高速加工中心主轴及刀具系统热误差综合补偿技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业制造技术的高速发展,加工中心在现代加工中起到了不可替代的作用,人们对加工质量和加工效率的要求越来越高,而单纯的依靠提高机床的制造和装配来提高加工质量和加工效率则比较困难,因此,本文以提高加工中心加工质量与效率为目的,利用热误差补偿的相关理论和方法对高速加工中心主轴及刀具系统的热误差进行研究。
     对高速加工中心主轴系统的热特性进行分析,对机床主轴的温度场的变化及热变形做预测,通过灰关联度理论的灰关联度分析对主轴系统温度场测点进行优化,寻求对热误差影响较大的关键测点,建立热误差的预测模型,对刀具在高速旋转下的热变形采用非接触式测量技术进行测量,综合主轴和刀具系统的热误差进行补偿,并验证补偿模型的正确性和实际补偿的效果。
     根据本文的研究内容,可以在实际加工中以提高加工质量为前提,有效提高加工中心的加工效率,特别是可以将热误差补偿技术应用到高速加工中心的预热阶段,这样就可以有效的减少高速加工中心预热阶段的热误差,提高加工质量并大大降低了资源的消耗,节约了生产成本,有着比较重要的实际意义。
With the development of technology in manufacturing, people pay more and more attention to how to improve the machining accuracy and quality of NC machine tools which are the basic equipments in modern manufacturing. There are two methods to ensure the machining accuracy of parts and they are error prevention and error compensation respectively. Error prevention depends on the design accuracy of machine itself to ensure the machining accuracy, that is to say, it should make the accuracy of machine higher than that of machining requirement of part. Generally speaking, the accuracy of common parts is guaranteed by this way. Error prevention is the most basic and effective method to ensure the machining accuracy, which is the widely proved method. This method is to ensure machining accuracy by improving design accuracy, manufacturing accuracy and assembly accuracy and controlling the temperature and environment strictly to reduce and eliminate the error resources in system. By this means, the original errors can be reduced to a certain extent, but there exists some limitations. And it is very difficult and costly to produce the machine tool whose accuracy is higher than the part, or even that machine tool can not be produced. In order to produce the parts whose accuracy is higher than the machine tool, error compensation should be adopted.
     In this paper, the thermal error compensation of the spindle and cutting tool of machine tool is studied to improve machining quality and efficiency, and the feasibility and validity of the proposed error compensation model is verified in actual processing, the proposed error compensation can provide guide to actual processing.
     The main research contents are shown as follows:
     (1) In this paper, the heat transfer mode and the basic theory of spindle are analyzed and calorific value of spindle used as thermal load is calculated and applied on the spindle system. 3D modeling software Pro/E is used to build the 3D model of the spindle in a certain high-speed milling center, and the simplified solid model of spindle is introduced into the finite element analyzing software Analysis. The finite element method is used to analyze the thermal characteristics and the temperature field of spindle to obtain the variation of temperature field and status of thermal deformation to provide guide for the structure design of machine tool in the future.
     (2) In accordance with the main factors which effect thermal error of spindle, the distribution of temperature field is analyzed. In order to optimize the measuring points to reduce the number of measuring points, a set of data measuring and collecting equipment is developed which can measure the temperature field and collect data in real time. By using the gray correlation analysis in the gray theory, the gray correlation analysis model is built. The measuring points are regarded as effect factor, and the effect of these measuring points on thermal error is analyzed. After comprehensive evaluation of the measuring points, these points are arranged in the order of the importance of their effects on the thermal error in Z direction to find the key measuring points. In this way, the number of measuring points in actual error compensation model is reduced effectively and the robustness of model is improved.
     (3) After measuring points optimization, on Matlab operation platform, the least square support vector machine is used to build the prediction model of thermal error to predict the thermal error in Z direction. In modeling process, RBF is selected as the kernel function. The grid method is used to optimize the parameters ? and ? of the kernel function, namely RBF. The grid method is the most frequently and directly used method which can find the optimal parameters of kernel function in the widest range of parameter. The model built with the optimal parameters can improve the prediction accuracy to meet the prediction accuracy in actual error compensation. After initial training the original data, the obtained model is lake of sparsity and the robustness of model is weakened, so the trained model needs to be trained again to get rid of the points with sparsity and increase robustness of model. After several times training, the prediction model has both the sparsity and robustness. In this way, the accuracy of model in improved and application scope is expanded.
     (4) The thermal deformation of cutting tools in NC machining is measured. Because the cutting tool is rotating in high-speed manufacturing, the traditional contact measurement can not measure the cutting tool deformation. Accordance with this trait of cutting tool measurement, the technology of non-contract measurement based on image information is proposed to measure the thermal deformation of cutting tool. The system of image acquisition and measurement is developed and the processing system is designed. The improved gravity method is used to locate the tool tip in sub-pixel level. The edge of cutter of sub-pixel location can meet the measurement requirement more accurately in this paper. The coordinate of the vertex of tool tip can be calculated by using twice curve fitting method. By this means, the thermal deformation of cutting tools can be measured.
     (5) To solve the problem that how to improve machining efficiency on the premise of ensuring the machining quality, the thermal error compensation in preheating is mainly considered. The NC machine tool needs preheating before machining every time, or else the spindle system can not reach a thermal balance that will lead to the obvious decrease of processing quality and the preheating of spindle not only is a waste of time but also virtually increases processing cost. Therefore, the thermal error compensation in preheating is very significant. In this paper, based on the obtained thermal error compensation model and the thermal error data of cutting tool, the gray theory and the least square support vector machine are used to compensate the thermal error in preheating period to decrease the preheating time, even the preheating can be skipped . In this way, the efficiency can be improve on the premise of ensuring quality, the waste of manpower, material and time can be avoided and the machining cost of part in actual processing can be decreased significantly. The method proposed in this paper is meaningful in actual engineering application.
引文
[1]张伯霖,杨庆东,陈常年.高速切削技术及应用[M].北京:机械工业出版社, 2003.
    [2]刘占强,黄传真,郭培全.先进切削加工技术及应用[M].北京:机械工业出版社, 2005.
    [3]张耀满.高速机床若干技术问题研究[D].沈阳:东北大学, 2006.
    [4] C. J. Salomon. Process for machining metals of similar acting materials when being worked by cutting tools. Germany No. 523594 [P], 1931.4.
    [5]熊楚杨,陈五一.关于Salomon假设的研究综述[J].航天制造技术, 2007, 6: 6-10.
    [6]左敦稳.现代加工技术[M].北京:航空航天大学出版社, 2005, 34-36.
    [7] D. O’Sullivan, M. Cotterell. Workpiece temperature measurement in machining [J].Journal of Engineering in Medicine, 2002, 216(Part B): 135-139.
    [8]孟辉,赵军,王素玉.高速切削温度场的有限元分析[J].工具技术, 2005, 4: 21-23.
    [9] Chen Ming, Sun Fanghong, Wang haili, et al. Experimental researching on the dynamic characteristics of the cutting temperature in the process of high-speed milling [J]. Journal of Materials Processing Technlolgy, 2003, 138: 468-471.
    [10] N.A.Abukhshim, P.T.Mativenga, M.A.Sheikh. Investigation of heat partition in high speed turning of high strength alloy steel [J]. International Journal of Machine Tools & Manufacture, 45(2005): 1687-1695.
    [11] M.Longbottom, J.D.Lanham. A review of research related to Salomon's hypothesis on cutting speeds and temperatures [J]. International Journal of Machine Tools & Manufacture, 2006, 46:1740-1747.
    [12]何振威,全鸣燕,乐有树.基于有限元模拟的高速切削中切削热的研究[J].工具技术, 2006, 8: 60-63.
    [13]王庆明.先进制造技术导论[M].上海:华东理工大学出版社, 2007.
    [14]张勤,顾立志,宋金玲.数控高速加工关键技术的研究[J].机床与液压, 2009, 37 (2): 170-174.
    [15]王晓明.数控高速切削加工若干关键技术的研究[D].安徽:合肥工业大学, 2007.
    [16]张宏韬,冯同建,曹洪涛等.高速机床的关键技术和发展趋势[J].机械制造, 2009, 44 (3): 12-14.
    [17]周正干,王美清,李和平等.高速加工的核心技术和方法[J].航空制造技术,2000,3:13-16
    [18]肖曙红,张伯霖,陈焰基等.高速电主轴关键技术的研究[J].组合机床与自动化加工技术, 1999, 12: 5-10.
    [19] J. J?drzejewski, Z. Kowal, W. Kwa?ny, W. Modrzycki. High-speed precise machine tools spindle units improving [J]. Journal of Materials Processing Technology, 2005, 162-163: 615-621.
    [20] D. Renton, M. A. Elbestawi. High speed servo control of multi-axis machine tools[J]. International Journal of Machine Tools & Manufacture, 2000, 40: 539-559.
    [21] J. D. Suh, D. G. Lee, R. Kegg. Composite machine tool structure for high-speed milling machine [J]. CIRP Annals-Manufacturing Technology, 2002, 51(1): 285-288.
    [22] J. Tlusty. High-speed machining [J]. CIRP Annals- Manufacturing Technology, 1993, 42(2): 733-738.
    [23] Seamus Gordon, Michael T. Hillery. Development of a high-speed CNC cutting machine using linear motors [J]. Journal of Materials Processing Technology, 2005, 166(30): 321-329.
    [24]陈长年,周润耕.高速加工中心及在我国的应用[J].世界制造技术与装备市场, 2000, (3): 19-22.
    [25]熊建武,周进,张克昌,刘楚玉.浅论高速加工中心的特点和发展[J].机械与电子, 2007, (15): 336-337.
    [26]周正干,王美清,李和平,邬学礼,崔在成.高速加工中心的核心部件及其关键技术[J].机床与液压, 2000, (6): 53-56, 77.
    [27] Robert B. Aeonson. War anainst thermal expansion [J]. Manufacturing Engineering, 1996, 116(6): 45-50.
    [28] Bryan J. B. International status of thermal error research [J]. Annals CIRP, 1990, 39: 645-656.
    [29]姚智慧,张广玉,侯珍秀,赵维缓.现代机械制造技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [30] H. J. Pahk, S. W. Lee. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error [J]. Int J Adv Manuf Technol, 2002, 20: 487-494.
    [31]邹兆东,贺艳.数控系统发展趋势[J].机械研究与应用, 2006, 19(1): 24-26.
    [32]张兴全.适于高速高精密机床的测量和数控系统的最新发展[J].世界制造技术与装备市场, 2009, (5): 50-56.
    [33]王成元,常国祥,郭雨梅.开放式数控系统的发展现状及其趋势[J].沈阳工业大学学报, 2007, 29(1): 61-64, 89.
    [34]张珂,吴玉厚,高晓佳.大功率陶瓷轴承电主轴单元的研制[J].制造技术与机床, 2003, 4: 17-19.
    [35]孟杰,陈小安,何烨.高速电主轴电动机-主轴系统的机电耦合动力学建模[J].机械工程学报, 2007, 43(12): 160-165.
    [36]欧益宝,左健民,汪木兰.高速加工技术与电主轴[J].现代制造工程, 2006, 10: 104-106.
    [37] Cheng. Hsien Wu, Yu. Tai Kung. A parametric study on oil/air lubrication of a high speed spindle [J]. Precision Engineering, 2005, 9: 162-167.
    [38] Chi Wei Lin, Jay F. Tu. Model-based design of motorized spindle systems to improve dynamic performance at high speeds [J]. Journal of Manufacturing Processes, 2007, 9(2): 94-108.
    [39] Maed, O, Y. CAo, Y. Altintas. Expert spindle design system [J]. International Journal of Machine Tools and Manufacture, 2005, 45: 537-548.
    [40] M. Weck, A. Koch. Spindle-bearing systems for high-speed application in machine tools [J]. Annals of the CIRP, 1993, 42(1): 445-448.
    [41] Xu Min, Jiang Shuyun, Cai Ying. An improved thermal model for machine tool bearings [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 53-62.
    [42] Chen J. S. Neural network-based modeling and error compensation of thermally induced spindle error [J]. International Journal of Advanced Manufacturing Technology, 1996, 12(4): 303-330.
    [43] C. W. Lin, J. F. Tu, J. Kamman. An integrated thermal-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 1035-1050.
    [44] H. Li, Y. C. Shin. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermal-mechanical spindle model [J]. International Journal of Machine &Manufacture, 2004, 44: 347-364.
    [45]田维贤.机械制造中的热变形[M].武汉:华中理工大学出版社, 1992.
    [46] Ph. Poignet, M. Gautier, W. Khalil, et al. Modeling, simulation and control of high speed machine tools using robotics formalism [J]. Mechatronics, 2002, 12(3): 461-487.
    [47]刘战强,黄传真,郭培全.先进切削加工技术及其应用[M].北京:机械工业出版社, 2005.
    [48] Zhang G., Veale R., Charlton T., etc. Error compensation of coordinate measuring machines [J]. Annals of CIRP, 1985, 34(1): 445-448.
    [49] Chen J. S., Yuan J., Ni J. Compensation of non-rigid body kinematic effect of a machine center [J]. Transaction of NAMRI, 1992, 20: 325-329.
    [50] Chana R., Manukid P. Geometric and force error compensation in a 3-axis-CNC milling machine [J]. International journal of machine tools and manufacture, 2004, 44: 1283-1291.
    [51] W. T. Lei, Y. Y. Hsu. Accuracy enhancement of five-axis CNC machines through real-time error compensation [J]. International journal of machine tools and manufacture, 2003, 43: 871-877.
    [52] W. Gao, et al. Measurement and compensation of error motions of a diamond turning machine [J]. Precision Engineer, 2007, 31(3): 310-316.
    [53] S.Sartori, G. X. Zhang. Geometric error measurement and compensation of machine [J]. Annals of CIRP, 1995(44): 599-609..
    [54] Schultschik R. The components of volumetric accuracy [J]. Annals of CIRP, 1977, 25(1): 223-228.
    [55] Zhang G., Wang C., Hu X. Error compensation of corrdinate measuring machine [J]. Annals of CIRP, 1985, 34(1): 445-448.
    [56] Ferrerira. P. M., Liu C. R. An analytical quadratc model for the geometric error of a machine tool [J]. Journal of Manufacturing Systems, 1986, 5(1): 51-62.
    [57] Z. J. Han, K. Zhou. Improvement of positioning accuracy of rotating table by microcomputer control compensation [J]. M. T. D. R. Con. Rroc., 1986, 26: 115-120.
    [58] K. Morishiqe, K. Kase, Y. Takeuchi. Collision-free tool path generation using 2-dimensional C-shape for 5-axis control machining [J]. International Journal of Advanced Manufacturing Technology, 1997, 13(6): 393-400.
    [59] J. Mou. Method of using neural networks and inverse kinematics for machine tools error estimation and correction [J]. Journal of Manufacturing Science and Engineering, Transaction of the ASME, 1997, 119(2):247-254
    [60] M. Rahman, J. Heikkala, K. Lappalainen. Modeling, measurement and error compensation of multi-axis machine tools. PartΙ: theory [J]. International Journal of Machine Tools and Manufacture, 2000, 40(10): 1535-1546.
    [61] W. T. Lei, Y. Y. Hsu. Accuracy enhancement of five-axis CNC machine through real-time error compensation [J]. International Journal of Advanced Manufacturing Technology, 2003, 43(9): 871-877.
    [62] John M. Fines, Arvin Agah. Machine tool positioning error compensation using artificial neural network [J]. Engineering Application of Artificial Intelligence, 2008, 21: 1013-1026.
    [63] J. S. Chen, C. C. Ling. Improving the machine accuracy through machine tool metrology and error correction [J]. International Journal of Advanced Manufacturing Technology, 1996, 11(3): 198-205.
    [64] Raksiri. C, Parnichkun. M. Kinematic and geometric error verification and compensation of a three axes vertical machining center [C]. In: Proceedings of 2002, IEEE International Conference on Industrial Technology, Bangkok, Thailand, 2: 1008-1012.
    [65] K. K. Tan, S. N. Huang, T. H. Lee. Geometrical error compensation and control of an XY table using neural network [J]. Control Engineering Practice, 2006, 14: 59-69.
    [66] Yuan Kang, Chuan-Wei Chang, Yuanruey Huang, et al. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 367-387.
    [67] John M. Fine, Arvin Agah. Machine tool positioning error compensation using artificial neural network [J]. Engineering Application of Artificial Intelligence, 2008, 21: 1013-1026.
    [68]刘焕牢.数控机床几何误差测量及误差补偿技术的研究[D].武汉:华中科技大学, 2005.
    [69]廖平兰.机床加工过程综合误差实时补偿技术[J].机械工程学报, 1992, 28(2): 64-68.
    [70]任永强,杨建国,窦小龙,邓卫国.五轴数控机床综合误差建模分析[J].上海交通大学学报, 2003, 1: 70-75.
    [71]沈金华.数控机床误差补偿关键技术及其应用[D].上海:上海交通大学, 2008.
    [72]刘又伍,章青等.基于多提理论模型的加工中心热误差补偿技术[J].机械工程学报, 2002, 38(1): 127-130.
    [73]刘丽冰,王广彦,刘又午.复杂机械系统运动误差自动建模技术研究[J].中国机械工程, 2000, 6: 637-639.
    [74]范晋伟,李宝忠,李峻勤,张晓龙等.加工中心的软件误差补偿技术[J].制造技术与机床, 2002, 8: 32-34.
    [75]任永强,杨建国.五轴数控机床综合误差补偿解耦研究[J].机械工程学报, 2004, 40(2): 55-59.
    [76] J. G. Yang, Y. Q. Ren, Z. C. Du. An application of real-time error compensation on an NC twin-spindle lathe [J]. Journal of Materials Processing Technology, 2002, 129: 474-479.
    [77] Z. Meng, R. S. Che, Q. C. Huang, et al. The direct-error-compensation method of measuring the error of a six-freedom-degree parallel mechanism CMM [J]. Journal of Materials Processing Technology, 2002, 129: 574-578.
    [78] Chen J S, Kou T W, Chiou S H. Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer [J]. Precision Engineering, 1999, 23: 243-252.
    [79] Sartori S, Zhang G X. Geometric error measurement and compensation of machines [J]. Anals of CIRP, 1995, 44(2): 599-609.
    [80] Anthony Chukwujekwu Okafor, Yalcin M. Ertekin. Vertical machining center accuracy characterization using laser interferometer. Part 2. Angular errors [J]. Journal of Materials Processing Technology, 2000, 105: 407-420.
    [81] G. L. Samuel, M. S. Shunmugam. Evaluation of circularity from coordinate and form data using computational geometric techniques [J]. Precision Engineering, 2000, 24: 251-263.
    [82]马锡琪. NC机床运动精度的矢量分析法[J].制造技术与机床, 1997, 4: 27-30.
    [83]赵俊伟,徐振高,范光照等.三维激光球杆测量装置及其应用[J].华中科技大学学报, 2001, 29(5): 1-3.
    [84] Hua Qiu, Yan Li, Yanbin Li. A new method and device for motion accuracy measurement of NC machine tools. Part 1: principle and equipment [J]. International Journal of Machine Tools & Manufacture, 2001, 41: 521-534.
    [85] Knapp W., S. Weikert. Testing the contouring performance in 6 degrees of freedom [J]. Annlas of CIRP, 1999, 48(1): 433-436.
    [86] Tony Schmitz, Matthew Davies, Brain Dutterer. The application of high-speed CNC machine to prototype production [J]. International Journal of Machine Tools & Manufacture, 2001, 41: 1209-1228.
    [87] Lei W. T., Hsu Y. Y. Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part 2: error estimation [J]. International Journal of Machine Tools and Manufacture, 2002, 42: 1163-1170.
    [88] Yang S. H., Kim K. H., Park Y. K. Error analysis and compensation for the volumetric errors of a vertical machining center using a hemispherical helix ball test [J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(7-8): 495-500.
    [89] P. Tuomaala, K. Piira, M. Vulle. A rotational method for the distribution of nodes in modeling of transient heat conduction in plane slabs [J]. Building and Enviroment, 2000, 35: 397-406.
    [90] Lo. C, J. Yuan, J. Ni. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation [J]. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1383-1396.
    [91] R. Venugopal, M. Barash. Thermal effects on the accuracy of numerically controlled machine tools [J]. Annals of the CIRP, 1986, 35(1): 255-258.
    [92] Suykens J. A. K. Weighted least squares support vector machines: robustness and spares approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
    [93]谢庆生,尹健,罗延科.机械工程中的神经网络方法[M].北京:机械工业出版社, 2004.
    [94]彭祖赠,孙韫玉.模糊(Fuzzy)数学及其应用[M].武汉:武汉大学出版社. 2002.
    [95]罗佑新,张龙庭,李敏.灰色系统理论及其在机械工程中的应用[M].长沙:国防科技大学出版社, 2001.
    [96]杨建国,张宏韬,童恒超等.数控机床热误差实时补偿应用[J].上海交通大学学报, 2005, 39(9): 1389-1392.
    [97]谢春,刘春时.数控机床热误差模型的研究进展[J].组合机床与自动化加工技术, 2007, 10: 5-8.
    [98] Yang Hong, Ni Jun. Dynamic neural network modeling for nonlinear, non-stationary machine tool thermally induced error [J]. International Journal of Machine Tools and Manufacture, 2005, 45: 455-465.
    [99] Christopher D. Mize, John C. Ziegert. Neural network thermal error compensation of a machining center [J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24: 338-346.
    [100] Hong Yang, Jun Ni. Adaptive model estimation of machine-tool thermal error based on recursive dynamic modeling strategy [J]. International Journal of Machine Tools & Manufacture, 2005, 45: 1-11.
    [101] R. Ramesh, M. A. Mannan, A. N. Poo. Thermal error measurement and modelling in machine tools. Part 1: Influence of varying operating conditions [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 391-404.
    [102] R. Ramesh, M. A. Mannan, A. N. Poo. Thermal error measurement and modelling in machine tools. Part 2: Hybrid bayesian network-support vector machine model [J]. International Journal of Machine Tools & Manufacture, 2003, 43 (4): 405-419.
    [103] F. L. M. Delbressine, G. H. J. Florussen, L. A. Schijvenaare, et al. Modelling thermomechanical behavior of multi-axis machine tools [J]. Precision Engineering, 2006, 30: 47-53.
    [104] Camera A, Favarato M, Militano L, et al. Analysis of the thermal behavior of a machine tool table using the finite element method [J]. Annals of CIRP, 1976, 25(1):56-60.
    [105] Kurtoglu, A. The accuracy improvement of machine tools [J]. Annals of CIRP, 1990, 39: 417-419.
    [106]松尾光荣.通过对加工中心的温度分布测量进行热位移补偿[J].精密工学杂志, 1991, 57(3) [日].
    [107]岗田康明.检测热位移量进行自动补偿来实现长时间的高精度加工[J].机械的工具, 1993, 37(2) [日].
    [108]Y. Hatamura, et al. Development of an intelligent machining center incorporating active compensation for thermal distortion [J]. Annals of CIRP, 1993, 42(1): 549-552.
    [109]Lo Chih-Hao, YuanJingxia, Ni Jun. An application of real-time error compensation on a turning center [J]. International Journal of Machine Tools & Manufacture, 1995, 35(12): 1169-1682.
    [110]Wcek M, Mc Keown P. Reduction and compensation of thermal error in machine tools [J]. Annals of CIRP, 1995, 44(2): 589-598.
    [111]Fraser. S, M. H. Attia, M. O. Osman. Modeling, identification and control of thermal deformation of machine tool structure, PartΙ: concept of generalized modeling [J]. ASME Journal of Manufacturing Science and Engineering, 1998, 120(3): 623-631.
    [112]Fraser. S, M. H. Attia, M. O. Osman. Modeling, identification and control of thermal deformation of machine tool structure, Part 2: generalized transferfunction [J]. ASME Journal of Manufacturing Science and Engineering, 1998, 120(3): 632-639.
    [113]Fraser. S, M. H. Attia, M. O. Osman. Modeling, identification and control of thermal deformation of machine tool structure, Part 3: real-time estimation of heat sources [J]. ASME Journal of Manufacturing Science and Engineering, 1999, 121(3): 501-508.
    [114]H. Yang, J. X. Yuan, J. Ni. Dynamic modeling for machine tool thermal error compensation [J]. ASME Journal of Manufacturing Science and Engineering, 2001, 125: 245-254.
    [115]D. S. Lee, J. Y. Choi, D.–H. Choi. ICA based thermal source extraction and thermal distortion compensation method for a machine tool [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 589-597.
    [116]Hui Wang, Qiang Huang, Hong Yang. In-line statistical monitoring of machine tool thermal error through latent variable modeling [J]. Journal of Manufacturing System, 2006, 25(4): 279-292.
    [117]S. Eastwood, P. Webb. Compensation of thermal deformation of hybrid parallel kinematic machine [J]. Robotics and Computer-Integrated Manufacturing, 2009, 25:81-90.
    [118]陈子辰.热模态理论和机床热态精度控制策略研究[D].杭州:浙江大学, 1989.
    [119]张德贤,刘筱连,师汉民等.神经网络在数控机床热变形控制中的应用[J].制造技术与机床,1995,1:8-11
    [120]李书和,张奕群,张国雄.数控机床热误差的补偿[J].航空精密制造技术, 1996, 32(4): 6-9.
    [121]张奕群,李书和,张国雄.机床热变形误差的动态模型[J].航空精密制造技术, 1997, 33(2): 5-7.
    [122]Shuhe Li, Yiqun Zhang, Guoxiong Zhang. A study of pre-compensation for thermal errors of NC machine tools [J].International Journal of Machine Tools and Manufacture, 1997, 37(12): 1715-1719.
    [123]杨建国.数控机床误差综合补偿技术及应用[D].上海:上海交通大学, 1998.
    [124]杨建国,许黎明,刘行等.加工中心的几何误差和热误差补偿建模[J].计量学报, 2001, 22(2): 90-94.
    [125]杨建国,薛秉源. CNC车削中心热误差模态分析及鲁棒建模[J].中国机械工程, 1998, 9(5): 31-35.
    [126]Jiangguo Yang, Jingxia Yuan, Jun Ni. Thermal error mode analysis and robust modeling for error compensation on a CNC turning center [J]. International Journal of Machine Tools & Manufacture, 1999, 39: 1367-1381.
    [127]Z. C. Du, J. G. Yang, Z. Q. Yao, et al. Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNCmachine center [J]. Journal of Material Processing Technology, 2002, 129: 619-623.
    [128]项伟宏,郑力,刘大成等.机床主轴热误差模型[J].制造技术与机床, 2000, 11: 12-15.
    [129]刘又午,章青,赵晓松等.基于多体理论模型的加工中心热误差补偿技术[J].机械工程学报, 2002, 38(1): 127-130.
    [130]傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版), 2004, 38(6): 742-746.
    [131]李永祥,童恒超,杨建国.灰色系统理论在机床热误差测点优化中的应用[J].机械设计与研究, 2006, 22(3): 78-81.
    [132]Y. X. Li, J. G. Yang, Y. Y. Li. Optimization of measuring points for machine tool thermal error based on grey theory [J]. International Journal of Advanced Manufacturing Technology, 2008, 35: 745-750.
    [133]林伟青,傅建中,许亚洲,陈子晨.基于在线最小二乘支持向量机的数控机床热误差预测[J].浙江大学学报(工学版), 2008, 42(6): 905-908.
    [134]沈金华,李永祥,鲁志政等.数控车床几何和热误差综合实时补偿方法应[J].四川大学学报(工程科学版), 2008, 40(1): 163-166.
    [135]Wu Hao, Zhang Hongtao, Guo Qianjian, et al. Thermal error optimization modeling and real-time compensation on a CNC turning center [J]. Journal of Materials Processing Technology, 2008, 207: 172-179.
    [136]闫嘉钰,杨建国.基于人体免疫系统和RBF神经网络的数控机床热误差建模[J].上海交通大学学报, 2009, 43(1): 148-152.
    [137]郭前建,杨建国.基于蚁群算法的机床热误差建模技术[J].上海交通大学学报, 2009, 43(5): 803-806.
    [138]张伯霖.高速切削技术及应用[M].北京:机械工业出版社, 2002.
    [139]CHENTY, WEI W J et al. Optimum design of heads tocks of precision lathes [J]. International Journal of Tool & Manufacture, 1999, 39, 1961-1977.
    [140]章熙民等.传热学[M].北京:中国建筑工业出版社(第四版) , 2001.
    [141]窦小龙,杨建国等.温度测量点优化在机床主轴热误差建模中的应用[J].航空机密制造技术, 2003, 39(4): 33-36.
    [142]李永祥.数控机床热误差建模新方法及其应用研究[D].上海:上海交通大学, 2007.
    [143]冯莉.基于灰色理论的金刚石木工刀具电火花磨削工艺参数研究[D].哈尔滨:东北林业大学, 2008.
    [144]刘思峰,郭天榜,党耀国等.灰色系统理论及其应用[M].北京:科学出版社, 1999.
    [145]闫守红,马术文,闫开印等.数控机床热变形模型中测温点的优化选择研究[J].金属加工, 2006, 5(33): 37-39.
    [146]项伟宏,郑力,刘大成等.机床主轴热误差建模[J].造技术与机床. 2000, 11: 12-14.
    [147]Y.X.Li, J.G.Yang, T.Gelvis, Y.Y.Li. Optimization of measuring points for machine tool thermal error based on grey system theory. Int J Adv Manuf Technol [J]. 2008 (35): 745-750.
    [148]郭新辰.最小二乘支持向量机算法的应用研究[D].长春:吉林大学, 2008.
    [149]Chapelle O, Vapnik V N, et al. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1): 131-159.
    [150]Vapnik V N, Chapelle O. Bounds on error expectation for support vector machines [J]. Neural Computation, 2000, 12(9): 2013-2036.
    [151]Gold C, Sollich P. Model selection for support vector machine classification [J]. Neurocomputing, 2003, 55(1-2): 221-249.
    [152]Friddrichs F, Igel C. Evolutionary tuning of multiple SVM parameters [J]. Neurocomputing, 2005, 64(C): 107-117.
    [153]Gestel T V, Suykens J A K, et al. Benchmarking least squares support vector machine classifiers [J]. Machine Learning, 2004, 54(1): 5-32.
    [154]Vapnik V N.统计学习理论的本质[M].张学工,译.北京:清华大学出版社, 2000.
    [155]胡宏伟,周晓军,李雄兵,宁克炎.基于最小二乘支持向量机的AMT离合器片表面温度预测[J].汽车工程. 2008, 30(4): 335-339.
    [156]白鹏,张喜斌,张斌等.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社, 2008.
    [157]相征,张太镒,孙建成.基于最小二乘支持向量机的非线性系统建模[J].系统仿真学报, 2006, 19 (9): 2684-2687.
    [158]许亚洲.基于最小二乘支持向量机的数控机床热误差建模的研究[D].浙江大学, 2006.
    [159]林伟青,傅建中,许亚洲,陈子辰.基于最小二乘支持向量机的数控机床热误差预测[J].浙江大学学报(工学版), 2008, 42(6): 905-908.
    [160]SUYKENS J A K. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
    [161]李自乐.基于图像信息的高速回转体实时测量方法研究[D].长春:吉林大学, 2009.
    [162]Hueckel M.F. A local visual operator which recognizes edge and lines [J]. JACM, 1973, 20: 634-647.
    [163]徐涛.数值计算方法[M].长春:吉林科学技术出版社, 2002.
    [164]王文成,徐建强,司书春.一种改进的重心法在光带中心提取中的应用[J].电子激光, 2005, 16 (10): 1239-1274.
    [165]任永强.数控机床误差高效测量、建模及补偿应用研究[D].上海:上海交通大学, 2004.