脾气虚证相关基因RPS20在IEC-6细胞的生物功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     中医理论认为脾主运化水谷精微和水湿,脾主统血,脾主升清,为气血生化之源、后天之本,脾主思,脾主四肢肌肉,开窍于口,其华在唇等。由此看出,脾的生理功能所涉及的广泛性,决定了它的病理也不会局限于一病一症一脏器。同时,脾与五脏六腑的关系,“内伤脾胃,百病由生”等,说明脾胃损伤会引起很多疾病的发生,脾病会引起很多脏器系统的病变,而很多疾病、脏器病变也会引起脾病的发生。
     从脾虚证入手进行脾本质的研究,长期以来一直是中西医结合证本质研究的重要课题。众多学者运用多种现代技术和方法,分别从生化、生理、超微结构等方面进行探讨,近年更有人从神经—内分泌—免疫网络方面来探讨脾虚证的实质,对其进行了各种客观指标的研究,取得了一定的成果。然而,这些研究都只反映了部分已知基因表达产物(受体、酶、细胞因子以及肽类等)的改变,远未揭示证的实质。
     基因组及后基因组时代的到来,为从基因水平切入证候的研究提供了新的思路与方法。多数学者认为,基因组学在整体观、阴阳学说、五脏学说、病因学说等方面与中医学具有相似性,中医“证”的内涵即基因表达的改变,因此提出了中医证候基因组学的概念。目前,主要是采用基因芯片技术分析证候的差异基因表达谱,来进行中医证候基因组学的研究,具有代表性的是关于脾虚证、肾阳虚证、虚寒证、心阳虚证、肺虚证等的研究。
     我们实验室前期先后对慢性浅表性胃炎脾气虚证者与正常志愿者、慢性浅表性胃炎脾气虚证患者与慢性浅表性胃炎脾胃湿热证患者、溃疡性结肠炎脾气虚证患者与正常志愿者、溃疡性结肠炎脾气虚证患者与溃疡性结肠炎脾胃湿热证患者进行基因表达谱的分析。证实了慢性浅表性胃炎脾气虚证者,具有差异表达基因,其中蛋白合成相关的差异基因大多下调;慢性浅表性胃炎脾气虚证患者与慢性浅表性胃炎湿热证患者比较,相关差异基因也表达下调,这与脾气虚时机体功能抑制,而湿热时机体功能亢进相符合;进行扩大样本量重复分析或进行同证异病分析时,趋势相同。
     通过对这些海量数据进行生物信息学的分析整合,我们认为脾气虚证具有蛋白质合成相关基因下调的趋势,其中以核糖体蛋白基因下调比较显著。核糖体蛋白基因是核糖体的重要组成部分,起到组装核糖体,促进蛋白质合成的作用。核糖体蛋白高度保守,但核糖体蛋白基因发生突变或缺失时,可以产生存活且异常的表型。核糖体蛋白基因突变或核糖体蛋白缺失或不恰当的化学修饰,一方面将影响核糖体的功能,降低多肽合成的活性,另一方面会影响RP(ribosomal protein)的生理功能,从而导致各种严重的后果。我们选择重复性表达下调的RPS20(ribosomal protein S20)对其进行生物功能鉴定。实验以大鼠小肠隐窝细胞株(Intestinal crypt cell line,IEC-6)为模型,采用RNAi(RNA interference)技术干扰RPS20,造成RPS20缺失表型,观察对细胞生理功能的影响,以初步探讨脾气虚证相关基因RPS20的生物功能。
     研究方法
     1.IEC-6细胞生长状况的观察
     采用相差显微镜技术观察细胞形态结构;台盼蓝排斥试验检测细胞活力;细胞计数法及MTT比色法绘制IEC-6细胞生长曲线。
     2.RNA干扰过程中IEC-6细胞转染条件的优化
     以24孔板为例,采用阳离子脂质体转染FAM-siRNA片段进入IEC-6细胞内,通过调整FAM-siRNA和Lipofectamine2000的剂量,分别采用荧光显微镜和流式细胞仪两种仪器检测转染后荧光强度。
     3.筛选针对RPS20基因的有效干扰片段
     3.1 RT-PCR检测RNAi后IEC-6细胞RPS20 mRNA的表达
     设置空白对照组、siRNA1组、siRNA2组、siRNA3组,6孔板每孔种植8×10~5个细胞,第2日转染时,按照每孔转染总体积2.5mL、20μM浓度的siRNA20μL(即siRNA终浓度160nM)、Lipofectamine2000 4.2μL的条件进行转染,然后采用RT-PCR检测干扰后24h、48h、72h后RPS20 mRNA表达。
     3.2荧光定量RT-PCR检测RNAi后IEC-6细胞RPS20 mRNA的表达
     设置空白对照组、转染试剂对照组、阴性对照组、siRNA1组、siRNA2组、siRNA3组,转染条件及方法同3.1,然后采用实时荧光定量RT-PCR检测干扰48h后RPS20mRNA表达。
     3.3 Western-Blot检测RNAi后IEC-6细胞RPS20蛋白的表达
     设置空白对照组、转染试剂对照组、阴性对照组、siRNA1组、siRNA2组、siRNA3组,转染条件及方法同3.1,然后采用Western-Blot检测干扰后24h、48h、72h,RPS20蛋白的表达。
     4.RNAi后IEC-6细胞形态功能的改变4.1 RNAi后IEC-6细胞形态的变化
     转染条件及方法同3.1,设置空白对照组、转染试剂对照组、siRNA1组、siRNA2组、siRNA3组,采用相差显微镜观察细胞的大体形态;
     设置空白对照组、转染试剂对照组、阴性对照组、siRNA1组、siRNA2组、siRNA3组,采用透射电镜观察干扰RPS20基因48h后,IEC-6细胞超微结构的变化。
     4.2 RNAi后对IEC-6细胞迁移能力的影响
     设置空白对照组、转染试剂对照组、阴性对照组、siRNA1组、siRNA2组、siRNA3组,转染条件及方法同3.1,转染后48h划痕法建立细胞迁移模型,划痕24h后,拍照,计算细胞迁移的数目,以观察干扰RPS20后,细胞迁移能力的变化。
     4.3 RNAi后IEC-6细胞增殖效率的变化
     设置空白对照组、siRNA1组、siRNA2组、siRNA3组,转染条件及方法同3.1,采用细胞计数法计数干扰后24h、48h、72h IEC-6细胞数目的变化;
     设置空白对照组、转染试剂对照组、siRNA1组、siRNA2组、siRNA3组,96孔板每孔种植2.5×10~4个细胞,第2日转染时,按照每孔转染总体积0.6mL、20pM浓度的siRNA20μL(即siRNA终浓度160nM)、Lipofectamine2000 4.2μL的条件进行转染,MTT法观察干扰RPS20后24h、48h、72h IEC-6细胞增殖效率的变化。
     4.4 RNAi后对IEC-6细胞凋亡的影响
     设置空白对照组、转染试剂对照组、阴性对照组、siRNA1组、siRNA2组、siRNA3组,转染条件及方法同2,采用Anexin V—FITC检测方法,观察干扰RPS20 48h后诱导IEC-6细胞凋亡的情况。
     结果
     1.IEC-6细胞生长状况的观察
     引进的IEC-6细胞具有典型的正常肠上皮隐窝细胞的形态特征;具有较高的生存活力;细胞在第3天时进入对数生长期,在第7~10天时达到平台期,之后又继续缓慢增长。
     2.RNA干扰过程中IEC-6细胞转染条件的优化
     荧光显微镜检测转染效率,以评分进行秩和检验:结果仅有转染试剂或仅有FAM-siRNA,或两者均无的组别,评分均为0;转染试剂加FAM-siRNA组别均有或强或弱的荧光表达。
     流式细胞仪检测转染效率,以Lipofectamine2000 1.0μL+FAM-siRNA 160nM组转染效率最高(平均76.3%);而空白对照组约为1%。
     3.筛选针对RPS20基因的有效干扰片段
     3.1 RT-PCR检测干扰后RPS20 mRNA的表达
     在干扰后24h,与空白组比较,siRNA1组RPS20的mRNA表达明显减少,差异具有显著性意义(P<0.05),而siRNA2、siRNA3组都没有明显抑制其表达;在干扰后48h、72h,siRNA1、siRNA2、siRNA3组,都没有明显抑制RPS20 mRNA表达的趋势。
     3.2荧光定量RT-PCR检测干扰后RPS20 mRNA的表达
     相对于空白对照组来说,siRNA1组、siRNA2组、siRNA3组三组都在转染48h后成功地干扰了RPS20基因的表达,干扰效率在80%-90%左右。
     3.3 Western-Blot检测干扰后RPS20蛋白的表达
     与空白对照组比较,干扰后24h,siRNA1、siRNA2组蛋白表达量均降低,且差异具有显著性意义(P<0.028,P<0.049),siRNA3组蛋白表达量也趋向降低,但并不具有显著性差异(P<0.065);与空白对照组比较,干扰后48h,siRNA2、siRNA3组蛋白表达量均降低,且差异具有显著性意义(P<0.028,P<0.006),siRNA1组蛋白表达量也趋向降低,但并不具有显著性差异(P<0.619);与空白对照组比较,干扰后72h,siRNA2、siRNA3组蛋白表达量均降低,且差异具有显著性意义(P<0.019,P<0.015),siRNA1组蛋白表达量也趋向降低,但并不具有显著性差异(P<0.056)。
     4.RNAi后IEC-6细胞形态功能的改变
     4.1 RNAi后IEC-6细胞形态的变化
     相差显微镜下观察,与空白组比较,siRNA1组、siRNA2组、siRNA3组三组干扰序列细胞数都有所减少,但细胞形态并没有明显改变。透射电镜检测干扰后48h细胞超微结构的变化,发现:空白对照组IEC-6细胞膜、细胞核完整,细胞器丰富;转染试剂对照组及阴性对照组,细胞核都比较完整,有少许空泡及脂肪颗粒;siRNA1组、siRNA2组、siRNA3组细胞膜不完整,胞浆内有大量空泡出现,溶酶体增加,siRNA2组、siRNA3组空泡内还有疑似高电子致密度内容物的生成;细胞器较少,部分细胞呈现细胞器模糊。
     4.2 RNAi后对IEC-6细胞迁移能力的影响
     与空白组比较,siRNA1组、siRNA2组、siRNA3组都能在干扰后48h抑制细胞的迁移(P<0.01,P<0.01,P<0.01)。
     4.3 RNAi后IEC-6细胞增殖效率的变化
     细胞计数法:与空白对照组比较,转染后24h、48h、72h,siRNA1组、siRNA2组、siRNA3组都能明显抑制IEC-6细胞生长的数目(P<0.01)。
     MTT法:与空白对照组比较,转染后24h,siRNA2组、siRNA3组都能明显地抑制细胞增殖(P<0.05);转染后48h,siRNA2组能抑制细胞的增殖(P<0.05);转染后72h,siRNA2组、siRNA3组能抑制细胞的增殖(P<0.01,P<0.05)。
     4.4 RNAi后对IEC-6细胞凋亡的影响
     与空白对照组比较,siRNA1组活力细胞减少,差异具有显著性意义(P<0.05);siRNA1组早期凋亡细胞有所增多,但差异没有显著性意义;各组正常死亡细胞及晚期凋亡细胞比较,差异都没有显著性意义。
     结论
     1.IEC-6细胞生长曲线在第10后,从平台期又进入了缓慢增长阶段,由于在连续培养IEC-6细胞10天后,细胞会呈现分化状态,分析缓慢增长可能与分化有关;
     2.本课题设计并合成了3对针对大鼠RPS20的siRNAs,而且都能够有效地抑制IEC-6细胞RPS20mRNA与蛋白的表达,表明了序列的有效性;
     3 IEC-6细胞胞浆空泡化,并且迁移、增殖能力受到抑制,但并没有导致细胞早期凋亡的发生,该结果提示干扰RPS20可能影响IEC-6细胞的消化吸收功能和胃肠粘膜损伤修复功能,与前期收集的脾气虚证患者消化吸收功能下降、黏膜损伤修复能力下降等表现相符合。本结果支持由临床研究基因表达谱归纳出的特点,支持脾气虚证本质与RP相关的假说。
Background and Objective:
     In Chinese Medicine,the physical function of Spleen involves many aspects:governs transport and transformation of nutrients from foodstuff,controls blood,is in charge of sending up essential substance,is the source of generating Qi and blood,provides the material basis for the acquired constitution,is in charge of thoughts,is responsible for the growth of muscles and four limbs,and mouth is the window of spleen,lip is the reflection of splenic conditions.Above its function determine that its pathology doesn't involve one kind of disease or one kind of syndrome or one organ.Meanwhile,the relation between of spleen and other organs,indicates if hurting spleen and stomach in the body,every kind of diseases would onset,and vice versa.
     To study on the essence of spleen from spleen deficiency syndrome,always is an important topic to investigate the essence of syndrome with method of integrated traditional Chinese and western medicine.Many scholars approach the essence from biochemistry,physiology, ultra structure and so on by lots of modern technology,even someone go on research from the net of nerve-endocrine secretion-immunity recently,and required several outcome. However,these researches reflect some change of known gene expression product(such as receptor,enzyme,cytokine,and peptide),these keep away from the essence of syndrome. Genome era and post-genome era have been coming,this provides new method to study syndrome from gene.Most scholars presume that there are similarities between Chinese Medicine on holistic approach,yin-yang theory,theory of five organs,etiological theory and genome;they think that the connotation of syndrome is change of gene expression,so they put forward definition of Chinese Medicine syndrome genome.At present,scholars mostly analyze the spectrum of differentially expressed genes with cDNA chip technology to go on research of Chinese Medicine syndrome genome.The representative syndromes are kidney-yang deficiency syndrome,deficiency-cold syndrome,heart-yang deficiency syndrome,lung deficiency syndrome,spleen deficiency syndrome,and so on.
     We researched the spectrum of differentially expressed genes before on gastritis patients with spleen-qi deficiency syndrome and normal volunteers,chronic superficial gastritis patients with spleen-qi deficiency syndrome and chronic superficial gastritis patients with damp-heat syndrome,ulcerative colitis patients with spleen-qi deficiency syndrome and normal volunteers,ulcerative colitis patients with spleen-qi deficiency syndrome and ulcerative colitis patients with damp-heat syndrome.Our results prove that there are differentially expressed genes on chronic superficial gastritis patients with spleen-qi deficiency syndrome,and most of the genes are down regulation;compared with chronic superficial patients with damp-heat syndrome,differentially expressed genes of chronic superficial gastritis patients with spleen-qi deficiency syndrome are also down regulation, this status consistent with condition which body function behaves repressed under the condition of spleen-qi deficiency,and excited under the condition of damp-heat syndrome. The tendency is same when we made repeated analysis.
     After analysis lots of data by bioinformatics,we presume that spleen-qi deficiency syndrome has tendency of genes related protein synthesis to down regulation,especially ribosomal protein genes.Ribosomal protein constitutes ribosome,and plays an act to promote protein synthesis.Although ribosomal protein is highly conserved,it will produce live but abnormal phenotype when ribosomal protein gene mutable or absence or unfit chemical modification,this will impact ribosome's function,lower activity of polypeptide, and impact physical function of ribosomal protein,lead to serious results.We choose RPS20,which expressed down regulation repeatedly,to identify its function.Our experiment observes effect on function of IEC-6 cells,after interference RPS20,in order to detect its function.
     Methods:
     1.Observation to growth conditions of IEC-6 cells
     Observe cell morphology by phase contrast microscope;detect cell viability with trypan blue;draw growth curve by viable cell counts and MTT colorimetric assay.
     2.Optimization of transfect conditions of IEC-6 cells in the process of RNA interference For example,in 24 well plates,adjust the ratio between cationic liposome and FAM-siRNA, transfect FAM-siRNA into IEC-6 cells with cationic liposome,then detect fluorescence intensity after interference by fluorescence microscope and flow cytometry.
     3.Screen the best efficient siRNA to RPS20
     3.1 Detect the expression of RPS20 mRNA by RT-PCR
     Set blank group,group siRNA1,group siRNA2,group siRNA3.As 6 well plate for an example,plant 8×10~5 cells every well,on the second day,transfect following this condition: whole transfection volume is 2.5mL,final concentration of siRNA is 160nM,the volume of Lipofectamine2000 is 4.2μL.Then detect the expression of RPS20 mRNA after transfection 24h,48h,72h by RT-PCR.
     3.2 Detect the expression of RPS20 mRNA by fluorescence quantitative RT-PCR Set blank group,transfection control group,negative control group,group siRNA1,group siRNA2,group siRNA3.Transfection conditions are same to 3.1,Then detect the expression of RPS20 mRNA by fluorescence quantitative RT-PCR after transfection 48h.
     3.3 Detect the expression of RPS20 protein by western-blot
     Set blank group,transfection control group,negative control group,group siRNA1,group siRNA2,group siRNA3.Transfection conditions are same to 3.1.Then detect the expression of RPS20 protein by western-blot after transfection 24h,48h,72h.
     4.Change of cellular morphology and function after RNA interference
     4.1 Change of cells morphology after RNA interference
     Set blank group,group siRNA1,group siRNA2,group siRNA3.Transfection conditions are same to 3.1.Observe cell morphology by phase contrast microscope after interference 24h, 48h,72h.
     Set blank group,transfection control group,negative control group,group siRNA1,group siRNA2,group siRNA3.Observe cell ultra structure with transmission electron microscope after interference 48h.
     4.2 Effect on migration of IEC-6 cells after RNA interference
     Set blank group,transfection control group,negative control group,group siRNA1,group siRNA2,group siRNA3.Transfection conditions are same to 3.1.Establish migration model by scratch after transfection 48h,and after 24h,take five pictures per well,and count migrated cells by IPP software to observe change of cellular migration ability.
     4.3 Effect on proliferation of IEC-6 cells after RNA interference
     Set blank group,group siRNA1,group siRNA2,group siRNA3.Count cell number after interference 24h,48h,72h by cell counting.
     Set blank group,transfection control group,group siRNA1,group siRNA2,group siRNA3. Transfection conditions are same to 3.1,As 96 well plate for an example,plant 2.5×10~4cells every well,on the second day,transfect following this condition:whole transfection volume is 0.15mL、final concentration of siRNA is 160nM,the volume of Lipofectamine2000 is 4.2μL.Then detect the proliferation efficiency of cells after transfection 24h,48h,72h by MTT colorimetric assay.
     4.4 Effect on apoptosis of IEC-6 cells after RNA interference 48h
     Set blank group,transfection control group,negative control group,group siRNA1,group siRNA2,group siRNA3.Transfection conditions are same to 2,observe effect on apoptosis of IEC-6 cells after RNA interference 48h by Annexin V-FITC.
     Results
     1.Observation to growth conditions of IEC-6 cells
     IEC-6 cells had typically morphological characteristic of normal epithelial crypt cell,high viability;the third day after planted,IEC-6 cells got into exponential phase of growth, period from 7th day to 10th day is platform,then IEC-6 cells grew slowly.
     2.Optimization of transfect conditions of IEC-6 cells in the process of RNA interference Detected transfection efficiency by fluorescence microscope and scored to go on rank sum test;we found,the score was 0 when there was only transfection agent or FAM-siRNA;the groups with transfection agent and FAM-siRNA,had strong or weak fluorescence intensity. Detected transfection efficiency by flow cytometry,the combination of Lipofectamine2000 1.0μL+ FAM-siRNA 160nM,had the highest transfection efficiency,but blank group was only 1%.
     3.Screen the best efficient siRNA to RPS20
     3.1 Detect the expression of RPS20 mRNA by RT-PCR
     Comparison to blank group,the expression of RPS20 mRNA in group siRNA1 decreased significantly(P<0.05)after interference 24h,however,group siRNA2 and group siRNA3 didn't suppress expression of RPS20 mRNA significantly;After interference 48h,72h, group siRNA1,group siRNA2 and group siRNA3 didn't suppress the expression of RPS20 mRNA significantly.
     3.2 Detect the expression of RPS20 mRNA by fluorescence quantitative RT-PCR
     Comparison to blank group,the expression of RPS20 mRNA in group siRNA1,siRNA2, siRNA3 was interfered successfully,interference efficiency was about 80%-90%.
     3.3 Detect the expression of RPS20 protein by western-blot
     Comparison to blank group,after interference 24h,the expression of RPS20 protein in group siRNA1,siRNA2 decreased significantly(P<0.028,P<0.049),the expression of RPS20 protein in group siRNA3 trended to low,but the variance wasn't significantly(P<0.065);Comparison to blank group,after interference 48h,the expression of RPS20 protein in group siRNA2,siRNA3 decreased significantly(P<0.028,P<0.006),the expression of RPS20 protein in group siRNA1 trended to low,but the variance wasn't significantly(P<0.619);Comparison to blank group,after interference 72h,the expression of RPS20 protein in group siRNA2,siRNA3 decreased significantly(P<0.019,P<0.015),the expression of RPS20 protein in group siRNA1 trended to low,but the variance wasn't significantly(P<0.056).
     4.Change of cell morphology and function after RNA interference
     4.1 Change of cells morphology after RNA interference
     Under the detection of phase contrast microscope,comparison to blank group,the cell number of group siRNA1、siRNA2、siRNA3 decreased,but there was no change on cell morphology.Under the detection of transmission electron microscope after interference 48h, cellular membrane and nucleus were complete in blank group,there were abundant cell organelles;transfection control group and negative control group had integrated nucleus, and a few of vacuoles and some plasmid;group siRNA1,siRNA2,siRNA3 had no integrated membrane,and there were lots of vacuoles,cytolysosome number increased, vacuoles in group siRNA2,siRNA3 maybe comprise high electron density content.Cell organelle decreased,and some of them were obscure.
     4.2 Effect on migration of IEC-6 cells after RNA interference
     Comparison to blank group,after interference 48h,group siRNA1,siRNA2,siRNA3 suppressed cell migration significantly(P<0.01,P<0.01,P<0.01).
     4.3 Effect on proliferation of IEC-6 cells after RNA interference
     Comparison to blank group,after interference 24h,48h,72h,the growth cell number of group siRNA1,siRNA2,siRNA3 was suppressed significantly(P<0.01)by cell counting. To detect proliferation of IEC-6 cells by MTT,comparison to blank group,after interference 24h,group siRNA2,siRNA3 suppressed cell proliferation significantly(P<0.05),after interference 48h,group siRNA2 could suppress cell proliferation significantly(P<0.05),after interference 72h,group siRNA2,siRNA3 could suppress significantly cell proliferation(P<0.01,P<0.05).
     4.4 Effect on apoptosis of IEC-6 cells after RNA interference 48h
     Comparison to blank group,viable cells of group siRNA1 decreased,the difference was significantly(P<0.05),and early apoptotic cells increased,but the difference was not significantly.Comparison to blank group,cells dead normally and late apoptotic cells of group siRNA1,siRNA2,siRNA3,had no significantly difference.
     Conclusion:
     1.After planted IEC-6 cells 10 days,growth curve changed from platform to the period increased slowly.Due to begin to present differentiation,IEC-6 cells grew slowly.
     2.This study design and compose three pairs siRNAs to RPS20 of rats,and they interference the expression of RPS20 on the aspect of mRNA and protein successfully,and prove their validity.
     3.After interference,IEC-6 cells cytoplasm present vacuolization,and its migration,and proliferation were suppressed,but there was no apoptosis to happen.These results indicate that interfering expression of RPS20 may affect the function of digestion and absorption and gastrointestinal mucosa healing,which is in accordance with condition of low level on digestive and absorptive function and gastrointestinal mucosa healing.This result support characteristic from clinical spectrum of gene expressed differently,support the hypothesis that essence of pi-deficiency syndrome maybe relate with RPS20 lowly expression.
引文
[1]章洪流,王天芳.脾虚证的研究述评[J].江西中医药,2004;35(259):62-64.
    [2]周忠科,刘家强,王米渠.中医证候基因组学研究的探讨[J].中华中医药学刊,2008;26(4):826-827.
    [3]尹耀慧,易振佳,金益强.证候基因组学深入研究的思考[J].湖南中医杂志,2006;22(6):1-3.
    [4]刘良,王汝俊,卞兆祥.王建华论文选[M].广州:羊城晚报出版社,2000,1:3.
    [5]胡玲,黄志新.劳少贤医学文选[M].广州:广东科技出版社,2005,1:89.
    [6]王桂香.慢性胃炎脾气虚证消化吸收障碍亚型差异表达基因生物信息学及临床研究.广州中医药大学2007年届博士学位论文:15.
    [7]刘士敬,朱倩.脾气虚诊断的历史溯源[J].中医药信息,1997;4:3-5.
    [8]刘蕾,郭淑贞,王伟.中医证候研究的现状及发展趋势[J].中华中医药杂志,2008;23(8):661-663.
    [9]许永周,劳少贤,王建华.脾气虚诊断的探讨[J].科研资料汇编;1983,140-144.
    [10]陈小野,邹世洁.脾气虚证多态性的初步探讨[J].中医杂志,1996;37(2):113-116.
    [11]杨维益.脾气虚证时肌酸磷醇激酶及其同工酶活性变化的临床研究[J].中国医药学报,1991;7(4):214.
    [12]邱向红.脾虚计量诊断的前瞻性研究[J].广州中医学院学报,1994;11(1):13.
    [13]邱向红,邓铁涛,王建华,等.脾虚证计量诊断的探讨[J].广州中医学院学报,1990;(1):24-27.
    [14]孙弼纲,刘健.脾气虚证分度诊断及病理生理学动态变化研究[J].安徽中医学院学报,1999;18(5):4.
    [15]俞传芳.补中益气汤加味治疗慢性萎缩性胃炎[J].上海中医药杂志,2004;38(8):24-25.
    [16]张成节.健脾益气止泻汤治疗小儿迁延性腹泻108例[J].四川中医,1996;14(11):47.
    [17]何羿婷,许鑫梅,劳绍贤.多系统脾虚证的临床和实验研究[J].广州中医学院学报,1995;12(1):16-20.
    [18]陈小野.脾气虚证动物模型初步规范化的造模方法和思路[J].中国中医基础医学杂志,2003,9(1):3-5.
    [19]严智强,于书庄,舒琪,等.脾虚动物模型的多种体表物理信息及其它生理指标的研究[J].贵州医药,1982;(4):39.
    [20]黄炳山,毛翼楷,范隆昌,等.饮食失节所致的脾虚动物模型及中药治疗观察[J]. 中西医结合杂志,1983;3(5):295-296.
    [21]罗光宇,黄秀凤,杨明均,等.偏食法塑造大鼠脾气虚证模型研究[J].中医杂志,1990;31(4):49-51.
    [22]彭成,罗光宇,欧芳春,等.偏食苦味所至脾气虚证动物模型研究[J].四川中医,1990;8(12):14-15.
    [23]何晓晖,朱荣林.饮食偏嗜致病的初步实验观察[J].广西中医药,1994;17(1):44-45.
    [24]杨云,陈小野,郭育芝,等.劳倦和饥饱引起的大鼠脾虚证模型的造型及实验研究[J].中国医药学报,1989;4(2):65-67.
    [25]谢仰洲,陈琦涛,谢宗岑,等.用过劳和饮食失节法塑造大白鼠脾气虚证模型的研究-生化免疫病理和超微结构的观察[J].中医杂志,1987;28(5):57-60.
    [26]梁嵘,杨维益,文平,等.用泻下与劳倦因素塑造大鼠“脾气虚”证模型[J].北京中医学院学报,1992;15(4):33-35.
    [27]刘学松,黄树明,李织,等.利血平致动物脾虚模型机制的研究[J].中国医药学报,1989;4(5):68-70.
    [28]刘士敬,朱倩.大鼠胃饲秋水仙碱脾气虚模型的研究[J].中医杂志,1997;38(5):300-302.
    [29]刘士敬,朱倩.X射线照射大鼠腹部塑造脾气虚模型的研究[J].中国中医基础医学杂志,1997;3(5):57.
    [30]北京师范大学生物系消化生理科研组.中医脾虚证动物模型的造型[J].中华医学杂志,1980;60(2):83.
    [31]刘金元,杨冬娣,邱琼新,等.强肌健力口服液对脾虚小鼠胃超微结构的影响[J].中华实用中西医杂志,2007;20(8):735-736.
    [32]杨冬娣,刘金元,陈津岩,等.强肌健力口服液对脾虚小鼠小肠超微结构的影响[J].中华实用中西医杂志,2007;20(1):1515-1516.
    [33]郑继方,瞿白明.山羊脾虚唾液淀粉酶活性的观察[J].中兽医学杂志,1993;37(1):2-4.
    [34]胡琳琳,高云芳,何志仙.三种脾虚证模型小鼠消化吸收功能改变的比较研究[J].中国中西医结合杂志,2005;25(9):813-816.
    [35]龚剑峰,朱维铭,刘放南,等.D-木糖吸收试验评价短肠综合征病人的吸收功能[J].肠外与肠营养,2006;2(5):187-191.
    [36]曲瑞瑶,曲柏林,曾文红,等.大鼠实验性脾虚证胃电波和胃运动波的研究[J].中西医结合杂志,1994;14(3):156.
    [37]王伟,曲瑞瑶,刘素梅,等.实验性脾虚证大鼠十二指肠电活动和运动的研究[J].中国中医基础医学杂志,1998;4(10):25.
    [38]孙风莲.胃泌素及其相关胃肠激素的研究进展[J].国外医学:生理、病理科学与临床分册,2006;20(3):229.
    [39]方圻.现代内科学[M].北京:人民军医出版社,1995:1848.
    [40]Binimelis J,Webb S M,Mones J,et al.Circulating immunoreactive somatostatin in gastrointestinal diseases:Decrease after Vagotomy and Enhancement in Active Ulcerative Colitis,Irritable Bowel Syndrome,and Duodenal Ulcer[J].Scand J Gastroenterol,1987;22(8):931-937.
    [41]桂先勇,柯美云,潘国宗,等.肠易激综合征的结肠动力及胃肠激素变化[J].中华消化杂志,1994;14(增刊1):50.
    [42]Hellstrom P M,Thollander M,Theodorsson E.Nociceptive inhibition of migrating myoelectric complex by nitric oxide and monoaminergic pathways in the rat[J].Am J Physio 1 Gasrtrointest Liver Physiol,1998;274(3):480-486.
    [43]Zhang ZY,Hou ZJ,Guo JY.Gut hormones and clinical application[J].Shi Jie Hua Ren Xiao Hua Za Zhi,1998;6(5):447-448.
    [44]Reisine T,Bell G I.MolecuLar biology of somatostatin receptors[J].Endocrine Reviews,1995;16(4):427-442.
    [45]曾益宏,刘友章,徐升.益气健脾法对脾虚证模型大鼠血清胃泌素含量的影响[J].广州中医药大学学报,2008;25(3):239-243.
    [46]封吉化,尚虎虎,黄熙,等.脾虚早期与脾虚期大鼠组织和血浆中SS、CCK、MOT 含量变化的探讨[J].Medical Journal of the Chinese People's Armed Police Forces,2005;16(5):336-339.
    [47]姚永莉,宋于刚,张万岱.实验脾虚证胃窦及十二指肠粘膜G、D细胞的变化及意义[J].中国中西医结合脾胃杂志,1999;7(1):8.
    [48]张殿明.神经内分泌学[M].北京:中国医药科技出版社,1991;319.
    [49]Nilsson B.I.,Svenberg T,Tellstrom T,et al.Relationship between interdigestive gallbladder emptying,plasma motilin and migrating motor complex in man[J].Acta physiologica scandinavica,1990;139(1):55-61.
    [50]刘芳,任平,李月彩.脾气虚证与MOT的关系[J].中医药学刊,2004;22(11):2028-2030.
    [51]Zhu JZ,Chen DF,Leng ER.The effect of gastrointestinal peptide on regulating gastrointestinal motility[J].Shijie Huaren Xiaohua Zazhi,1999;7(8):687-688.
    [52]周吕.胃肠生理学-基础与临床[M],北京:科学出版社,1991,321.
    [53]张殿明.神经内分泌学[M].北京:中国医药科技出版社,1991,319.
    [54]刘芳,任平,李月彩.脾虚证与CCK的关系[J].中国中西医结合消化杂志,2002;10(5):262-264.
    [55]曲瑞瑶,刘素梅,王伟,等.实验性脾虚证大鼠胃肠动力学与胃肠肽关系的研究[J].中国中西医结合杂志,1998;18(增):237-240.
    [56]陈元方.胃肠肽类激素基础与临床[M].北京:北京医科大学中国协和医科大学联合出版社,1997,366.
    [57]傅小锁,张景艳.神经肽Y及其作用[J].生理科学进展,1993;24(2):152-155.
    [58]潘国宗,曹世植.现代胃肠病学[M].上册.北京:科学出版社,1998,57.
    [59]徐广银,端木肇夏,印其章.降钙素基因相关肽与痛觉调制[J].生理科学进展,1993;24(1):67-69.
    [60]杨孝朴,魏彦明.脾虚证模型大鼠血浆中β-EP、CGRP、NPY含量的变化[J].中国兽医学报,2006;26(1):85-87.
    [61]王洪海,谢鸣.复合病因造模法致脾虚证大鼠模型在免疫系统方面的变化[J].中国实验方剂学杂志,2006;12:41-45.
    [62]吴玲霓,雷娓娓,杨冬娣,等.肾虚、脾虚造型动物免疫超微结构的比较研究[J].中医药研究,1999;15(3):39-40.
    [63]章梅.四君子汤对脾虚患者血清可溶性细胞黏附分子-1水平和单核细胞功能的影响[J].中国中西医结合杂志,1999;19(5):270.
    [64]彭淑珍,李勇敏,王福云,等.健脾消积液对脾虚动物免疫功能的影响[J].湖南中医杂志,1999;15(2):56.
    [65]旷欲胜,邱根全,刘佚,等.脾虚证大鼠侧脑室注射孤啡肽对细胞免疫功能的影响[J].西安交通大学医学版,2007;28(6):658-661.
    [66]王志良,樊青霞,王冬青,等.消化系恶性肿瘤脾虚证患者T淋巴细胞亚群分布关系的初步观察[J].河南肿瘤学杂志,1994;7(2):111-113.
    [67]杨冬花,李家邦,郑爱华,等.脾虚证模型大鼠Th_1/Th_2细胞因子的失衡以及四君子汤的干预作用[J].中国医师杂志,2004;6(2):181-183.
    [68]蔡琨,俞琦,王平,等.调节肠道微生态对“脾虚”大鼠红细胞免疫的影响[J].甘肃中医,2006;19(8):44-45.
    [69]孙理军,张登本,李怀东,等.大鼠脾虚模型的唾液免疫学研究[J].陕西中医,2004;25(7):665-666.
    [70]刘红春.黄芪建中汤抗大鼠脾气虚证的实验研究[J].郑州大学学报,2004;39(2):316.
    [71]贾钰华,徐复霖,许俊杰,等.脾气虚证的微循环和血液流变学同步观察[J].中医药研究,1991;(6):55-57.
    [72]刘洪尊,冯端浩.3种脾虚小鼠红细胞膜流动性变化的研究[J].中国中西医结合消化杂志,2003;11(1):15-17.
    [73]李刚,夏天.脾虚证大鼠各脑区和血清亮氨酸-脑啡肽的变化[J].安徽中医学院 学报,2002;21(2):37-39.
    [74]夏天,李刚.脾虚大鼠下丘脑-垂体-甲状腺轴功能的变化[J].安徽中医学院学报,2001;20(4):42-45.
    [75]陈芝喜,徐志伟,刘小斌,等.强肌健力饮对脾气虚大鼠性激素水平的影响[J].放射免疫学杂志,2008;21(1):37-41.
    [76]北京市中医研究所.有关脾气虚实质的临床观察和实验研究[J].中华医学杂志,1982;62(1):22-26.
    [77]金敬善,赵子厚,危北海,等.慢性胃炎脾气虚证患者的临床和实验研究[J].中医杂志,1989;30(3):21-22.
    [78]修宗昌,唐永祥,潘慧人.脾气虚大鼠血及延髓VIP/NO信号转导通路变化[J].四川中医,2006;24(2):29-30.
    [79]关崇芬,沈华.蛋白酪氨酸激酶与中医脾气虚证研究[J].中国中医药信息杂志,1996;3(11):14.
    [80]王彩霞,李德新,王淑娟,等.脾气虚衰老大鼠红细胞膜ATP酶活性及海马神经元PKC活性的变化[J].中医药学刊,2005;23(8):1362-1364.
    [81]尹光耀,周奚中,唐静芬,等.脾气虚证慢性胃病患者胃黏膜与血浆cAMP和cGMP测定及其临床意义[J].中国中西医结合杂志,1985;5(1):30-32.
    [82]崔琦珍,李艳舞,王建华,等.补脾方药对脾虚大鼠壁细胞CaM及Ca2+/CaMPKⅡ活性的影响[J].中药药理与临床,2007;23(1):1-3.
    [83]修宗昌,李德新.脾虚证Ca2+-CaM信号系统的实验研究[J].中国医药学报,2002;17(12):758.
    [84]徐升.脾虚证线粒体氧化损伤以及线粒体基因及其表达改变的研究.广州中医药大学2007届博士学位论文:30-36.
    [85]陈小野,邹世洁,张字鹏,等.大鼠CAG证病结合模型胃黏膜超微结构观察[J].中医药学刊,2001;19(5):513-514.
    [86]王彩霞,崔家鹏.脾虚证大鼠肝组织端粒长度的变化及其与氧化应激关系的探讨[J].中华中医药学刊,2007;25(12):2448-2450.
    [87]郭文峰,高小玲,李茹柳,等.利血平致大鼠脾虚模型尿 D-木糖排泄率与肠黏膜三磷酸腺苷水平的研究[J].中国中西医结合消化杂志,2008;16(4):211-214.
    [88]李艾卓,曲艺,李若鸿.肝病脾虚证微量元素测定及其临床意义探讨[J].中医中药,2008;5(21):78.
    [89]陈红,严道南,曹济航.微量元素与变应性鼻炎免疫机制及中医辨证关系初探[J].中国中西医结合耳鼻咽喉科杂志,2007;15(3):234-237.
    [90]罗雄,凌湘力.从“中医研究”与“研究中医”谈中医现代化[J].贵阳中医学院学报,2005;27(2):7-9.
    [91]周忠科,刘家强,王米渠.中医证候基因组学研究的探讨[J].中华中医药学刊,2008;26(4):826-827.
    [92]王米渠,吴斌,严石林,等.脾胃的脏象系统分子生物学研究策略[J].现代中西医结合杂志,2003;12(4):337-339.
    [93]周冬枝,吴苏冬,刘永惠,等.胃癌中医证型与p53、bcl-2、bax基因蛋白表达关系的研究[J].北京中医药大学学报,2003;26(2):56-59.
    [94]杨传标,薛军,张德春,等.中药健脾复方对大肠癌脾虚证患者K-ras和p53基因突变的抑制作用[J].世界华人消化杂志,2004;12(11):2764-2765.
    [95]杨传标,薛军,殷平善,等.大肠癌脾虚证bcl-2基因表达与健脾康复汤的调节作用[J].第一军医大学学报,2005;25(10):1268-1269.
    [96]吴苏冬,周冬枝,贾宗良,等.结肠癌脾虚证p53,Bcl-2和Bax的表达[J].第四军医大学学报,2003;24(12):1111.
    [97]罗云坚,修宗昌,黄穗平,等.脾气虚证免疫相关基因组学机制初探[J].中国中西医结合杂志,2005;25(4):313.
    [98]王肃,陈小野,邹世洁,等.利血平脾虚证模型大脑皮层基因表达谱变化的初步研究[J].中医药学刊,2003;21(9):1512-1515.
    [99]钱会南,许红,沈丽波.健脾与补肾对脾虚模型大鼠学习记忆及脑内P物质、血管活性肠肽的影响[J].中国中医药信息杂志,2007;14(1):37-38.
    [100]王颖芳.慢性胃炎脾虚证患者差异表达谱研究.广州中医药大学2007届博士学位论文.
    [101]陈玉龙.脾胃虚、实证基因芯片数据挖掘及核糖体蛋白基因芯片制作.广州中医药大学博士后出站报告.
    [102]刘家强,吴丽娜,王米渠.当今证候基因组研究的反思以及功能基因模块的运用[J].中华中医药学刊,2007;25(10):2152-2153.
    [103]Steven J Marygold,John Roote,Gunter Reuter,et al.The ribosomal protein genes and Minute loci of Drosophila melanogaster[J].Genome Biology,2007;8(10):216.
    [104]Paulien Smits,Jan A.M.Smeitink,Lambert P.van den Heuvel,et al.Reconstructing the evolution of the mitochondrial ribosomal proteome[J].Nucleic Acids Research,2007;35(14):4686-4703.
    [105]Zarivach R,Bashan A,Berisio R,et al.Functional aspects of ribosomal architecture:symmetry,chirality and reguLation[J].Jounal of Phys Organic Chemistry,2004;17(11):901-912.
    [106]Wool I G,Chan YL,Gltick A.Structure and evolution of mammalian ribosomal proteins[J].Biochem Cell Biol,1995;73(11):933-947.
    [107]Fisher EM,Beer-Romero P,Brown LG,et al.Homologous ribosomal protein genes on the human X and Y chromosomes:escape from X inactivation and possible implications for Turner syndrome[J].Cell,1990;63(6):1205-1218.
    [108]Thomas E A,Alvarez C E,Sutcliffe J.G.Evolutionarily distinct classes of S27ribosomal proteins with differential mRNA expression in rat hypothalamus[J].Journal of Neurochemistry,2000;74(6):2259-2267.
    [109]Planta RJ,Mager WH.The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae[J].Yeast,1998;14(5):471-477.
    [110]王宁,陈润生.16个完整基因组中核糖体蛋白基因排列顺序保守性的研究[J].中国科学,2000;30(1):99-107.
    [111]Uechi T,Tanaka T,Kenmochi N.A complete map of the human ribosomal protein genes:assignment of 80 genes to the cytogenetic map and implication for human disorders[J].Gemomics,2001;72(3):223-230.
    [112]Perry R.P.The architecture of mammalian ribosomal protein promoters[J].BMC Evolutionary Biology,2005;5:15.
    [113]Zhao Y,Sohn J.H.,Warner J.R.Autoregulation in the biosynthesis of ribosomes[J].Molecular and Cellular Biology,2003;23(2):699-707.
    [114]Levy S,Avni D,Hariharan N,et al.Oligopyrimidine tract at the 50 end of mammalian ribosomal protein mRNAs is required for their translational control[J].Proc Natl Acad Sci,1991;88(8):3319-3323.
    [115]Avni D,Shama S,Loreni F,et al.Vertebrate mRNAs with a 50'-terminal pyrimidine tract are candidates for translational repression in quiescent cells:characterization of the translational cis-reguLatory element[J].Molecular and Cellular Biology,1994;14(6):3822-3833.
    [116]Brown P O,Botstein D.Exploring the new world of the genome with DNA microarrays[J].Nature Genetics,1999;21(1):33-37.
    [117]Wool IG.Extraribosomal functions of ribosomal proteins[J].Trends Biochem Sci,1996;21(5):164-165.
    [118]Kongsuwan K,Yu Q,Vincent A,et al.A Drosophila minute gene encodes a ribosomal protein[J].Nature,1985;317:555-558.
    [119]Ruggero D,Pandolfi PP.Does the ribosome translate cancer[J]? Nat Rev Cancer,2003;3(3):179-192.
    [120]Lian Z,Liu J,Li L,et al.Human S15a expression is upreguLated by hepatitis B virus X protein[J].Mol Carcinog,2004;40(1):34-46.
    [121]Vaarala M.H,Porvari K.S,Kyllonen A.P,et al.Several genes encoding ribosomal proteins are overexpressed in prostate-cancer cell lines:confirmation of L7a and L37 overexpression in prostate-cancer tissue samples[J].International Journal of Cancer,1998;7(1):27-32.
    [122]Jang C.Y,Lee J.Y,Kim J.RpS3,a DNA repair endonuclease and ribosomal protein,is involved in apoptosis[J].FEBS Letters,2004;560(3):81-85.
    [123]Khanna N,Sen S,Sharma H,et al.S29 ribosomal protein induces apoptosis in H520cells and sensitizes them to chemotherapy[J].Biochemical Biophysical Research Communications,2003;304(1):26-35.
    [124]Marygold S J,Coelho C M.A,Leevers S J.Genetic analysis of RpL38 and RpL5,two minute genes located in the centric heterochromatin of chromosome 2 of Drosophila melanogaster[J].Genetics,2005;169:683-695.
    [125]Torok I,Herrmann-Horle D,Kiss I,et al.Down-reguLation ofRpS21,a putative translation initiation factor interacting with P40,produces viable minute imagos and larval lethality with overgrown hematopoietic organs and imaginal discs[J].Molecular and Cellular Biology,1999;19(3):2308-2321.
    [126]Lutsch G,Stahl J,Kargel H J,et al.Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liver[J].Eur J Cell Biol,1990;51(1):140-50.
    [127]Gazda HT,Sheen MR,Darras N,et al.Mutations of the genes for ribosomal proteins L5 and L11 are a common cause of Diamond-Blackfan anemia[J].Blood,2007;110:421.
    [128]Gazda H,Grabowska A,Merida Long L,et al.Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia[J].Am J Hum Genet,2006;79(6):1110-1118.
    [129]Cmejla R,Cmejlova J,Handrkova H,et al.Ribosomal protein S17 gene(RPS 17) is mutated in Diamond-Blackfan anemia[J].Hum Mutation,2007;28(12):1178-1182.
    [130]Farrar J,Nater M,Caywood E,et al.A large ribosomal subunit protein abnormalitity in Diamond-Blackfan anemia(DBA)[J].Blood,2007;110:131a.
    [131]杨帆,刘卫平,何妙侠,等.实时荧光定量PCR检测核糖体蛋白S13基因在NK/T 细胞淋巴瘤中的表达[J].四川大学学报医学版,2006;37(3):464-466.
    [132]祁震宇,惠国桢,李瑶,等.全长新基因人核糖体蛋白L14.22在人脑胶质瘤中的研究与体外表达[J].中华实验外科杂志,2006;23(5):554-556.
    [133]刘骥,李纪鹏,陈冬利,等.核糖体蛋白L5在胃癌中的表达及功能[J].World Chin J Digestol,2005;13(23):2731-2735.
    [134]Daniel R.Gentry,David J.Holmes.Selection for High-Level Telithromycin Resistance in Staphylococcus aureus Yields Mutants ResuLting from an rplB-to-rplV Gene Conversion-Like Event[J].Antimicrobial Agents and Chemotherapy,2008;52(3):1156-1158.
    [135]Sephorah Zaman,Megan Fitzpatrick,Lasse Lindahl,et al.Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli[J].MolecuLar Microbiology,2007;66(4):1039-1050.
    [136]Corinna Kehrenberg,Stefan Schwarz.Mutations in 16S rRNA and Ribosomal Protein S5 Associated with High-Level Spectinomycin Resistance in Pasteurella multocida[J].Antimicrobial Agents and Chemotherapy,2007;51(6):2244-2246.
    [137]Vincent Cattoir,Lilia Merabet,Patrick Legrand,et al.Emergence of a Streptococcus pneumoniae isolate resistant to streptogramins by mutation in ribosomal protein L22 during pristinamycin therapy ofpneumococcal pneumonia[J].Journal of Antimicrobial Chemotherapy,2007;59(5):1010-1012.
    [138]Rita Berisio,Natascia Corti,Peter Pfister,et al.23S rRNA 2058A-G Alteration Mediates Ketolide Resistance Combination with Deletion in L22[J].Antimicrobial Agents and Chemotherapy,2006;50(11 ):3816-3823.
    [139]翟惠虹,郭新宁,时永全,等.人核糖体蛋白S13与胃癌细胞多药耐药性的实验研究[J].中华消化杂志,2004;24(3):139-142.
    [140]陈宏,谢兆霞,姜浩,等.核糖体蛋白L6对K562/A02细胞耐药性及凋亡的影响[J].中国实验血液学杂志,2007;15(2):292-295.
    [141]Massimiliano De Bortolil,Robert C Castellinol,Xin-Yan Lu,et al.MeduLloblastoma outcome is adversely associated with overexpression of EEF1D,RPL30,and RPS20 on the long arm of chromosome 8[J].BMC Cancer,2006;6:223.
    [142]Luo De-yan,Li Peng,Xing Li,et al.DNA vaccine encoding L7/L 12-P39 of Brucella abortus induces protective immunity in BALB/c mice[J].Chinese Medical Journal,2006;119(4):331-334.
    [143]S Saxena,T Madan,K Muralidhar,et al.cDNA cloning,expression and characterization of an allergenic L3 ribosomal protein ofAspergillus fumigatus[J].Clin Exp Immunol,2003;134(1):86-91.
    [144]Mackie GA.Nucleotide sequence of the gene for ribosomal protein S20 and its flanking regions[J].J Biol Chem,1981;256(15):8177-82.
    [145]Paterakis K,Littlechild J,Woolley P.Structural and functional studies on protein S20from the 30-S subunit of the Escherichia coli ribosome[J].Eur J Biochem,1983;129(3):543-8.
    [146]Culver G M,Noller H F.Directed hydroxyl radical probing of 16S ribosomal RNA in ribosomes containing Fe(II) tethered to ribosomal protein S20[J].RNA,1998;4(12):1471-1480.
    [147]Weitzmann CJ,Cunninqham PR,Nurse K,et al.Chemical evidence for domain assembly of the Escherichia coli 30S ribosome[J].The FASEB Journal,1993;7(1):177-180.
    [148]Ryden-Aulin M,Shaoping Z,Kylsten P,et al.Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20[J].Mol Microbiol,1993;7(6):983-92.
    [149]Lesley R Rapaport,George A Mackie.Influence of Translational Efficiency on the Stability of the mRNA for Ribosomal Protein S20 in Escherichia coli[J].Journal of Bacteriology,1994;176(4):992-998.
    [150]H.Y.Edwin Chan,Yong Zhang,Cahir J Okane.Identification and characterization of the gene for Drosophila S20 ribosomal protein[J].Gene,1997;200(1-2):85-89.
    [151]Olsvik PA,Lie KK,Jordal AE,et al.Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon[J].BMC Mol Biol,2005;6:21.
    [152]Ingerslev HC,Pettersen EF,Jakobsen RA,et al.Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon(Salmo salar L)[J].Molecular Immunology,2006;43(8):1194-201.
    [153]McGowan KA,Li JZ,Park CY,et al.Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects[J].Nat Genet,2008;40(8):963-70.
    [154]Wei Chu,David H.Presky,Robert A.Swerlick,et al.Human ribosomal protein S20 cDNA sequence[J].Nucleic Acids Research,1993;21(7):1672.
    [155]Yu H,Yao LH,Chen AJ,et al.Screening for new binding proteins which interact with BM2 of influenza B virus with yeast two-hybrid system[J].Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi,2005;19(2):182-4.
    [156]Kemp EH,Herd LM,Waterman EA,et al.Immunoscreening of phage-displayed cDNA-encoded polypeptides identifies B cell targets in autoimmune disease[J].Biochemical Biophysical Research Communications,2002;298(1):169-77.
    [1]Andrea Quaroni,Jack Wands,Robert L.Trelstad,et al.Epithelioid cell cuLtures from rat small intestine characterization by morphologic and immunologic criteria[J].Cell Biology,1979;80(2):248-265.
    [2]司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司,2004:241-250.
    [3]郝新保,张利朝,殷缨,等.MTT比色法测定细胞生长曲线[J].第四军医大学学报,1997;18(4):390-391.
    [4]王锋超,王涛,艾国平,等.不同伤情血清可有效激活IEC-6细胞PI3K/Akt通路[J].第三军医大学学报,2006;28(6):518-520.
    [5]Deng W,Shuyu E,Tsukahara R,et al.The lysophosphatidic acid type 2 receptor is required for protection against radiation-induced intestinal injury[J].Gastroenterology,2007;132(5):1834-51.
    [6]史成和,陆松敏,聂渝琼,等.缺氧复氧对IEC-6肠上皮细胞膜电位的影响及紫芪方的保护作用[J].解放军药学报,2005;21(8):241-244.
    [7]Silen W,Ito S.Mechanisms for rapid re-epithelialization of the gastric mucosal surface [J].Annu Rev Physiol,1985;47:217-229.
    [8]Moore R,Carlson S,Madara JL.Rapid barrier restitution in an in vitro model of intestinal epithelial injury[J].Lab Invest,1989;60(2):237-244.
    [9]Zhou Wang,Wei-Wen Chen,Ru-Liu Li,et al.Effect of gastrin on differentiation of rat intestinal epithelial cells in vitro[J].World Gastroenterol,2003;(8):1786-1790.
    [10]Zi-Li Zhang,Wei-Wen Chen.Proliferation of intestinal crypt cells by gastrin-induced ornithine decarboxylase[J].World Gastroenterol,2002;8(1):183-187.
    [11]张子理,陈蔚文.黄芪注射液和白术提取部位对小肠上皮细胞移行的影响[J].中草药,2002;33(10):912-915.
    [12]张子理,陈蔚文.小肠隐窝细胞株(IEC-6):中药生物活性成分筛选的药理模型[J].中药药理与临床,2006;22(3、4):180-182.
    [13]张子理,陈蔚文.党参、黄芪、白术提取物配伍应用对小肠上皮细胞增殖的影响[J].广州中医药大学学报,2006;19(2):137-140.
    [14]Carla Thomas,Phillip S.Oates.IEC-6 cells are an appropriate model of intestinal iron absorption in rats[J].American Society for Nutritional Sciences,2002;132:680-687.
    [15]陈祥贵,王瑞淑,邓茂先,等.外源核苷酸对肠上皮细胞增殖和迁移的作用[J].四川工业学院学报,2003;增刊-0081-05:81-85.
    [16]Daniel H.Kim,John J.Rossi.RNAi mechanisms and applications[J].Biotechniques,2008;44(5):613.
    [17]Lenz G.The RNA interference revolution[J].Braz J Med Biol Res,2005;38(12):1749.
    [18]陈蔚文,张子理,王建华,等.党参白术提取物分别和合用诱导IEC-6细胞增殖分化的作用[J].中国药理学通报,2002;18(4):444.
    [19]张子理,陈蔚文.黄芪注射液通过激活鸟氨酸脱羧酶促进IEC-6细胞分化的研究[J].中国中西医结合杂志,2002;22(6):439.
    [20]周晓彤,沈振亚,于曙东,等.阳离子脂质体介导小干扰RNA转染EOMA细胞时转染条件的优化[J].徐州医学院学报,2005;25(6):507.
    [21]晏晓明,荣蓓阳.离子脂质体介导的p21WAF1基因转染对人角膜基质细胞增殖的影响[J].中华眼科杂志,2002;28(2):103.
    [22]Hendrik J.M.de Jonge,Rudolf S.N.Fehrmann,Eveline S.J.M.de Bont.Evidence Based Selection of Housekeeping Genes[J].PLoS ONE,2007;2(9):e898.
    [23]宫淑敏,钱会南.荧光定量PCR在中医药研究中的应用[J].中华中医药学刊,2008;26(4):758-760.
    [24]蔡霞.定量PCR技术及其应用现状[J].现代诊断与治疗,2005;16(2):112-115.
    [25]Brown PO,Botstein D.Exploring the new world of the genome with DNA microarrays [J].NatGenet,1999;21(1):133-37.
    [26]Olsvik PA,Lie KK,Jordal AE,et al.Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon[J].BMC Mol Biol,2005;17(6):21.[27]Yamauchi K,Tarachai P.Changes in intestinal villi,cell area and intracellular autophagic vacuoles related to intestinal function in chickens[J].Br Poult Sci,2000;41(4):416-23.
    [28]王春梅,黄晓峰,杨家骥.细胞超微结构与超微结构病理基础[M].第四军医大学出版社,2004年12月第1版:70.
    [29]Wille KH,Winkler F.Prenatal development of the lamina epithelialis in the phase of vacuolization of villous epithelial cells-Investigations on the intestines of cattle[J].Anat Histol Embryol,1998;27(6):365-73.
    [30]Culver GM,Noller HF.Directed hydroxyl radical probing of 16S ribosomal RNA in ribosomes containing Fe(II) tethered to ribosomal protein S20[J].RNA,1998;4(12):1471-80.
    [31]Carl J.Weitamann,Philip R.Cunningham,Delvin Nurse,et al.Chemical evidence for domain assembly of the Esdherichia coli 30S ribosome[J].The FASEB Journal,1993;7:177-180.
    [32]Ryd(?)n-Aulin M,Shaoping Z,Kylsten P,et al.Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20[J].Mol Microbiol,1993;7(6):983-92.
    [33]Li L,Li J,Rao JN,et al.Inhibition of polyamine synthesis induces p53 gene expression but not apoptosis[J].Am J Physiol,1999;276(4 Pt 1):C946-54.
    [34]Panagiotidis CA,Huang SC,Canellakis ES.Relationship of the expression of the S20 and L34 ribosomal proteins to polyamine biosynthesis in Escherichia coli[J].Int J Biochem Cell Biol,1995;27(2):157-68.
    [35]Brown PO,Botstein D.Exploring the new world of the genome with DNA microarrays[J].NatGenet,1999;21(1):133-37.
    [36]Volarevic S,Stewart MJ,Ledermann B,et al.Proliferation,but not growth,blocked by conditional deletion of 40S ribosomal protein S6[J].Science,2000;288(5473):2045-7.
    [37]Perry R P.The architecture of mammalian ribosomal protein promoters[J].BMC Evol Biol,2005;5:15.
    [38]Vaarala M.H,Porvari K.S,Kyllonen A.P,et al.Several genes encoding ribosomal proteins are overexpressed in prostate-cancer cell lines:confirmation of L7a and L37 overexpression in prostate-cancer tissue samples[J].Int J Cancer,1998;78(1):27-32.
    [39]Jang C.Y,Lee J.Y,Kim J.RpS3,a DNA repair endonuclease and ribosomal protein,is involved in apoptosis[J].FEBS Lett,2004;560:81-85.
    [40]Marygold S.J,Coelho CM,Leevers S.J.Genetic analysis of RpL38 and RpL5,two minute genes located in the centric heterochromatin of chromosome 2 of Drosophila melanogaster[J].Genetics,2005;169:683-695.
    [41]Goldstone SD,Lavin MF.Isolation of a cDNA clone,encoding the ribosomal protein S20,downregulated during the onset of apoptosis in a human leukaemic cell line[J].Biochem Biophys Res Commun,1993;196(2):619-623.