Wnt/β-Catenin信号通路对正常和肿瘤性肝前体细胞活化的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、经典Wnt信号通路在大、小鼠肝前体细胞活化中的调节作用
     研究背景和目的
     肝脏是是人体最大的外分泌器官,具有极强的再生功能。在正常生理状态下或轻度肝损伤时,肝细胞参与增殖和分化,维持肝脏的正常功能。当出现广泛和慢性的肝损伤导致肝细胞大量破坏和丢失而且肝细胞的增殖能力被抑制时,肝脏通过前体细胞的增殖和分化来完成肝脏再生。肝前体细胞同时表达肝系标志物和胆系标志物,并且能够向肝细胞或胆管上皮细胞分化。肝前体细胞被发现参与一系列肝脏损伤性疾病,并且在肝纤维化和肝脏肿瘤发生中发挥重要作用。
     β-Catenin既是细胞连接的重要组成部分,又是经典Wnt信号通路的关键信号分子。Wnt/β-catenin信号通路在众多组织中是调控细胞增殖、分化和迁移的重要通路,在肝脏的各种生物学功能中同样发挥着重要作用。β-Catenin对于胚胎肝脏发育和肝切除术后的肝脏再生至关重要。在多种肝脏肿瘤,尤其是肝细胞癌中,普遍存在β-catenin在细胞浆的聚集和/或核转位。但是,Wnt/β-catenin信号通路在肝前体细胞活化中的重要作用依然尚未明确。
     本研究拟首先通过建立大、小鼠肝前体细胞活化动物模型,观察在前体细胞活化过程中Wnt/β-catenin信号通路活性的变化情况;继而结合体内实验,观察经典Wnt信号通路的激活对肝前体细胞的活化或其参与肝脏再生能力的影响,从而从体内、体外两个水平证实Wnt/β-catenin信号通路对前体细胞的活化具有调节作用。
     实验方法:
     1、建立大鼠肝前体细胞活化模型;
     2、用免疫组织化学和Western Blot等方法研究在大鼠肝前体细胞活化过程中Wnt/β-catenin信号通路活性的变化情况;
     3、通过体外培养的肝前体细胞样细胞系研究Wnt/β-catenin信号通路的过度激活对细胞增殖特性的影响;
     4、运用细胞移植的实验研究Wnt/β-catenin信号通路的过度激活对前体细胞参与肝再生能力的影响;
     5、建立小鼠肝前体细胞活化模型;
     6、通过免疫组织化学和染色质免疫共沉淀的方法研究在小鼠肝前体细胞活化过程中Wnt/β-catenin信号通路活性的变化情况;
     7、通过质粒注射的方法从体内水平研究Wnt/β-catenin信号通路的过度激活对前体细胞活化的影响。
     结果:
     1、在大鼠肝前体细胞活化过程中,伴随Wnt/β-catenin信号通路活性的升高;
     2、大鼠肝前体细胞具有更高的Wnt/β-catenin信号通路活性;
     3、Wnt/β-catenin信号通路的激活不仅能在体外促进肝前体细胞样细胞系的增殖,而且能促进其参与肝脏再生的能力;
     4、在小鼠肝前体细胞活化过程中,伴随Wnt/β-catenin信号通路活性的升高,并且小鼠肝前体细胞同样具有更高的Wnt/β-catenin信号通路活性;
     5、通过质粒注射的方法提高Wnt/β-catenin信号通路活性能促进肝前体细胞的活化。
     结论:
     本研究在大鼠和小鼠两种肝前体细胞活化模型中研究了Wnt/β-catenin信号通路的重要作用,不仅发现了在肝前体细胞活化中伴随着Wnt/β-catenin信号通路活性的显著升高,而且发现肝前体细胞具有较高的Wnt/β-catenin信号通路活性。更重要的是发现提高前体细胞中Wnt/β-catenin信号通路的活性,能够促进前体细胞的活化及其参与肝再生的能力。
     二、Wnt/β-Catenin信号通路对OV6~+肝癌前体细胞的调节作用
     研究背景和目的
     干细胞代表着具有自我更新能力、能分化为子代细胞来修复组织的一个数量非常少的细胞亚群。在许多实体肿瘤的发生和进展中存在干/前体细胞起源和肿瘤细胞等级模型,具备自我更新能力的干/前体细胞可能是众多肿瘤的起源。随着肝干细胞生物学的进展,人们认为在肝细胞癌中也存在着肿瘤干/前体细胞,并且他们与肝痛的发生密切相关。
     Wnt/β-catenin信号通路在众多组织中是调控细胞增殖、分化和迁移的重要通路,与造血干细胞、神经干细胞和上皮干细胞等众多组织来源的干细胞的功能维持密切相关。在肝脏,Wnt/β-catenin信号通路与肝脏发育中的细胞增殖、肝再生和肿瘤生长也存在紧密联系,但其在肝干/前体细胞中的功能仍知之甚少。
     本研究将从人肝细胞癌标本和体外培养的肝癌细胞系入手,结合肝前体细胞标志物OV6,一方面鉴定、分选出这样一个具有前体细胞特性的细胞亚群,并研究其细胞特性;另一方面,详细阐述Wnt/β-catenin信号通路对这部分前体细胞功能的调节,尤其是对其自我更新能力和其它干/前体细胞特性的调节作用。
     实验方法:
     1、用免疫组织化学的方法检测OV6~+肝前体细胞在正常肝脏、肝硬化、肝细胞癌中的分布情况;
     2、用流式细胞仪检测在体外培养的肝癌细胞系中OV6~+肝癌细胞的比例;
     3、使用MACS的方法从肝癌绌胞系中分选出这部分OV6~+肝癌细胞,并用RT-PCR的方法分析这部分OV6~+肝癌细胞的特性;
     4、观察这部分OV6~+肝癌细胞成瘤性;
     5、流式细胞仪检测Wnt/β-catenin信号通路的激活(BIO刺激)对OV6~+肝癌细胞自我更新能力的影响;
     6、构建干扰β-catenin慢病毒所需质粒,包装、纯化慢病毒;
     7、流式细胞仪检测通过干扰β-catenin慢病毒降低Wnt/β-catenin信号通路活性对OV6~+肝癌细胞自我更新能力的影响;
     8、检测OV6~+肝癌细胞对常规化疗药物的耐受性(克隆形成实验);
     9、观察通过干扰β-catenin慢病毒降低Wnt/β-catenin信号通路活性对OV6~+肝癌细胞药物耐受性的影响。
     结果:
     1、在正常肝脏、肝硬化、肝细胞癌标本中均发现OV6~+肝前体细胞的存在;
     2、在体外培养的肝癌细胞系中也存在OV6~+肝癌细胞,其比例为0.2%到3%;
     3、OV6~+肝痛细胞具有干/前体细胞特性,在NOD/SCID小鼠体内具有更高的成瘤性;
     4、Wnt/β-catenin信号通路的激活能显著提高这部分OV6~+肝癌绌胞的比例,并促进其自我更新;干扰β-catenin的慢病毒能降低Wnt/β-catenin信号通路活性并降低了其自我更新的能力;
     5、OV6~+肝癌细胞对常规化疗药物具有更高的耐受性;
     6、干扰β-catenin的慢病毒能降低Wnt/β-catenin信号通路活性并提高这部分OV6~+肝癌细胞对药物的敏感性;
     结论:
     本研究从人肝细胞癌标本和体外培养的肝癌细胞系两个方面,结合肝前体细胞标志物OV6,一方面首次鉴定、分选出具有前体细胞特性,具有更强成瘤性的细胞亚群;另一方面详细阐述了Wnt/β-catenin信号通路对这部分前体细胞功能的调节,尤其是对其自我更新能力和其它干/前体细胞特性的调节作用。本研究为进一步理解肝细胞癌发生、发展的机制提供了线索,并有助于探寻可能的靶向肿瘤干/前体细胞的治疗方法。
PartⅠWnt/β-Catenin Signaling Mediates Progenitor Cells Activation in Rodents
     Adult hepatic progenitor cells (oval cells) are facultative stem cells in the liver that are activated during regeneration only during inhibition of innate hepatocyte proliferation. On the basis of its involvement in liver development, regeneration, and cancer, we investigated the role of the Wnt/β-catenin pathway in progenitor cell activation, which was initiated in rats with 2-acetylaminofluorine and two-third partial hepatectomy (PH) and in mice with treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine. First, we showed thatβ-catenin is highly expressed and mainly localized to the proliferating oval cells in both rat and mouse models, indicating the role of canonical Wnt/β-catenin pathway during the regenerative response. Furthermore, constitutive activation of Wnt/β-catenin signaling stimulated progenitor cell proliferation in vitro and caused a substantial clonal expansion of the transplanted rat oval cells in vivo, indicating that the activated Wnt/β-catenin signaling is required for progenitor cell expansion. Finally, the hyperplastic phenotype was consistently observed in the livers of DDC-fed mice that transiently overexpressed the constitutively activeβ-catenin. These results indicated that Wnt/β-catenin signaling occurs preferentially within the oval cell population, and forced expression of constitutively activeβ-catenin mutant promotes expansion of the progenitor cell population in the regenerated liver.
     PartⅡWnt/β-Catenin Signaling Contributes to Activation of Tumorigenic Liver Progenitor Cells
     Transformed hematopoietic stem/progenitor cells with an enhanced or acquired self-renewal capability function as leukemic stem cells. In a variety of solid cancers, stem/progenitor cells could be also targets of carcinogenesis. In the present study, we identify a subpopulation of less differentiated progenitor-like cells in HCC cell lines and primary HCC tissues, which are defined by expression of the hepatic progenitor marker OV6 and endowed with endogenously active Wnt/β-catenin signaling. These OV6-positive HCC cells possess a greater ability to form tumor in vivo and show a substantial resistance to standard chemotherapy as compared to OV6-negative tumor cells. The fraction of tumor cells expressing OV6 is enriched after Wnt pathway activation whereas inhibition ofβ-catenin signaling leads to a decrease in the proportion of OV6-positive cells. In addition, the chemoresistance of OV6-positive HCC progenitor-like cells can be reversed by lentivirus-delivered stable expression of microRNA targetingβ-catenin. These results highlight the importance of the Wnt/β-catenin pathway in activation and expansion of oval cells in human HCCs. OV6-positive tumor cells may represent the cellular population that confers HCC chemoresistance and therapies targeted to the Wnt/β-catenin signaling may provide a specific method to disrupt this resistance mechanism to improve overall tumor control with chemotherapy.
引文
1 Faust N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 2004;39:1477-87.
    
    2 Germain L, Noel M, Gourdeau H and Marceau N. Promotion of growth and differentiation of rat ductular oval cells in primary culture. Cancer Res 1988;48:368-78.
    
    3 Crosby H A, Hubscher S G, Joplin R E, Kelly D A and Strain A J. Immunolocalization of OV-6, a putative progenitor cell marker in human fetal and diseased pediatric liver. Hepatology 1998;28:980-5.
    
    4 Schmelzer E , Zhang L , Bruce A, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007;204:1973-87.
    
    5 Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M and Grompe M. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U.S.A 2003;100 Suppl 1:11881-8.
    
    6 Dunsford H A and Sell S. Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris hepatomas. Cancer Res 1989;49:4887-93.
    
    7 Van Den Heuvel M C, Slooff M J, Visser L, et al. Expression of anti-OV6 antibody and anti-N-CAM antibody along the biliary line of normal and diseased human livers. Hepatology 2001 ;33:1387-93.
    
    8 Strain A J, Crosby H A, Nijjar S, Kelly D A and Hubscher S G. Human liver-derived stem cells. Semin Liver Dis 2003;23:373-84.
    
    9 Roskams T A. Libbrecht L and Desmet V J. Progenitor cells in diseased human liver. Semin Liver Dis 2003;23:385-96.
    
    10 Lee J S, Heo J, Libbrecht L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006;12:410-6.
    11 Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14:1837-51.
    12 Fodde R and Brabletz T. Wnt/beta-catenin signaling in cancer sternness and malignant behavior. Curr Opin Cell Biol 2007; 19:150-8.
    13 Thompson M D and Monga S P. WNT/beta-catenin signaling in liver health and disease. Hepatology 2007;45:1298-305.
    14 Micsenyi A, Tan X, Sneddon T, Luo J H, Michalopoulos G K and Monga S P. Beta-catenin is temporally regulated during normal liver development. Gastroenterology 2004; 126:1134-46.
    15 Monga S P, Monga H K, Tan X, Mule K, Pediaditakis P and Michalopoulos G K. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 2003; 124:202-16.
    16 Monga S P, Pediaditakis P, Mule K, Stolz D B and Michalopoulos G K. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 2001;33:1098-109.
    17 Roskams,T.A., Libbrecht,L. and Desmet,V.J. Progenitor cells in diseased human liver, Semin.Liver Dis., 23: 385-396,2003.
    18 Wang,X., Foster,M., AI-Dhalimy,M., Lagasse,E., Finegold,M. and Grompe,M. The origin and liver repopulating capacity of murine oval cells, Proc.Natl.Acad.Sci.U.S.A,100 Suppl 1:11881-11888,2003.
    19 Oh,S.H., Witek,R.P., Bae,S.H., Zheng,D., Jung,Y., Piscaglia,A.C. and Petersen,B.E. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration, Gastroenterology, 132: 1077-1087,2007.
    20 Petersen,B.E., Bowen,W.C., Patrene,K.D., Mars,W.M., Sullivan,A.K.. Murase,N., Boggs,S.S., Greenberger,J.S. and Goff,J.P. Bone marrow as a potential source of hepatic oval cells, Science, 284: 1168-1170, 1999.
    21 Zheng,Y.W.and Taniguchi,H.Diversity of hepatic stem cells in the fetal and adult liver,Semin.Liver Dis.,23:337-348,2003.
    1 Shiojiri,N.,Lemire,J.M.and Fausto,N.Cell lineages and oval cell progenitors in rat liver development,Cancer Res.,51:2611-2620,1991.
    2 Zheng,Y.W.and Taniguchi,H.Diversity of hepatic stem cells in the fetal and adult liver,Semin.Liver Dis.,23:337-348,2003.
    3 Weissman,I.L.Stem cells:units of development,units of regeneration,and units in evolution,Cell,100:157-168,2000.
    4 Reya,T.,Morrison,S.J.,Clarke,M.F.and Weissman,I.L.Stem cells,cancer,and cancer stem cells,Nature,414:105-111,2001.
    5 Valk-Lingbeek,M.E.,Bruggeman,S.W.and van,L.M.Stem cells and cancer;the polycomb connection,Cell,118:409-418,2004.
    6 Reya,T.and Clevers,H.Wnt signalling in stem cells and cancer,Nature,434:843-850,2005.
    7 Pardal,R.,Clarke,M.F.and Morrison,S.J.Applying the principles of stem-cell biology to cancer,Nat.Rev.Cancer,3:895-902,2003.
    8 Thompson,M.D.and Monga,S.R WNT/beta-catenin signaling in liver health and disease,Hepatology,45:1298-1305,2007.
    9 Monga,S.P.,Pediaditakis,P.,Mule,K,Stolz,D.B.and Michalopoulos,G.K.Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration,Hepatology,33:1098-1109,2001.
    10 Dean,M.,Fojo,T.and Bates,S.Tumour stem cells and drug resistance,Nat.Rev.Cancer,5:275-284,2005.
    11 Xin,L.,Lawson,D.A.and Witte,O.N.The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis,Proc.Natl.Acad.Sci.U.S.A,102:6942-6947,2005.
    12 Shackleton,M., Vaillant,F., Simpson,K.J., Stingl,J., Smyth,G.K., sselin-Labat,M.L., Wu,L., Lindeman,G.J. and Visvader,J.E. Generation of a functional mammary gland from a single stem cell, Nature, 439: 84-88,2006.
    
    13 Thorgeirsson,S.S., Lee,J.S. and Grisham,J.W. Functional genomics of hepatocellular carcinoma, Hepatology, 43: S145-S150, 2006.
    
    14 Satyanarayana,A., Manns,M.P. and Rudolph,K.L. Telomeres and telomerase: a dual role in hepatocarcinogenesis, Hepatology, 40: 276-283, 2004.
    
    15 Haraguchi,N., Utsunomiya,T., Inoue,H., Tanaka,F., Mimori,K., Barnard,G.F. and Mori,M. Characterization of a side population of cancer cells from human gastrointestinal system, Stem Cells, 24: 506-513,2006.
    
    16 Chiba,T., Kita,K., Zheng,Y.W., Yokosuka,O., Saisho,H., Iwama,A., Nakauchi,H. and Taniguchi,H. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties, Hepatology, 44: 240-251, 2006.
    
    17 Zender,L., Spector,M.S., Xue,W., Flemming,P., Cordon-Cardo,C., Silke,J., Fan,S.T., Luk,J.M., Wigler,M., Hannon,G.J., Mu,D., Lucito,R., Powers,S. and Lowe,S.W. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach, Cell, 125: 1253-1267, 2006.
    
    18 Lee,J.S., Heo,J., Libbrecht,L., Chu,I.S., Kaposi-Novak,P., Calvisi,D.F., Mikaelyan,A., Roberts,L.R., Demetris,A.J., Sun,Z., Nevens,F., Roskams,T. and Thorgeirsson,S.S. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells, Nat.Med., 12: 410-416, 2006.
    
    19 Roskams,T.A., Libbrecht,L. and Desmet,V.J. Progenitor cells in diseased human liver, Semin.Liver Dis., 23: 385-396, 2003.
    
    20 Lowes,K.N., Brennan,B.A., Yeoh,G.C. and Olynyk,J.K. Oval cell numbers in human chronic liver diseases are directly related to disease severity, Am.J.Pathol., 154: 537-541, 1999.
    
    21 Tsukuma,H., Hiyama,T., Tanaka,S., Nakao,M., Yabuuchi,T., Kitamura,T., Nakanishi,K., Fujimoto,L lnoue,A., Yamazaki,H. and . Risk factors for hepatocellular carcinoma among patients with chronic liver disease, N.Engl.J.Med., 328: 1797-1801, 1993.
    
    22 Schmelzer,E., Zhang,L., Bruce,A., Wauthier,E., Ludlow,J., Yao,H.L., Moss,N., Melhem,A., McClelland,R., Turner,W., Kulik,M., Sherwood,S., Tallheden,T., Cheng,N., Furth,M.E. and Reid,L.M. Human hepatic stem cells from fetal and postnatal donors, J.Exp.Med., 204: 1973-1987, 2007.
    
    23 Zen,Y., Fujii,T., Yoshikawa,S., Takamura,H., Tani,T., Ohta,T. and Nakanuma,Y. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma, Am.J.Pathol., 170: 1750-1762,2007.
    
    24 Ma,S., Chan,K.W., Hu,L., Lee,T.K., Wo,J.Y., Ng,I.O., Zheng,B.J. and Guan,X.Y. Identification and characterization of tumorigenic liver cancer stem/progenitor cells, Gastroenterology, 132: 2542-2556,2007.
    
    25 Piscaglia,A.C., Shupe,T.D., Oh,S.H., Gasbarrini,A. and Petersen,B.E. Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats, Gastroenterology, 133: 619-631,2007.
    
    26 Houghton,J., Stoicov,C., Nomura,S., Rogers,A.B., Carlson,J., Li,H., Cai,X., Fox,J.G., Goldenring,J.R. and Wang,T.C. Gastric cancer originating from bone marrow-derived cells, Science, 306: 1568-1571,2004.
    
    27 Fodde,R. and Brabletz,T. Wnt/beta-catenin signaling in cancer sternness and malignant behavior, Curr.Opin.Cell Biol., 19: 150-158, 2007.
    
    28 Chiba,T., Zheng,Y.W., Kita,K., Yokosuka,O., Saisho,H., Onodera,M., Miyoshi,H., Nakano,M., Zen,Y., Nakanuma,Y., Nakauchi,H., Iwama,A. and Taniguchi,H. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation, Gastroenterology, 133: 937-950, 2007.
    
    29 Pardal,R., Clarke,M.F. and Morrison,S.J. Applying the principles of stem-cell biology to cancer, Nat.Rev.Cancer, 3: 895-902, 2003.
    
    30 Villanueva,A., Newell,P., Chiang,D.Y., Friedman,S.L. and Llovet,J.M. Genomics and signaling pathways in hepatocellular carcinoma,Semin.Liver Dis.,27:55-76,2007.
    31 Dean,M.,Fojo,T.and Bates,S.Tumour stem cells and drug resistance,Nat.Rev.Cancer,5:275-284,2005.
    32 Woodward,W.A.,Chen,M.S.,Behbod,F.,Alfaro,M.P.,Buchholz,T.A.and Rosen,J.M.WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells,Proc.Natl.Acad.Sci.U.S.A,104:618-623,2007.
    33 Jamieson,C.H.,Ailles,L.E.,Dylla,S.J.,Muijtjens,M.,Jones,C,Zehnder,J.L.,Gotlib,J.,Li,K.,Manz,M.G.,Keating,A.,Sawyers,C.L.and Weissman,I.L.Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML,N.Engl.J.Med.,351:657-667,2004.
    1 Thomson,J.A., ltskovitz-Eldor,J., Shapiro,S.S., Waknitz,M.A., Swiergiel,J.J., Marshall,V.S. and Jones,J.M. Embryonic stem cell lines derived from human blastocysts, Science, 282: 1145-1147, 1998.
    2 Fuchs,E. and Segre,J.A. Stem cells: a new lease on life, Cell, 100: 143-155, 2000.
    3 Weissman,I.L. Stem cells: units of development, units of regeneration, and units in evolution, Cell, 100: 157-168,2000.
    4 Potten,C.S. and Loeffler,M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt, Development, 110: 1001-1020,1990.
    5 Fuchs,E. and Raghavan,S. Getting under the skin of epidermal morphogenesis, Nat.Rev.Genet., 3: 199-209, 2002.
    6 Gambardella,L. and Barrandon,Y. The multifaceted adult epidermal stem cell, Curr.Opin.Cell Biol., 75: 771-777, 2003.
    7 Marshman,E., Booth,C. and Potten,C.S. The intestinal epithelial stem cell, Bioessays, 24: 91-98,2002.
    8 Sherley,J.L. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture, Stem Cells, 20: 561 -572,2002.
    9 Lechler,T. and Fuchs.E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin, Nature, 437: 275-280, 2005.
    10 Michalopoulos,G.K. and DeFrances,M.C. Liver regeneration, Science, 276: 60-66, 1997.
    11 Sandgren,E.P., Palmiter,R.D., Heckel,J.L., Daugherty,C.C., Brinster,R.L. and Degen.J.L. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene, Cell, 66: 245-256, 1991.
    12 Overturf,K., al-Dhalimy,M., Ou,C.N., Finegold,M. and Grompe,M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes, Am.J.Pathol., 151: 1273-1280, 1997.
    13 Michalopoulos,G.K., Barua,L. and Bowen,W.C. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury, Hepatology, 41: 535-544,2005.
    14 Wang,X., Ge,S., McNamara,G., Hao,Q.L., Crooks,G.M. and Nolta,J.A. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells, Blood, 101: 4201-4208,2003.
    15 FARBER,E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3'-methyl-4-dimethylaminoazobenzene, Cancer Res., 16: 142-148, 1956.
    16 Tatematsu,M., Ho,R.H., Kaku,T., Ekem,J.K. and Farber,E. Studies on the proliferation and fate of oval cells in the liver of rats treated with 2-acetylaminofluorene and partial hepatectomy, Am.J.Pathol., 114: 418-430, 1984.
    17 Evarts,R.P., Nagy,P., Marsden,E. and Thorgeirsson,S.S. A precursor-product relationship exists between oval cells and hepatocytes in rat liver, Carcinogenesis, 8: 1737-1740,1987.
    18 Nagy,P., Bisgaard,H.C. and Thorgeirsson,S.S. Expression of hepatic transcription factors during liver development and oval cell differentiation, J.Cell Biol., 126: 223-233, 1994.
    19 Fujio,K., Evarts,R.P., Hu,Z., Marsden,E.R. and Thorgeirsson,S.S. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat, Lab Invest, 70:511-516, 1994.
    20 Omori, N., Omori,M., Evarts,R.P., Teramoto,T., Miller,M.J., Hoang,T.N. and Thorgeirsson.S.S. Partial cloning of rat CD34 cDNA and expression during stem cell-dependent liver regeneration in the adult rat, Hepatology, 26: 720-727, 1997.
    21 Omori,M., Omori,N., Evarts,R.P., Teramoto,T. and Thorgeirsson,S.S. Coexpression of flt-3 ligand/flt-3 and SCF/c-kit signal transduction system in bile-duct-ligated SI and W mice, Am.J.Pathol., 150: 1179-1187, 1997.
    22 Omori,N., Evarts,R.P., Omori,M., Hu,Z., Marsden,E.R. and Thorgeirsson,S.S. Expression of leukemia inhibitory factor and its receptor during liver regeneration in the adult rat, Lab Invest, 75: 15-24, 1996.
    23 WILSON,J.W. and LEDUC,E.H. Role of cholangioles in restoration of the liver of the mouse after dietary injury, J.Pathol.Bacteriol., 76: 441-449, 1958.
    24 Dabeva,M.D., Laconi,E., Oren,R., Petkov,P.M., Hurston,E. and Shafritz,D.A. Liver regeneration and alpha-fetoprotein messenger RNA expression in the retrorsine model for hepatocyte transplantation, Cancer Res., 55: 5825-5834, 1998.
    25 Preisegger,K.H., Factor,V.M., Fuchsbichler,A., Stumptner,C., Denk,H. and Thorgeirsson,S.S. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease, Lab Invest, 79: 103-109, 1999.
    26 Rosenberg,D., Ilic,Z., Yin,L. and Sell,S. Proliferation of hepatic lineage cells of normal C57BL and interleukin-6 knockout mice after cocaine-induced periportal injury, Hepatology, 31: 948-955, 2000.
    27 Yin,L., Lynch,D. and Sell,S. Participation of different cell types in the restitutive response of the rat liver to periportal injury induced by allyl alcohol, J.Hepatol., 31: 497-507, 1999.
    28 Lemire,J.M., Shiojiri,N. and Fausto,N. Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine, Am.J.Pathol., 139: 535-552, 1991.
    29 Roskams,T., De,V.R., Van,E.P., Myazaki,H., Van,D.B. and Desmet,V. Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man, J.Hepatol., 29: 455-463, 1998.
    30 Petersen.B.E., Grossbard.B., Hatch.H., Pi,L., Deng,J. and Scott,E.W. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers, Hepatology, 37: 632-640,2003.
    31 Jensen,C.H., Jauho,E.I., Santoni-Rugiu,E., Holmskov,U., Teisner,B., Tygstrup,N. and Bisgaard,H.C. Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1 /fetal antigen 1, Am.J.Pathol., 164: 1347-1359, 2004.
    32 Sell,S. Is there a liver stem cell?, Cancer Res., 50: 3811-3815, 1990.
    33 Newsome,P.N., Hussain,M.A. and Theise,N.D. Hepatic oval cells: helping redefine a paradigm in stem cell biology, Curr.Top.Dev.Biol., 61: 1-28,2004.
    34 Evarts,R.P., Hu,Z., Fujio,K., Marsden,E.R. and Thorgeirsson,S.S. Activation of hepatic stem cell compartment in the rat: role of transforming growth factor alpha, hepatocyte growth factor, and acidic fibroblast growth factor in early proliferation, Cell Growth Differ., 4: 555-561, 1993.
    35 Yin,L., Lynch,D., Ilic,Z. and Sell,S. Proliferation and differentiation of ductular progenitor cells and littoral cells during the regeneration of the rat liver to CC14/2-AAF injury, Histol.Histopathol., 17: 65-81, 2002.
    36 Petersen,B.E., Bowen,W.C., Patrene,K.D., Mars,W.M., Sullivan,A.K., Murase,N., Boggs,S.S., Greenberger,J.S. and Goff,J.P. Bone marrow as a potential source of hepatic oval cells, Science, 284: 1168-1170, 1999.
    37 Theise,N.D., Badve,S., Saxena,R., Henegariu,O., Sell,S., Crawford,J.M. and Krause,D.S. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation, Hepatology, 31: 235-240, 2000.
    38 Theise,N.D., Nimmakayalu,M., Gardner,R., IlIei,P.B., Morgan,G., Teperman,L., Henegariu,O. and Krause,D.S. Liver from bone marrow in humans, Hepatology, 32: 11-16,2000.
    39 Alison,M.R., Poulsom,R., Jeffery,R., Dhillon,A.P., Quaglia,A., Jacob,J., Novelli,M., Prentice,G., Williamson,J. and Wright,N.A. Hepatocytes from non-hepatic adult stem cells, Nature, 406: 257, 2000.
    40 Wang,X., Foster,M., AI-Dhalimy,M., Lagasse,E., Finegold,M. and Grompe,M. The origin and liver repopulating capacity of murine oval cells, Proc.Natl.Acad.Sci.U.S.A, 100 Suppl 1: 11881-11888,2003.
    41 Menthena,A., Deb,N., Oertel,M., Grozdanov,P.N., Sandhu,J., Shah,S., Guha,C., Shafritz,D.A. and Dabeva,M.D. Bone marrow progenitors are not the source of expanding oval cells in injured liver, Stem Cells, 22: 1049-1061,2004.
    42 Dabeva,M.D., Hwang,S.G., Vasa,S.R., Hurston,E., Novikoff,P.M., Hixson,D.C., Gupta,S. and Shafritz,D.A. Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver, Proc.Natl.Acad.Sci.U.S.A, 94: 7356-7361, 1997.
    43 Krakowski,M.L., Kritzik,M.R., Jones,E.M., Krahl,T., Lee,J., Arnush,M., Gu,D. and Sarvetnick,N. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells, Am.J.Pathol., 154: 683-691, 1999.
    44 Hamazaki,T., Iiboshi,Y., Oka,M., Papst,P.J., Meacham,A.M., Zon,L.I. and Terada,N. Hepatic maturation in differentiating embryonic stem cells in vitro, FEBS Lett., 497: 15-19,2001.
    45 Jones,E.A., Tosh.D., Wilson,D.I., Lindsay,S. and Forrester,L.M. Hepatic differentiation of murine embryonic stem cells, Exp.Cell Res., 272: 15-22, 2002.
    46 Yamamoto,H., Quinn,G., Asari,A., Yamanokuchi,H., Teratani,T., Terada,M. and Ochiya,T. Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application, Hepatology, 37: 983-993, 2003.
    47 Kubo,A., Shinozaki,K., Shannon,J.M., Kouskoff,V., Kennedy,M., Woo,S., Fehling,H.J. and Keller,G. Development of definitive endoderm from embryonic stem cells in culture, Development. 131: 1651-1662. 2004.
    48 Gouon-Evans,V., Boussemart,L., Gadue,P., Nierhoff,D., Koehler.C.I., Kubo.A., Shafritz,D.A. and Keller,G BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm, Nat.Biotechnol., 24: 1402-1411, 2006.
    49 Heo,J., Factor,V.M., Uren,T., Takahama,Y., Lee,J.S., Major,M., Feinstone,S.M. and Thorgeirsson,S.S. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver, Hepatology, 44: 1478-1486, 2006.
    50 Kollet,O., Shivtiel,S., Chen,Y.Q., Suriawinata,J., Thung,S.N., Dabeva,M.D., Kahn,J., Spiegel,A., Dar,A., Samira,S., Goichberg,P., Kalinkovich,A., renzana-Seisdedos,F., Nagler,A., Hardan,I., Revel,M., Shafritz,D.A. and Lapidot,T. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver, J.Clin.Invest, 112: 160-169,2003.
    51 Schwartz,R.E., Reyes,M., Koodie,L., Jiang,Y., Blackstad,M., Lund,T., Lenvik,T., Johnson,S., Hu,W.S. and VerfailIie,C.M. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells, J.Clin.Invest, 109: 1291-1302,2002.
    52 Jiang,Y., Jahagirdar,B.N., Reinhardt,R.L., Schwartz,R.E., Keene,C.D., Ortiz-Gonzalez,X.R., Reyes,M., Lenvik,T., Lund/T., Blackstad,M., Du,J., Aldrich,S., Lisberg,A., Low,W.C., Largaespada,D.A. and Verfaillie,C.M. Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, 418: 41-49,2002.
    53 njos-Afonso,F., Siapati,E.K. and Bonnet,D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions, J.Ceil Sci., 777: 5655-5664, 2004.
    54 Lee,K.D., Kuo,T.K., Whang-Peng,J., Chung,Y.F., Lin,C.T., Chou,S.H., Chen,J.R., Chen,Y.P. and Lee,O.K. In vitro hepatic differentiation of human mesenchymal stem cells, Hepatology, 40: 1275-1284,2004.
    55 POPPER,H., KENT,G. and STEIN,R. Ductular cell reaction in the liver in hepatic injury, J.Mt.Sinai Hosp.N.Y., 24: 551-556, 1957.
    56 Roskams,T., De,V.R., Van,E.P., Myazaki,H., Van,D.B. and Desmet,V. Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man, J.Hepatol., 29: 455-463,1998.
    57 Xiao,J.C., Ruck,P., Adam,A., Wang,T.X. and Kaiserling,E. Small epithelial cells in human liver cirrhosis exhibit features of hepatic stem-like cells: immunohistochemical, electron microscopic and immunoelectron microscopic findings, Histopathology, 42: 141-149, 2003.
    58 Crosby,H.A., Kelly,D.A. and Strain,A.J. Human hepatic stem-like cells isolated using c-kit or CD34 can differentiate into biliary epithelium, Gastroenterology, 120: 534-544,2001.
    59 Haruna,Y., Saito,K., Spaulding,S., Nalesnik,M.A. and Gerber,M.A. Identification of bipotential progenitor cells in human liver development, Hepatology, 23: 476-481, 1996.
    60 Malhi,H., Irani,A.N., Gagandeep,S. and Gupta,S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes, J.Cell Sci., 7/5; 2679-2688, 2002.
    61 Lazaro,C.A., Croager,E.J., Mitchell,C., Campbell,J.S., Yu,C., Foraker,J., Rhim, J.A., Yeoh,G.C. and Fausto,N. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes, Hepatology, 38: 1095-1106,2003.
    62 Selden,C., Chalmers,S.A., Jones,C., Standish,R., Quaglia,A., Rolando,N., Burroughs,A.K., Rolles,K., DhiIlon,A. and Hodgson,H.J. Epithelial colonies cultured from human explanted liver in subacute hepatic failure exhibit hepatocyte, biliary epithelial, and stem cell phenotypic markers, Stem Cells, 21: 624-631,2003.
    63 Mahieu-Caputo,D., Allain,J.E., Branger,J., Coulomb,A., Delgado,J.P., Andreoletti,M., Mainot, S., Frydman,R., Leboulch,P., Di Santo,J.P., Capron,F. and Weber,A. Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts, Hum.Gene Ther., 15: 1219-1228, 2004.
    64 Schmelzer,E., Zhang,L., Bruce,A., Wauthier,E., Ludlovv,J., Yao,H.L., Moss,N., Melhem,A., McClelland,R., Turner,W., Kulik,M., Sherwood,S., Tallheden,T., Cheng,N., Furth,M.E. and Reid,L.M. Human hepatic stem cells from fetal and postnatal donors, J.Exp.Med., 204: 1973-1987, 2007.
    1 Moon,R.T.,DeMarais,A.and Olson,D.J.Responses to Wnt signals in vertebrate embryos may involve changes in cell adhesion and cell movement,J.Cell Sci.Suppl,17:183-188,1993.
    2 He,X.,Saint-Jeannet,J.P.,Wang,Y.,Nathans,J.,Dawid,I.and Varmus,H.A member of the Frizzled protein family mediating axis induction by Wnt-5A,Science,275:1652-1654,1997.
    3 Yang-Snyder,J.,Miller,J.R.,Brown,J.D.,Lai,C.J.and Moon,R.T.A frizzled homolog functions in a vertebrate Wnt signaling pathway,Curr.Biol.,6:1302-1306,1996.
    4 Cho,E.A.and Dressler,G.R.TCF-4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs,Mech.Dev.,77:9-18,1998.
    5 He,T.C.,Sparks,A.B.,Rago,C.,Hermeking,H.,Zawel,L.,da Costa,L.T.,Morin,P.J.,Vogelstein,B.and Kinzler,K.W.Identification of c-MYC as a target of the APC pathway,Science,281:1509-1512,1998.
    6 Tetsu,O.and McCormick,F.Beta-catenin regulates expression of cyclin D1 in colon carcinoma ceils,Nature,398:422-426,1999.
    7 Shtutman,M.,Zhurinsky,J.,Simcha,I.,Albanese,C.,D'Amico,M.,Pestell,R.and Ben-Ze'ev,A.The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway,Proc.Natl.Acad.Sci.U.S.A,96:5522-5527,1999.
    8 Zeng,L.,Fagotto,F.,Zhang,T.,Hsu,W.,Vasicek,T.J.,Perry,W.L.,Ⅲ,Lee,J.J.,Tilghman,S.M.,Gumbiner,B.M.and Costantini,F.The mouse Fused locus encodes Axin,an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation,Cell,90.181-192,1997.
    9 Amit,S.,Hatzubai,A.,Birman,Y.,Andersen,J.S.,Ben-Shushan,E.,Mann,M.,Ben-Neriah,Y.and Alkalay,I.Axin-mediated CKI phosphorylation of beta-catenin at Ser 45:a molecular switch for the Wnt pathway,Genes Dev.,16:1066-1076,2002.
    10 Aberle,H., Bauer,A., Stappert,J., Kispert,A. and Kemler,R. beta-catenin is a target for the ubiquitin-proteasome pathway, EMBO J., 16: 3797-3804, 1997.
    11 Rubinfeld,B., Albert,I., Porfiri,E., Fiol,C., Munemitsu,S. and Polakis,P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly, Science, 272: 1023-1026, 1996.
    12 Zaret,K. Early liver differentiation: genetic potentiation and multilevel growth control, Curr.Opin.Genet.Dev., 8: 526-531, 1998.
    13 Zaret,K.S. Liver specification and early morphogenesis, Mech.Dev., 92: 83-88, 2000.
    14 Ober,E.A., Verkade,H., Field,H.A. and Stainier,D.Y. Mesodermal Wnt2b signalling positively regulates liver specification, Nature, 442: 688-691,2006.
    15 Micsenyi,A., Tan,X., Sneddon,T., Luo,J.H., MichaIopouIos,G.K. and Monga,S.P. Beta-catenin is temporally regulated during normal liver development, Gastroenterology, 126: 1134-1146,2004.
    16 Monga,S.P., Monga,H.K., Tan,X., Mule,K., Pediaditakis, P. and Michalopoulos,G.K. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification, Gastroenterology, 124: 202-216,2003.
    17 Suksaweang,S., Lin,C.M., Jiang,T.X., Hughes,M.W., Widelitz,R.B. and Chuong,C.M. Morphogenesis of chicken liver: identification of localized growth zones and the role of beta-catenin/Wnt in size regulation, Dev.Biol., 266: 109-122, 2004.
    18 Micsenyi,A., Tan,X., Sneddon,T., Luo,J.H., Michalopoulos,G.K. and Monga,S.P. Beta-catenin is temporally regulated during normal liver development, Gastroenterology, 126: 1134-1146, 2004.
    19 Monga,S.P., Monga,H.K., Tan,X., Mule,K., Pediaditakis,P. and Michalopoulos,G.K. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification, Gastroenterology, 124: 202-216, 2003.
    20 Monga,S.P., Micsenyi,A., Germinaro,M., Apte,U. and Bell,A. beta-Catenin regulation during matrigel-induced rat hepatocyte differentiation, Cell Tissue Res., 323: 71-79, 2006.
    21 Sekine,S., Lan,B.Y., Bedolli,M., Feng,S. and Hebrok,M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice, Hepatology, 43: 817-825, 2006.
    22 Tan,X., Behari,J., Cieply,B., Michalopoulos,GK. and Monga,S.P. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration, Gastroenterology, 131: 1561-1572,2006.
    23 Monga,S.P., Monga,H.K., Tan,X., Mule,K., Pediaditakis,R and Michalopoulos,G.K. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification, Gastroenterology, 124: 202-216, 2003.
    24 Hussain,S.Z., Sneddon,T., Tan,X., Micsenyi,A., Michalopoulos,G.K. and Monga,S.R Wnt impacts growth and differentiation in ex vivo liver development, Exp.Cell Res., 292: 157-169,2004.
    25 Monga,S.P., Pediaditakis,P., Mule,K., Stolz,D.B. and Michalopoulos,G.K. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration, Hepatology, 33: 1098-1109,2001.
    26 Sodhi,D., Micsenyi,A., Bowen,W.C., Monga,D.K., Talavera,J.C. and Monga,S.P. Morpholino oligonucleotide-triggered beta-catenin knockdown compromises normal liver regeneration, J.Hepatol., 43: 132-141, 2005.
    27 Benhamouche.S., Decaens,T., Godard,C., Chambrey,R., Rickman,D.S., Moinard,C., Vasseur-Cognet.M., Kuo,C.J., Kahn,A., Perret,C. and Colnot,S. Apc tumor suppressor gene is the "zonation-keeper" of mouse liver, Dev.Cell, 10: 759-770, 2006.
    28 Tan,X., Behari,J., Cieply,B., Michalopoulos,G.K. and Monga,S.P. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration, Gastroenterology, 131: 1561-1572,2006.
    29 Benhamouche.S., Decaens,T., Godard,C., Chambrey.R., Rickman.D.S., Moinard,C., Vasseur-Cognet,M., Kuo,C.J., Kahn,A., Perret,C. and Colnot,S. Apc tumor suppressor gene is the "zonation-keeper" of mouse liver, Dev.Cell, 10: 759-770, 2006.
    30 Cadoret,A., Ovejero,C., Terris,B., Souil,E., Levy,L., Lamers,W.H., Kitajewski, J., Kahn,A. and Perret,C. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism, Oncogene, 21: 8293-8301, 2002.
    31 Higashi,N., Kojima,N., Miura,M., lmai,K., Sato,M. and Senoo,H. Cell-cell junctions between mammalian (human and rat) hepatic stellate cells, Cell Tissue Res., 317: 35-43, 2004.
    32 Jiang,F., Parsons,C.J. and Stefanovic,B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation, J.Hepatol., 45: 401-409,2006.
    33 Zeng,G., Awan,F., Otruba,W., Muller,P., Apte,U., Tan,X., Gandhi,C., Demetris,A.J. and Monga,S.P. Wnt'er in liver: expression of Wnt and frizzled genes in mouse, Hepatology, 45: 195-204,2007.
    34 Hughes,L.J. and Michels,V.V. Risk of hepatoblastoma in familial adenomatous polyposis, Am.J.Med.Genet, 43: 1023-1025, 1992.
    35 Koch,A., Denkhaus,D., Albrecht,S., Leuschner,I., von,S.D. and Pietsch,T. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene, Cancer Res., 59: 269-273, 1999.
    36 Oda,H., Imai,Y., Nakatsuru,Y., Hata,J. and Ishikawa,T. Somatic mutations of the APC gene in sporadic hepatoblastomas, Cancer Res., 56: 3320-3323, 1996.
    37 Taniguchi,K., Roberts,L.R., Aderca,I.N., Dong,X., Qian,C., Murphy,L.M., Nagorney,D.M., Burgart,L.J., Roche,P.C., Smith, D.I., Ross,J.A. and Liu,W. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas, Oncogene, 21: 4863-4871, 2002.
    38 Colnot,S., Decaens.T., Niwa-Kawakita,M., Godard,C., Hamard,G., Kahn,A., Giovannini,M. and Perret,C. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas, Proc.Natl.Acad.Sci.U.S.A, 101: 17216-17221, 2004.
    39 Haramis,A.P., Hurlstone,A., van,d., V, Begthel,H., van den,B.M., Offerhaus,G.J. and Clevers,H.C. Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia, EMBO Rep., 7:444-449, 2006.
    40 Calvisi,D.F., Factor,V.M., Loi,R. and Thorgeirsson,S.S. Activation of beta-catenin during hepatocarcinogenesis in transgenic mouse models: relationship to phenotype and tumor grade, Cancer Res., 61: 2085-2091, 2001.
    41 Harada,N., Oshima,H., Katoh,M., Tamai,Y., Oshima,M. and Taketo,M.M. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations, Cancer Res., 64: 48-54,2004.
    42 Huang,H., Fujii,H., Sankila,A., Mahler-Araujo,B.M., Matsuda,M., Cathomas,G. and Ohgaki,H. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection, Am.J.Pathol., 755: 1795-1801, 1999.
    43 Sugimachi,K., Taguchi,K., Aishima,S., Tanaka,S., Shimada,M., Kajiyama,K., Sugimachi,K. and Tsuneyoshi,M. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma, Mod.Pathol., 14: 900-905, 2001.
    44 Rashid,A. Cellular and molecular biology of biliary tract cancers, Surg.Oncol.Clin.N.Am., 11: 995-1009, 2002.
    45 Ashida,K., Terada, T., Kitamura,Y. and Kaibara,N. Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study, Hepatology, 27: 974-982, 1998.
    46 Ader.T., Norel,R., Levoci,L. and Rogler,L.E. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts, Mech.Dev.. 123: 177-194, 2006.
    47 Roskams,T.A., Libbrecht,L. and Desmet,V.J. Progenitor cells in diseased human liver, Semin.Liver Dis., 23: 385-396, 2003.
    48 Fodde,R. and Brabletz,T. Wnt/beta-catenin signaling in cancer sternness and malignant behavior, Curr.Opin.Cell Biol., 19: 150-158,2007.
    49 Hu,M., Kurobe,M., Jeong,Y.J., Fuerer,C., Ghole,S., Nusse,R. and Sylvester,K.G. Wnt/beta-Catenin Signaling in Murine Hepatic Transit Amplifying Progenitor Cells, Gastroenterology, 133: 1579-1591,2007.
    50 Apte,U., Thompson,M.D., Cui,S., Liu,B., Cieply,B. and Monga,S.P. Wnt/beta-catenin signaling mediates oval cell response in rodents, Hepatology, 2007.
    51 Dean,M., Fojo,T. and Bates,S. Tumour stem cells and drug resistance, Nat.Rev.Cancer, 5: 275-284,2005.
    52 Chiba,T., Zheng,Y.W., Kita,K., Yokosuka,O., Saisho,H., Onodera,M., Miyoshi,H., Nakano,M., Zen,Y., Nakanuma,Y., Nakauchi,H., Iwama,A. and Taniguchi,H. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation, Gastroenterology, 133: 937-950,2007.
    53 Kundu,J.K., Choi,K.Y. and Surh,Y.J. beta-Catenin-mediated signaling: a novel molecular target for chemoprevention with anti-inflammatory substances, Biochim.Biophys.Acta, 1765: 14-24, 2006.
    54 Luu,H.H., Zhang,R., Haydon,R.C., Rayburn,E, Kang,Q., Si,W., Park,J.K., Wang,H., Peng,Y., Jiang,W. and He,T.C. Wnt/beta-catenin signaling pathway as a novel cancer drug target, Curr.Cancer Drug Targets., 4: 653-671,2004.
    55 Behari,J., Zeng,G., Otruba,W., Thompson,M.D., Muller,P., Micsenyi,A., Sekhon,S.S., Leoni,L. and Monga,S.P. R-Etodolac decreases beta-catenin levels along with survival and proliferation of hepatoma cells, J.Hepatol., 46: 849-857, 2007.
    56 Loeppen,S., Koehle,C., Buchmann,A. and Schwarz,M. A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors, Carcinogenesis, 26: 239-248, 2005.