高于癌组织及正常胰腺组织,肿瘤组织中VEGF-C、癌旁组织中VEGFR-3表达在不同年龄、性别、肿瘤部位、分化程度的患者间差异不显著(p<0.05);而在淋巴结转移阴性和阳性患者中表达量差异显著(p<0.05),相关分析显示肿瘤组织中VEGF-C、癌旁组织中VEGFR-3表达与淋巴结转移情况呈正相关;肿瘤组织中VEGF-C、癌旁组织中VEGFR-3表达在TNM分期为Ⅰ期、Ⅱ期的患者与Ⅲ期、Ⅳ期患者间差异显著(p<0.05)。
     第二部分:胰腺癌中淋巴管密度与淋巴管新生因子VECF-C、VEGFR-3相关性
     目的:比较胰腺癌组织、癌旁组织、正常胰腺组织中微淋巴管密度的差异,以及研究与VEGF-C、VEGFR-3表达的相关性。方法:应用Envision法免疫组化技术对第一部分收集的20例胰腺癌组织、癌旁组织、正常胰腺组织进行LYVE-1染色,按Weider法进行微淋巴管密度的判定,分析在这三种组织中微淋巴管分布的差异,同时与第一部分所得的VEGF-C及VEGFR-3的结果进行比较,研究VEGF-C、VEGFR-3的表达与微淋巴管密度的相关性。结果:在胰腺癌组织、癌旁组织、正常组织中微淋巴管密度差异非常显著(p<0.05),其中癌旁组织明显高于癌组织,统计分析显示VEGF-C、VEGFR-3表达与微淋巴管密度呈正相关。
     第三部分:siRNA抑制胰腺癌细胞PANC-1的VEGF-C表达的实验研究
     目的:在体外观察VEGF-C基因靶向siRNA转染胰腺癌细胞株PANC-1,对VEGF-C表达的影响。方法:根据VEGF-C基因序列以及siRNA的设计原则,利用在线siRNA设计软件设计并合成VEGF-C基因靶向的siRNA,以阳离子脂质体Lipofectamine 2000稀释后与合成的siRNA混合后形成脂质体-siRNA复合物,将该复合物加入培养细胞中,在转染24小时、48小时及72小时后收集细胞。以RT-PCR方法测定在RNA干扰后VEGF-C的mRNA的表达。选择干扰试剂盒附带的阳性对照GAPDH-siRNA的正反义寡核苷酸模板,与合成的干扰序列的正反义模板一起在体外进行转录,将得到的GAPDH-siRNA以同样方法导入肿瘤细胞株PANC-1作为阳性对照。另外同时随机设计引物序列,以同样脂质体法导入培养的细胞株PANC-1作为siRNA的阴性对照组,阴性和阳性对照组均同样在24小时、48小时、72小时后收集细胞,RT-PCR检测阴性对照组VEGF-C和阳性对照组GAPDH的表达。同时分别以siRNA、脂质体、Opti-MEMI(作为对照)处理培养的胰腺癌PANC-1细胞,分别计算存活率,进行细胞毒性检测。结果:分别以siRNA、脂质体、Opti-MEMI(作为对照)处理培养的胰腺癌PANC-1细胞,各组细胞存活率无明显统计学差异,证实单独siRNA或脂质体对培养的胰腺癌PANC-1细胞均没有明显毒性。阳性对照组RT-PCR法测试证实GAPDH基因表达明显受到抑制,证实脂质体法将体外合成的siRNA导入胰腺癌细胞的可行性。以自行设计的两列VEGF-C基因靶向siRNA(40nM)和VEGF-C靶向siRNA的错义序列,分别以脂质体法分别导胰腺癌细胞PANC-1,RT-PCR法测试VEGF-C基因表达,证实导入VEGF-C基因靶向siRNA的胰腺癌细胞VEGF-C表达与阴性对照组相比明显受到抑制。在转染24小时后VEGF-C表达明显受到抑制,并在转染72小时后始表达开始恢复。
The morbility of pancreatic carcinoma in P.R.China is 5.1/100,000,It is increasing year by year.This disease has very poor prognosis because of early metastasis and invasion through lymphatic system.In a report of U.S.National Institutes of Health,Survival rate in 1 year is 8%and in 5 years is 3%.Metastasis of this neoplasm through lymphatic system is one of the most important factors which affect the prognosis.Preventing the metastasis through lymphatic system may make great progress in treament of pancreatic carcinoma.
     Discovering of monoclonal antibody of epithelium of lympgatic vessel has improved the study in microlympgatic vessel in tumour tissue since 2000.It is shows that malignancy cell's metastasis and invasion correlates with lymphangiogenesis induced by the neoplasm.Recently studies show that vascular endothelial growth factor receptor 3 (VEGFR-3) is activated by its specific ligand vascular endothelial growth factor C(VEGF-C) and then promotes Lymphangiogenesis.lt may cause metastasis and invasion of the neoplasms.These facts which correlated with Lymphangiogenesis not only promote lymphangiogenesis but also active several chemical factor adhesion、molecule and receptor secreted by epithelium of lympgatic vessel which infact the interaction between the tumor cell and endothelial cell of lympgatic vessel.So these facts can promote cancer progression. The VEGF-C/VEGFR-3 asix affects tumour progress by regulation lymphagiogensis.And it may be the most important regulators of lymphagiogensis.Some studies show inhibiting it can depress lymphagiogensis and metastasis of tumour through lympgatic vessel.
     RNA interference(RNAi) by double stranded RNA(dsRNAs) molecules of approx--imately 20-25 nucleotides termed short interfering(siRNAs) is a powerful method for pr--eventing the expression of a particular gene.The Mechanism of RNAi can be divided in three steps:the dsRNAs processed into small interfering RNAs(siRNAs) by an RNaseⅢ--like enzyme,RNA-induced silencing complexes(RISCs) packed and RISCs cleave and destroy the cognate RNA.In mammalian cells,introduction of siRNA initiates post-tran--scriptional gene silencing(PTCG).It is going to be a powerful method in study of fun--ctional genomics especially as tumor related gene and gene therapy because of its highly efficacy and specificity.
     We study expression of VEGF-C and VEGFR-3 in tissues of pancreatic carcinoma, adjacent tissues of pancreatic carcinoma and tissue of normal pancreas by realtime PCR and the relationship With the lympgatic vessel density in these tissues.Then we use VEGF--C gene targeted siRNA to depress the expression of VEGF-C gene in vitro in order to find a new method of gene therpy for pancreatic carcinoma by inhabiting lymphagiogensis and metastasis of neoplasms
     PartⅠ:Expression of VEGF-C and VEGFR-3 in pancreatic adenocareinoma, adjacent tissues of pancreatic carcinoma and normal pancreas
     Object:Analysis the expression of VEGF-C and VEGFR-3 in pancreatic carcinoma, adjacent tissues of pancreatic carcinoma and normal pancreas to find the relationship bet--ween these expressions and the features of clinical pathology.Method:To preserve 20 tissues of pancreatic carcinoma、their adjacent tissues and tissues of their negative margin in liquid nitrogen(LN) at the pancreectomy in Changhai Hospital.Studing the expression of VEGF-C and VEGFR-3 in these tissues by RT-PCR and studying the relationship with the features of clinical pathology by statistical method.Result:The expression of VEGF-C in tissue of pancreatic carcinoma and VEGFR-3 in adjacent tissues of pancreatic carcinoma is higher than it in pancreatic carcinoma and the normal pancreas(p<0.05).And these expressions has no relationship with the the features of clinical pathology such as age、gender、position of the neoplasm、degree of differentiation(p>0.05).But it is higher in tissue with positive lymph node than with negative lymph node(p<0.05).
     PartⅡ:Relationship of the expression of VEGF-C and VEGFR-3 in tissues of pancreatic carcinoma,adjacent tissues of pancreatic carcinoma and normal pancreas with lympgatic vessel density(LVD)in these tissues
     Object:Studing the difference of lympgatic vessel density(LVD) in pancreatic carcinoma, adjacent tissues of pancreatic carcinoma and normal pancreas and the relationship with expression of VEGF-C and VEGFR-3 in these tissues.Method:Immunohistochemistry were used to detect the expression of LYVE-1 to detect LVD in 20 cases of pancreatic carcinoma,adjacent tissues of pancreatic carcinoma and normal pancreas collected in partⅠand studying the relationship with expression of VEGF-C and VEGFR-3 in these tissues by statistical method.Result:The LVD in adjacent tissues of pancreatic carcinoma is higher than it in pancreatic carcinoma and normal pancreas(p<0.05) And it correlated with the expression of VEGF-C and VEGFR-3(p<0.05)
     PartⅢDepression of the expression of VEGF-C by VEGF-C gene targeted siRNA in vitro
     Object:To observe change in the expression of VEGF-C of human pancreatic cell (PANC-1 ) after introduction of VEGF-C gene targeted siRNA.Method:VEGF-C gene targeted siRNA is designed and composed according to siRNA design software online.VEGF-C gene targeted siRNA is brought by cationic liposome(Lipofectamine~(TM) 2000 Reagent) to transfect PANC-1 cell.GAPDH-siRNA is introducted as positive control,Missense sequence of these siRNA is also introducted as negative control.24h, 48h、72h after these transfection.The transfected cell is collected.RT-PCR is performed to analysis the expression of VEGF-C in transfected cell and negative control.Result: PANC-1 cell's survival rate has no changed after dealed with siRNA and gationic liposome respectively.The expression of VEGF-C in transfected cell is highly depressed(p<0.01) in 24h,and has recovered in 72h.
引文
(1) Ferrara N, Davis-Smyth T, et al. The biology of vascular endothelial growth factor. Endocr Rev 1997,18: 4-25
    (2) Liu B, Earl HM, Baban D, et al. Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun 1995,217: 721-727
    (3) Plate K. From angiogenesis to lymphangiogenesis. Nat Med 2001, 7: 151-152
    (4) Karpanen T, Alitalo K.Lymphatic vessels as targets of tumor therapy? J Exp Med 2001,194: F37-F42
    (5) Skobe M, Hawighorst T, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001,7: 192-198
    (6) Witte D, Thomas A, et al. Expression of the vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C in human colorectal adenocarcinoma. Anticancer Res 2002,22: 1463-1466
    (7) Van Trappen PO, Steele D, et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 2003,201: 544-554
    (8) Akagi K, Ikeda Y, et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br J Cancer 2000,83: 887-891
    (9) Hashimoto I, Kodama J, et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer 2001, 85: 93- 97
    (10) Juttner S, Wissmann C, et al. Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric denocarcinoma. J Clin Oncol 2006,24: 228-240
    (11) Su JL, Yang PC, Shih JY, et al. The VEGF-C/VEGFR-3 axis promotes invasion and metastasis of cancer cells. Cancer Cell 2006,9: 209-223
    (12) Gunningham SP, Currie MJ, et al. The short form of the alternatively spliced flt-4 but not its ligand vascular endothelial growth factor C is related to lymph node metastasis in human breast cancers. Clin Cancer Res 2000,6:4278- 4286
    (13) George ML, Tutton MG, et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 2001,3: 420 -427
    (14) Komuro H, Kaneko S, et al. Expression of angiogenic factors and tumor progression in human neuroblastoma. J Cancer Res Clin Oncol 2001,127: 739- 743
    (15) Hanrahan V, Currie MJ, et al. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenomacarcinoma sequence during colorectal cancer progression. J Pathol 2003,200: 183-194
    
    (16) Koyama Y, Kaneko K, et al. Vascular endothelial growth factor-C and vascular endothelial growth factor-d messenger RNA expression in breast cancer: association with lymph node metastasis. Clin Breast Cancer 2003,4: 354-360
    (17) Byzova TV, Goldman CK, et al. Plow EFA mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cel 2000,16: 851-860
    (18) Dias S, Choy M, et al. Vascular endothelial growth factor (VEGF)-C signaling through VEGFR-3 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 2002,99: 2179-2184
    (19) Chen F, Takenaka K, et al. Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer. Clin Cancer Res 2004,10: 8548- 8553
    (20) Zeng Y, Opeskin K, et al. Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin Cancer Res 2004,10: 5137- 5144
    (21) Weninger W, Partanen TA, et al. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab Invest 1999,79: 243-251
    (22) Marchio S, Primo L, et al. Vascular endothelial growth factor-C stimulates the migration and proliferation of Kaposi's sarcoma cells. J Biol Chem 1999,274: 7617-27622
    (23) Masood R, Kundra A, et al. Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. Int J Cancer 2003,104: 603-610
    
    (24) Hoshida T, Isaka N, et al. maging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 2006,166: 8065-8075
    (25) He Y, Kozaki K, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002,94: 819-825
    (26) Chen Z, Varney ML, et al. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 2005,65: 9004-9011
    (27) Dias S, Choy M, et al. Vascular endothelial growth factor (VEGF)-C signaling through VEGFR-3 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy.Blood 2002,99: 2179-2184
    (28) Ogawa E, Takenaka K, et al. Clinical significance of VEGF-C status in tumour cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer 2004,91: 498- 503
    (29) Schoppmann SF, Fenzl A, et al. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery 2006,139: 839-846
    (30) Cursiefen C, Chen L, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004,113: 1040-1050
    (31) Maruyama K, Ii M, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005,115: 2363- 2372
    (32) Kerjaschki D.The crucial role of macrophages in lymphangiogenesis. J Clin Invest 2005,115:2316-2319
    (33) Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 2006,94: 184-188
    (34) Padera TP, Kadambi A, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002,296: 1883- 1886
    (35) Gombos Z, Xu X, et al. Peritumoral lymphatic vessel density and vascular endothelial growth factor C expression in early-stage squamous cell carcinoma of the uterine cervix. Clin Cancer Res 2005,11: 8364-8371
    (1) Kaipainen A, Korhonen J,et al. Expression of the Fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. PNAS 1995,92: 3566-3570
    (2) Kukk E, Lymboussaki A,et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996,122: 3829-3837
    (3) Partanen TA, Alitalo K, Miettinen M.Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999,86: 2406-2412
    (4) Valtola R, Salven P,et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999,154: 1381- 1390
    (5) Schmelz M, Franke WW.Complexus adhaerentes, a new group of desmoplakin--containing junctions in endothelial cells: the syndesmos connecting retothelial cells of lymph nodes. Eur J Cell Biol 1993,61:274-289
    (6) Ebata N, Nodasaka Y,et al. Desmoplakin as a specific marker of lymphatic vessels. Microvasc Res 2001,61: 40-48
    (7) Hub E, Rot A.Binding of RANTES, MCP-1, MCP-3, and MIP-1alpha to cells in human skin. Am J Pathol 1998,152: 749-757
    (8) Wigle JT, Oliver G.Prox1 function is required for the development of the murine lymphatic system. Cell 1999,98: 769-778
    (9) Stacker SA, Achen MG,et al. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002,2: 573-583
    (10) Agarwal B, Saxena R,et al. Lymphangiogenesis does not occur in breast cancer. Am J Surg Pathol 2005,29: 1449-1455
    (11) Banerji S, Ni J,et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymphspecific receptor for hyaluronan. J Cell Biol 1999,144: 789- 801
    (12) Prevo R, Banerji S,et al. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 2001,276:19420-19430
    (13) Beasley NJP, Prevo R,et al. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 2002,62: 1315-1320
    (14) Maula SM, Luukkaa M,et al. Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res 2003,63: 1920-1926
    (15) Dadras SS, Paul T,et al.Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 2003,162:1951-1960
    (16) Straume O, Jackson DG, Akslen LA Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clin Cancer Res 2003,9: 250-256
    (17) Hall FT, Freeman JL,et al. Intratumoral lymphatics and lymph node metastases in papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg 2003,129: 716-719
    (18) Koukourakis MI, Giatromanolaki A,et al.LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol 2005,58:202-206
    (19) Von Marschall Z, Scholz A,et al. Vascular endothelial growth factor-D induces lymphangiogenesis and lymphatic metastasis in models of ductal pancreatic cancer. Int J Oncol 2005,27: 669-679
    (20) Williams CS, Leek RD,et al. Absence of lymphangiogenesis and intratumoural lymphvessels in human metastatic breast cancer. J Pathol 2003,200:195-206
    (21) Bono P, Wasenius VM,et al. High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res 2004,10: 7144- 7149
    (22) Van Trappen PO, Steele D,et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 2003,201: 544-554
    (23) Trojan L, Michel MS,et al. Lymph and blood vessel architecture in benign and malignant prostatic tissue: lack of lymphangiogenesis in prostate carcinoma assessed with novel lymphatic marker lymphatic vessel endothelial hyaluronan receptor (LYVE-1). J Urol 2004,172: 103-107
    (24) Rubbia-Brandt L, Terris B,et al. Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res 2004,10: 6919-6928
    (25) Stessels F, Van den Eynden G,et al. Breast adenocarcinoma liver metastases, incontrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 2004,90: 1429-1436
    (26) Van der Auwera I, Van Laere SJ,et al. Increased angiogenesis and lymphangiogenesis in inflammatory vs noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 2004,10: 7965- 7971
    (27) Maruyama K, Ii M,et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005, 115:2363- 2372
    (28) Kerjaschki D, Huttary N,et al. Lymphatic endothelial progenitor cells contribute to de novolymphangiogenesis in human renal transplants. Nat Med 2006,12:230-234
    (29) Wetterwald A, Hoffstetter W,et al. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone 1996,18: 125-132
    (30) Breiteneder-Geleff S, Matsui K,et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 1997, 151:1141-1152
    (31) Breiteneder-Geleff S, Soleiman A,et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymph-atic endothelium. Am J Pathol 1999,154: 385-394
    (32) Kahn HJ, Bailey D, Marks A.Monoclonal antibody D2-40, a new marker of lymph-atic endothelium, reacts with Kaposi's sarcoma and a subset of angiosarcomas. Mod Pat-hol 2002,15: 434-440
    (33) Kahn HJ, Marks A .A new monoclonal antibody, D2—40, for detection of lymphatic invasion in primary tumors. Lab Invest 2002,82: 1255-1257
    (34) Evangelou E, Kyzas PA, Trikalinos TA.Comparison of the diagnostic accuracy of lymphatic endothelium markers: Bayesian approach. Mod Pathol 2005,18:1490-1497
    
    (35) Niakosari F, Kahn HJ,et al. Detection of lymphatic invasion in primary melanoma with monoclonal antibody D2-40: a new selective immunohistochemical marker of lymphatic endothelium. Arch Dermatol 2005,141:440-444
    (36) Zeng Y, Opeskin K,et al. Lymphatic vessel density and lymph node metastasis in prostate cancer.Prostate 2005,65: 222-230
    (37) Fiedler U, Christian S,et al. The Sialomucin CD34 is a marker of lymphatic endo--thelial cells in human tumors. Am J Pathol 2006,168:1045- 1053
    (38) Hirakawa S, Hong YK,et al.Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 2003,162: 575-586
    (39) Audet N, Beasley NJ,et al. Lymphatic vessel density, nodal metastases, and prognosis in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg 2005,131:1065-1070
    (40) Kuroyama S, Kobayashi N,et al.Enzyme histochemical analysis of lymphatic vessels in colon carcinoma.occurrence of lymphangiogenesis within the tumor. Hepatogastroen--terology 2005,52: 1057-1061
    (41) Kyzas PA, Geleff S,et al. Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. J Pathol 2005, 206: 170-177
    (42) Massi D, Puig S,et al. Tumour lymphangiogenesis is a possible predictor of sentinel lymph node status in cutaneous melanoma: a case—control study. J Clin Pathol 2006, 59: 166- 173
    (43) Cassella M, Skobe M.Lymphatic vessel activation in cancer. Ann NY Acad Sci 2002,979: 120-130
    (44) Alitalo K, Mohla S,et al. Lymphangiogenesis and cancenmeeting report. Cancer Res 2004,64: 9225- 9229
    (45) Saeki H, Moore AM,et al. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 1999,162: 2472-2475
    (46) Gunn MD, Tangemann K,et al.A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive Ta'lymphocytes. PNAS 1998, 95: 258-263
    (47) Muller A, Homey B,et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001,410: 50-56
    (1) Fire A, Xu S,et al. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 1998,391:806-811
    (2) Hammond SM, Bernstein E,et al. An RNA directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature 2000,404:293-296
    (3) Martinez J, Patkaniowska A,et al.Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002,110:563-574
    (4) Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001,107:309-321
    (5) Bernstein E, Caudy AA,et al. Role for abidentate ribonuclease in the initiation step of RNA interference.Nature 2001,409:363-366
    (6) Collins RE, Cheng X. Structural domains in RNAi. FEBS Lett 2005,579:5841-5849
    (7) Dykxhoorn DM, Lieberman J. Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu Rev Biomed Eng 2006,8:377-402
    (8) Jackson AL, Bartz SR,et al.) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003,21:635-637
    (9) Heil F, Hemmi H,et al.) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004,303:1526-1529
    (10) Judge AD, Sood V,et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005,23:457-462
    (11) Sioud M. Induction of inflammatory cytokines and interferon responses by double--stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005,348:1079-1090
    (12) Sledz CA, Holko M,et al. Activation of the interferon system by short-interfering RNAs.Nat Cell Biol 2003,5:834-839
    (13) Heidel JD, Hu S,et al.) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 2004,22:1579-1582
    (14) Ma Z, Li J,et al. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 2005,330:755-759
    (15) Brummelkamp TR. Bernards R. Agami R. Stable suppression of tu. morig'enicity by virus-mediated RNA interference.Cancer Cell, 2002,2(3): 243-247.
    (16) Wang YH. Liu S, Zhang G. et al. Knockdown of c. myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res.2005,7 (2): R220-228.
    (17)Hemann MT, Fridman JS. Zilfou JT. et al. An epi—alhlic series of p53 hypomorphs created by stable RNAi produces distinct tumor pheno. types in vivo. Nat Genet, 2003, 33(3): 396-400.
    (18) Jiang M, MilnerJ. Bcl-2 constitutively suppresses p53—dependent ap—optosis in colorectal cancer cells.Genes Dev.2003,17(7): 832-837.
    (19) Zhang L, Yang N. Mohamed-Hadley A. et al. Vector, based RNAi. anovel tool for isoform-specific knock-down of VEGF and anti-angiogen. esis gene therapy of cancer. Biochem Biophys Res Commun.2003,303(4): 1169—1178.
    
    (20) Filleur S. siRNA—mediated inhibition of vascular endothelial growth T factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vasc--ularization and growth[J]. Cancer Res. 2003,63(14): 3919-3922.
    (21) Storvold GL, Andemen TI, Perou CM,et al. siRNA: a potential tool for future breast cancer therapy?. Crit Rev Oncog, 2006,12(1-2): 127-150.
    (22) Belguise K. Kemual N. Galtier F, et al. FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells .Onco.gene.2005,24(8): 1434—1444.
    (23) Van Noesel MM, Vemteeg R. Pediatric neuroblastomas: genetic and epigenetic danse macabre .Gene.2004,325: 1-15.
    (24) Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR /ABL fusion gene by RNA interference(RNAi). Onco.gene. 2002,21: 571-647.
    (25 )Scher M, Battmer K, Winkler T, et al. Specific inhibition of bcr-abl gene expression by small interfering RNA.Blood. 2003,101(4): 1566-1569.
    [26]Yin JQ.Gao J.Shao R,et al.siRNA agents inhibit oncogene expression and attenuate human tumor cell growth.J Exp TherOncol,2003,3(4):194-204.
    [27]Santoro M.Carlomagno F.Drug insight:Small-molecule inhibitors of protein kinases in the treatment of thyroid cancer.Nat Clin Pract Endocrinol Metab.2006,2(1):42-45.
    [28]Lan L,Hayashi T,Rabeya RM,et al.Functional and physical interactions between ERCCI and MSH2 cmplexes for resistance to cis-diamminedi-chloroplatinum(Ⅱ)in mammalian cells.DNA Repair(Amst).2004,3(2):135-143.
    [29]Brummelkamp TR,Nijman SM.Dirac AM,et al.Loss of the cvlindro,matosis tumour suppressor inhibits apoptosis by activating NF、KB.Nature,2003,424(6950):797-801.
    [30]Siegmund D.Begue B,Wajt/nt H,et al.Implication of TNF.Related apop-tosis-inducing ligand in inflammatory intestinal epithelial lesions.Gastroenterology,2006,130(7):1962-1974.
    (1) Randolph, G. J., Angeli, V., Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005,5:617- 628.
    (2) Paavonen, K., Puolakkainen, P., Jussila, L., Jahkola, T., Alitalo, K.Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 2000,156:1499-1504.
    (3) Hong, Y. K., Lange-Asschenfeldt, B., Velasco, P., Hirakawa, S., Kunstfeld, R., Brown, L. F., Bohlen, P., Senger, D. R., Detmar, M. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the integrins. FASEB J. 2004,18:1111-1113.
    (4) Kunstfeld, R., Hirakawa, S., Hong, Y. K., Schacht, V., Lange-Asschenfeldt, B., Velasco, P., Lin, C., Fiebiger, E., Wei, X., Wu, Y., Hicklin, D., Bohlen, P., Detmar, M. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 2004,104:1048-1057.
    (5) Witte, M. H., Bernas, M. J., Martin, C. P., Witte, C. L. Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc. Res. Tech. 2001:55,122-145.
    (6) Litalo, K., Tammela, T., Petrova, T. V. Lymphangiogenesis in development and human disease. Nature 2005,438:946-953.
    (7) Oliver, G., Detmar, M.The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev.2002,16:773-783.
    (8) Eopper, M. S., Tille, J. C., Nisato, R., Skobe, M Lymphangiogenesis and tumor metastasis. Cell Tissue Res. 2003,314:167-177.
    (9) Artveit, E. Attenuated cells in breast stroma: the missing lymphatic system of the breast. Histopathology 1990,16:533-543.
    (10) Schacht, V., Ramirez, M. I., Hong, Y. K., Hirakawa, S., Feng, D., Harvey, N., Williams, M., Dvorak, A. M., Dvorak, H. F., Oliver, G., Detmar, M.T1-podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J.2003,22:3546-3556.
    
    (11) Jackson, D. G.Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 2004,112:526-538.
    (12) Hong, Y. K., Harvey, N., Noh, Y. H., Schacht, V., Hirakawa, S., Detmar, M., Oliver, G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 2002,225:351-357.
    (13) Wigle, J. T., Harvey, N., Detmar, M., Lagutina, I., Grosveld, G., Gunn, M. D., Jackson, D. G., Oliver, G. An essential role for Proxl in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002,21:1505-1513.
    (14) Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999; 154:385-94.
    (15) Evangelou E, Kyzas PA, Trikalinos TA. Comparison of the diagnostic accuracy of lymphatic endothelium markers: bayesian approach. Mod Pathol 2005,18:1490-1507
    (16) Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002,2:573-83.
    (17) Manerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999,144:789-801
    (18) Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 2004,112:526-38.
    (19) Carreira C, Nasser SM, di Tomaso E, Padera TP, Boucher Y, Tomarev SI, Jain RK. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 2001,61:8079-84.
    (20) Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 2002,21:4593-9.
    
    (21) Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999,98:769-78.
    (22) Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Yla-Herttuala S, Miura N, Alitalo K. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004,10:974-81.
    (23) Tammela T, Petrova TV, Alitalo K. Molecular lymphangiogenesis: new players. Trends Cell Biol 2005,15:434-41.
    (24) Beasley, N. J., Prevo, R., Banerji, S., Leek, R. D., Moore, J., van Trappen, P., Cox, G., Harris, A. L., Jackson, D. G. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res.2002,62:1315-1320.
    (25) Dadras, S. S., Paul, T., Bertoncini, J., Brown, L. F., Muzikansky, A., Jackson, D. G., Ellwanger, U., Garbe, C., Mihm, M. C., Detmar, M. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am. J. Pathol.2003,162:1951-1960.
    (26) Hawighorst, T., Oura, H., Streit, M., Janes, L., Nguyen, L., Brown, L. F., Oliver, G., Jackson, D. G., Detmar, M. Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but not tumor lymphangiogenesis and lymphatic metastasis in transgenic mice. Oncogene 2002,21: 7945-7956.
    (27) Maula SM, Luukkaa M, Grenman R, Jackson D, Jalkanen S, Ristamaki R. Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res 2003,63:1920-6.
    (28) Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK. Pathology: cancer cells compress intratumour vessels. Nature 2004,427:695.
    (29) Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002,296:1883-6.
    (30) Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 2000,60:4324-7.
    
    (31) Wong, S. Y., Haack, H., Crowley, D., Barry, M., Bronson, R. T., Hynes, R. O. Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res.2005, 65:9789-9798.
    
    (32) Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, Wilkinson GA. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005,19: 397-410.
    
    (33) Wiley, H. E., Gonzalez, E. B., Maki, W., Wu, M. T., Hwang, S. T. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J. Natl. Cancer Inst.2001,93:1638-1643.
    
    (34) Beasley, N. J., Prevo, R., Banerji, S., Leek, R. D., Moore, J., van Trappen, P., Cox, G., Harris, A. L., Jackson, D. G. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res. 2002,62:1315-1320.
    
    (35)Padera, T. P., Kadambi, A., di Tomaso, E., Carreira, C. M., Brown, E. B., Boucher, Y., Choi, N. C., Mathisen, D., Wain, J., Mark, E. J., Munn, L. L., Jain, R. K. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002,296:1883-1886.
    
    (36) Bjorndahl, M. A., Cao, R., Burton, J. B., Brakenhielm, E., Religa, P., Gaiter, D., Wu, L., Cao, Y. Vascular endothelial growth factor-A promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res. 2005,65:9261-9268.
    
    (37) Hirakawa, S., Kodama, S., Kunstfeld, R., Kajiya, K., Brown, L. F., Detmar, M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med.2005,201:1089- 1099.
    
    (38) Thiele, W., Sleeman, J. P. Tumor-induced lymphangiogenesis: a target for cancer therapy? J. Biotechnol. 2006,124:224-241.
    
    (39) Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E., Alitalo, K. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2002,2:573-583.
    (40) Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006,6:835-45.
    (41) Blann AD, Woywodt A, Bertolini F, Bull TM, Buyon JP, Clancy RM, Haubitz M, Hebbel RP, Lip GY, Mancuso P, Sampol J, Solovey A, et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 2005,93:228-35.
    (42) Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001,7:1194-201.
    (43) Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 2005,11:261-2.
    (44) Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002;2:826-45.
    (45) Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997,275:964-7.
    (46) Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006,12:230-4.
    (47) Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest 2005,115:2316-19.
    (48) Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, Losordo DW, Streilein JW. Inflammation-induced lymphangiogenesis in the cornea arises from CD lib-positive macrophages. J Clin Invest 2005,115:2363-72.
    (49) Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001,7:192-8.
    
    (50) Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K, Harkonen PL. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer 2002,98:946-51.
    
    (51) Kazama S, Kitayama J, Watanabe T, Nagawa H. Expression pattern of vascular endothelial growth factor-C in human colorectal normal mucosa and neoplastic mucosa. Hepatogastroenterology 2004,51: 91-5.
    
    (52) Onogawa S, Kitadai Y, Tanaka S, Kuwai T, Kimura S, Chayama K. Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph node metastasis and prognosis of patients with colorectal carcinoma. Cancer Sci 2004,95:32-9.
    
    (53) Kawakami M, Furuhata T, Kimura Y, Yamaguchi K, Hata F, Sasaki K, Hirata K. Quantification of vascular endothelial growth factor-C and its receptor-3 messenger RNA with real-time quantitative polymerase chain reaction as a predictor of lymph node metastasis in human colorectal cancer. Surgery 2003,13 3:3 00-8.
    
    (54) Kawakami M, Furuhata T, Kimura Y, Yamaguchi K, Hata F, Sasaki K, Hirata K. Expression analysis of vascular endothelial growth factors and their relationships to lymph node metastasis in human colorectal cancer. J Exp Clin Cancer Res 2003,22:229-37.
    
    (55) Jia YT, Li ZX, He YT, Liang W, Yang HC, Ma HJ. Expression of vascular endothelial growth factor-C and the relationship between lymphangiogenesis and lymphatic metastasis in colorectal cancer. World J Gastroenterol 2004,10:3261-3.
    
    (56) Maeda K, Yashiro M, Nishihara T, Nishiguchi Y, Sawai M, Uchima K, Onoda N, Ohira M, Ishikawa T, Hirakawa K. Correlation between vascular endothelial growth factor C expression and lymph node metastasis in T1 carcinoma of the colon and rectum. Surg Today 2003,33:736-9.
    
    (57) Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2006,109:1010-17.
    
    (58) Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996,15:290-98.
    (59) Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001,7:186-91
    (60) Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 1997,16: 3898-911.
    (61) Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 1999,274:32127-36.
    (62) Bjorndahl MA, Cao R, Burton JB, Brakenhielm E, Religa P, Gaiter D, Wu L, Cao Y. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res 2005,65:9261-8.
    (63) Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J ExpMed 2005,201:1089-99.
    (64) Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002,161: 947-56.
    (65) Chang LK, Garcia-Cardena G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, Kaipainen A. Dosedependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 2004,101:11658-63.
    (66) Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 2005,24:2885-95.
    (67) Cao R, Bjorndahl MA, Gallego MI, Chen S, Religa P, Hansen AJ, Cao Y. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood 2006,107:3531-6.
    (68) Tsukinoki K, Yasuda M, Mori Y, Asano S, Naito H, Ota Y, Osamura RY, Watanabe Y. Hepatocyte growth factor and c-Met immunoreactivity are associated with metastasis in high grade salivary gland carcinoma. Oncol Rep 2004,12:1017-21.
    (69) Kim CH, Moon SK, Bae JH, Lee JH, Han JH, Kim K, Choi EC. Expression of hepatocyte growth factor and c-Met in hypopharyngeal squamous cell carcinoma. Acta Otolaryngol 2006,126:88-94.
    (70) Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Gaiter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson DG, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004,6:333-45.
    (71) Tammela T, Saaristo A, Lohela M, Morisada T, Tornberg J, Norrmen C, Oike Y, Pajusola K, Thurston G, Suda T, Yla-Herttuala S, Alitalo K. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005,105:4642-8.
    (72) Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood 2005,105:4649-56.
    (73) Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002,3:411-23.
    (74) Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J ExpMed 2005,201: 1089-99.
    (75) Salameh A, Galvagni F, Bardelli M, Bussolino F, Oliviero S. Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood 2005,106:3423-31
    (76) Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 2005,102:15593-8.
    (77) Rebhun RB, Langley RR, Yokoi K, Fan D, Gershenwald JE, Fidler IJ. Targeting receptor tyrosine kinase on lymphatic endothelial cells for the therapy of colon cancer lymph node metastasis. Neoplasia 2006,8-747-57.
    (78) Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001,20:4762-73.
    (79) Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Gaiter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson DG, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004,6:333-45.
    (80) Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 2005,102:15593-8.
    (81) Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006,6:835-45.
    (82) Rosenzweig A. Circulating endothelial progenitors-cells as biomarkers. N Engl J Med 2005,353:1055-7.
    (83) Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005,353:999-1007
    (84) Akagi Y, Liu W, Zebrowski B, Xie K, Ellis LM. Regulation of vascular endothelial growth factor expression in human colon cancer by insulin-like growth factor-I. Cancer Res 1998,58:4008-14.
    (85) Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, Liang C, Booth B, Chidambaram N, Morse D, Sridhara R, Garvey P, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res 2006,12:7271-78.
    (86) News in brief. Nat Rev Drug Discov 2005,4:448-49.
    (87) Busby JE, Kim SJ, Yazici S, Nakamura T, Kim JS, He J, Maya M, Wang X, Do KA, Fan D, Fidler IJ. Therapy of multidrug resistant human prostate tumors in the prostate of nude mice by simultaneous targeting of the epidermal growth factor receptor and vascular endothelial growth factor receptor on tumor-associated endothelial cells. Prostate 2006,66:1788-98.