CCL21/CCR7在结肠癌侵袭与转移过程中生物学意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分结肠癌中CCR7、MMP-9的表达及其临床意义
     目的:检测趋化因子受体CCR7(C-C chemokine receptor 7)、金属基质蛋白酶-9(matrix metalloproteinases,MMP-9)在结肠癌组织中的表达,并探讨其与临床病理特征的关系;分析4株结肠癌细胞中CCR7的表达,为相关体外实验提供基础。
     方法:免疫组织化学链霉亲和素-生物素-过氧化物酶复合物法(streptavidin-biotinperoxidase complex,SABC)检测65例结肠癌根治术后组织标本中CCR7、MMP-9的表达,结合临床病理资料进行回顾分析;RT-PCR和Western blot检测结肠癌细胞株SW480、LoVo、HT-29、Caco-2中CCR7 mRNA及蛋白的表达水平。
     结果:结肠癌组织中CCR7的表达率为63.1%(41/65),MMP-9的表达率为75.4%(49/65);CCR7和MMP-9的表达与结肠癌的浸润深度、淋巴结转移相关(P<0.05),而与患者年龄、性别、肿瘤部位及大小无关(P>0.05)。CCR7(+)和CCR7(-)结肠癌组织中MMP-9的表达率分别为90.2%(37/41)和50.0%(12/24);MMP-9(+)和MMP-9(-)结肠癌组织中CCR7的表达率分别为85.5%(37/49)和25.0%(4/16),两者的表达呈相关性(P<0.05)。RT-PCR与Western blot结果显示,CCR7 mRNA和蛋白在4株结肠癌细胞中均有表达,以SW480中表达最强,LoVo、HT-29次之,Caco-2表达量最弱。
     结论:结肠癌中CCR7、MMP-9蛋白表达与结肠癌淋巴结转移密切有关。结肠癌细胞株SW480可作为CCR7相关体外实验的研究对象。
     第二部分CCR7-shRNA表达载体的构建及对SW480细胞的沉默效应
     目的:设计并构建靶向CCR7基因短发夹RNA(short hairpin RNA,shRNA)真核表达质粒,并检测其对人结肠癌SW480细胞中CCR7表达的干扰效果。
     方法:以CCR7为靶基因设计具有短发夹结构的模板寡核苷酸,退火形成互补双链结构,再克隆至pGC-silencer-CRM30载体,构建的3条重组shRNA真核表达质粒分别命名为pGC-silencer-CRM30_CCR7A、_CCR7B和_CCR7C。采用测序法鉴定寡核苷酸序列。将构建好的3条shRNA真核表达质粒转染人结肠癌SW480细胞,荧光显微镜观察转染效果,RT-PCR法检测CCR7 mRNA干扰效果,优化转染条件,以实现最佳干扰效果;选取干扰效果最佳的1条shRNA真核表达质粒转染SW480细胞,并通过G418筛选稳定表达CCR7-shRNA的细胞株。
     结果:重组质粒测序结果与Genebank中的CCR7 cDNA序列相符,转染SW480细胞后,荧光显微镜下可观察到绿色荧光蛋白;RT-PCR结果显示,pGC-silencer-CRM30_CCR7 C干扰效果最强。将pGC-silencer-CRM30_CCR7C转染SW480细胞,并通过G418筛选稳定表达CCR7-shRNA的细胞株,命名为CCR7-shRNA SW480细胞;RT-PCR及Westen blot结果显示,CCR7表达被沉默。
     结论:靶向CCR7基因shRNA表达载体构建无误,并获得稳定表达CCR7-shRNA的细胞株;为进一步探讨趋化因子受体CCR7在胃肠道恶性肿瘤生物学行为中的作用奠定了基础。
     第三部分CCL21/CCR7在人结肠癌SW480细胞体外侵袭中的作用研究
     目的:研究趋化因子CCL21及其受体CCR7对人结肠癌SW480细胞体外侵袭能力的影响,并探讨其作用机制。
     方法:不同浓度的CCL21刺激亲本SW480细胞、shRNA SW480细胞及CCR7-shRNA SW480细胞,划痕实验和Transwell侵袭小室实验检测SW480细胞侵袭能力变化,逆转录-聚合酶链反应(RT-PCR)检测SW480细胞中Snail mRNA的表达,免疫印迹(Western Blot)法检测金属基质蛋白酶-9(MMP-9)和E-钙黏蛋白(E-cadherin)的表达。
     结果:CCL21促进亲本SW480细胞向划痕处爬行的迁移;10 ng/ml组(76±6)和100ng/ml组(113±7)中穿膜细胞数显著多于空白对照组(48±4)(P<0.05)。CCL21刺激亲本SW480细胞,Snail mRNA的表达增强,E-钙黏蛋白表达减弱,MMP-9的表达增强,与空白对照组相比,均有差异有统计学意义(P<0.05)。CCL21对shRNA SW480细胞的影响与对亲本SW480细胞的影响基本相似。CCR7-shRNA可以阻断CCL21对SW480细胞的各项刺激效应。
     结论:CCL21/CCR7相互作用,可通过促进Snail mRNA和MMP-9蛋白表达,降低E-钙黏蛋白水平,以增强SW480细胞的侵袭能力。
     第四部分CCL21/CCR7在结肠癌SW480细胞增殖及凋亡中的作用研究
     目的:探讨趋化因子CCL21及其受体CCR7对人结肠癌SW480增殖及凋亡的影响,并探讨及其作用机制。
     方法:绘制亲本SW480和CCR7-shRNA SW480的生长曲线;流式细胞仪检测亲本SW480和CCR7-shRNA SW480的细胞周期。CCL21预处理的SW480细胞在含足叶乙甙(VP-16)的体系中培养,MTT法检测细胞增殖活力,流式细胞术和Hoechst 33258染色检测细胞凋亡;免疫印迹检测凋亡相关基因Bcl-2/Bax的表达。
     结果:细胞生长曲线图显示,CCR7-shRNASW480细胞的生长特性无明显变化;与亲本SW480细胞相比,CCR7--shRNASW480细胞周期未发生变化。CCL21单独作用不能促进SW480细胞增殖;VP-16组中SW480细胞的增殖抑制率为68.3%,CCL21预处理增强SW480细胞活力,CCL21(100ng/mL)中抑制率降至47.4%;VP-16组与CCL21(100ng/mL)组中凋亡率分别为(65.2±5.2)%和(48.7±3.1)%,差异有统计学意义(P<0.05)。CCL21作用后,SW480细胞中Bcl-2表达升高,Bax表达降低,与空白对照组相比,差异有统计学意义(P<0.05),CCR7-shRNA可以阻断此效应。
     结论:CCL21/CCR7增强人结肠癌SW480细胞抗凋亡能力,提高其在非最适微环境中的存活能力。
PartⅠ:Expression of CCR7 and MMP-9 in Colorectal Carcinomaand its Clinical Significance
     Objective:To investigate the expressions of C-C chemokine receptor(CCR7)andmatrix metalloproteinases-9(MMP-9),to explore their correlation to clinical pathologicalfeatures of colorectal carcinoma,and the relationship between expressions of CCR7 andMMP-9.
     Methods:The expressions of CCR7 and MMP-9 proteins in 65 cases of colorectalcarcinoma were detected by SABC immunohistochemistry,the expressions of CCR7 in 4strains of colorectal carcinoma cell line examined by RT-PCR and Western blot.
     Results:41 of the 65 colorectal carcinoma specimens(63.1%)were positive in CCR7,the expression of CCR7 was correlated with invasion depth and lymph node metastasis ofcolorectal carcinoma(P<0.05).MMP-9 expression was detected in 75.4%(49/65)ofcolorectal carcinoma specimens,the expression of MMP-9 was assiociated with invasiondepth and lymph node metastasis of colorectal carcinoma(P<0.05).Significant relevancewas found between the expression of MMP-9 and CCR7(P<0.05).
     Conclusion:The expression of the chemokine receptor CCR7 and MMP-9 incolorectal carcinoma tissues may be associated with its progression and metastasis.Molecular targets of CCR7 and MMP-9 may also be important factors in the metastasis ofcolorectal carcinoma.
     PartⅡ:Construction and Identification of pGC-silencer-CRM30CCR7 short hairpin RNA Expression Vectors
     Objective:To construct CCR7 shRNA eukaryotic expression vectors to transfect intoSW480 cells in order to further study the silencing effects of the vector on the targetinggene CCR7.
     Methods:The shRNA oligonucleotides targeting for CCR7 gene were synthesized andcloned into pGC-silencer-CRM30 to generate shRNA eukaryotic expression vectors.Therecombinants were named pGC-silencer-CRM30_CCR7A,_CCR7B and _CCR7C.shRNAexpression plasmids were identificated by sequencing.The eukaryotic expression vectorswere transfected into SW480 cells.The green fluorescent protein(GFP)was detected byfluorescence microscope,and the silencing effects of the recombinant vectors weredetermined by RT-PCR.Procedures were optimized to maximize the silencing effect.Two-weeks after addition of G-418,clones stablly expressing pGC-silencer-CRM30_CCR7C were individually selected and expanded.
     Results:The recombinant sequence identified by sequencing was the same as thetargeting one.In SW480 cells transfected with the recombinant vectors,the expression ofgreen fluorescent protein(GFP)was detected,the silencing effect of pGC-silencer-CRM30_CCR7C was more evident than other recombinant vectors.After screening withG418,CCR7-silencing stable SW480 cells were obtained,and named CCR7-shRNASW480.
     Conclusion:shRNA recombinant was established successfully by RNAi techniqueand transfected into SW480 cells.The expression of CCR7 was completely knocked downin SW480 cells.
     PartⅢ:Effect of CCL21/CCR7 on Invasion ofColorectal Carcinoma cell line SW480
     Objective:To investigate the role of CCL21/CCR7 in invasion of colorectalcarcinoma cell line SW480.
     Methods:parental SW480 and CCR7-shRNA cell SW480 were exposed to varyingconcentrations of CCL21(10,100 ng/ml)for 48 h.The invasive ability was detected byWound healing assay and Transwell assay,the expression of Snail mRNA was evaluated byRT-PCR,the expressions of MMP-9 and E-cadherin were determined by Western Blot.
     Results:CCL21 drove more parental SW480 cell migrated into the gap than controlgroup at same time-points after inducing the lesion.The counts of parental SW480penetrating through membrane in 100ng/ml group were 113±7,significantly more than48±4 in control group(P<0.05).The expression of MMP-9 in 100ng/ml group was0.83±0.02,significantly higher than 0.38±0.01 in control group(P<0.05),the expression ofE-cadherin was significantly lowered after exposure to CCL21(P<0.05),the expression ofSnail mRNA was significantly up-regulated(P<0.05);these functions could be blocked bytransfecting the CCR-shRNA.
     Conclusion:CCL21 increased the invasive ability in SW480 cells,induced theMMP-9 expression and activity,and enhanced the survival capacity of SW480 cells.
     PartⅣ:Effects of CCL21/CCR7 on the Survival andApoptosis of Colorectal Carcinoma line SW480
     Objective:To investigate the role of CCL21/CCR7 in survival of colon cancer cellline SW480 at suboptimal circumstance and explore the mechanism.
     Methods:The growth curve of CCR7-shRNA SW480 was drwaed by using MTTmethod,the cell cycle was detected by flow cytometry.Parental SW480 cells werepre-incubated with CCL21 for 2h before exposure to VP-16(20 ng/mL),the cellproliferation was detected by MTT assay,cell apoptosis by flow cytometry and Hoechst33258 staining;the expression of Bcl-2/Bax was examined by Western blot.
     Results:CCL21 alone did not promote the proliferation,but pre-incubation withCCL21 confer SW480 resistance to death induced by VP-16,inhibition rate reduced from68.3% to 47.4% with treatment of 100ng/mL CCL21;consistently,apoptosis decreasedfrom 65.2% to 48.7% after exposure to 100ng/ml CCL21.The expression of Bcl-2 wassignificantly elevated,and the expression of Bax was significantly decreased with treatmentwith CCL21,the effect was blocked by Transfecting SW480 cell with CCR-shRNA.
     Conclusion:CCL21 enhanced the invasive ability in SW480 cells,induced MMP-9expression,and promoted the survival of SW480 cells under the suboptimal circumstance.
引文
1. Nicolson GL. Paracrine and autocrine growth mechanisms in tumor metastasis to specific sites with particular emphasis on brain and lung metastasis [J]. Cancer Metastasis Rev. 1993; 12(3-4):325-343.
    2. Wang JM, Deng X, Gong W, et al. Chemokines and their role in tumor growth and metastasis[J]. J Immunol Methods. 1998; 220(1-2):1-17.
    3. Muller B, Homey H, Soto N, et al., Involvement of chemokine receptors in breast cancer metastasis[J]. Nature. 2001; 410 (6824):50-56.
    4. Stein JV, Soriano SF, Mrini C, et al. CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway [J]. Blood. 2003; 101(1):38-44.
    5. Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing [J]. Curr Opin Immunol. 2000; 12(3):336-341.
    6. Takanami. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis [J]. Int J Cancer. 2003; 105(2):186-189.
    7. Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma [J]. Clin Cancer Res. 2003; 9(9):3406-3412.
    8. Yan C, Zhu ZG, Yu YY, et al. Expression of vascular endothelial growth factor C and chemokine recrptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis [J]. World J Gastroenterol. 2000; 10(6):783-790.
    9. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma [J]. Cancer Res. 2002; 62(10): 2937-2941.
    10. Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7 [J]. Int J Cancer. 2005; 116(5): 726-733.
    11. Fidler IJ. Modulation of the organ microenvironment for the treatment of cancer metastasis (editorial) [J]. J Natl Cancer Inst. 1995; 87(21): 1588-1592.
    12. Kato M, Kitayama J, Kazama S, et al. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma [J]. Breast Cancer Res. 2003; 5(5):144-50.
    13. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer [J]. Cancer Res. 2002; 62(20):5930-8.
    14. Sun YX, Wang J, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo [J]. J Cell Biochem. 2003; 89(3):462-73.
    15. Guleng B, Tateishi K, Ohta M, et al. Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner [J]. Cancer Res. 2005; 65(13):5864-5871.
    16. Kim JW, Ferris RL, Whiteside TL. Chemokine C receptor 7 expression and protection of circulating CD8+ T lymphocytes from apoptosis [J]. Clin Cancer Res. 2005, 11(21):7901-7910.
    17. Sanchez-Sanchez N, Riol-Blanco L, et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells [J]. Blood. 2004;104(3):619-625.
    18. Wornle M, Schmid H, Merkle M, et al. Effects of chemokines on proliferation and apoptosis of human mesangial cells [J]. BMC Nephrol. 2004; 5:8.
    1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics 2002 [J]. CA Cancer J Clin. 2005; 55(2):74-108.
    2. Sung JJ, Lau JY, Goh KL, et al. Asia Pacific Working Group on Colorectal Cancer. Increasing incidence of colorectal cancer in Asia: implications for screening [J]. Lancet Oncol. 2005; 6(11):871-876.
    3. Muller B, Homey H, Soto N, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature. 2001; 410(6824):50-56.
    4. Stein JV, Soriano SF, Mrini C, et al. CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway [J]. Blood. 2003; 101(1):38-44.
    5. Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing [J]. Curr Opin Immunol. 2000; 12(3):336-341.
    6. Wiley HE, Gonza EB, Maki W, et al. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma [J]. J Natl Cancer Inst. 2001;93(21):1638-1643.
    7. Hiroya T, Akihide F, Maki T, et al. CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells [J]. Clin Cancer Res. 2004; 10(7):2351-2358.
    8. Takanami. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis [J]. Int J Cancer. 2003,105(2):186-189.
    9. Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma [J]. Clin Cancer Res. 2003; 9(9):3406-3412.
    10. Yan C, Zhu ZG, Yu YY, et al. Expression of vascular endothelial growth factor C and chemokine recrptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis [J]. World J Gastroenterol. 2000; 10(6):783-790.
    11. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma [J]. Cancer Res. 2002;62(10): 2937-2941.
    12. Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7 [J]. Int J Cancer. 2005; 116(5):726-733.
    13. Wilson JL, Burchell J, Grimshaw MJ. Endothelins induce CCR7 expression by breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1 [J]. Cancer Res. 2006; 66(24):11802-11807.
    14. Schmausser B, Endrich S, Brandlein S, et al. The chemokine receptor CCR7 is expressed on epithelium of non-inflamed gastric mucosa, Helicobacter pylori gastritis, gastric carcinoma and its precursor lesions and up-regulated by H. pylori [J]. Clin Exp Immunol. 2005; 139(2):323-327.
    15. Pan MR, Hou MF, Chang HC, et al. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells [J]. J Biol Chem. 2008; 283(17):11155-11163.
    16. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited [J]. Nat Rev Cancer. 2003; 3(6):453-458.
    17. Gupta GP, Massague J. Cancer metastasis: building a framework [J]. Cell. 2006;127(4):679-695.
    18. Liotta LA. An attractive force in metastasis [J]. Nature. 2001; 410(6824):24-25.
    19. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation [J]. Cell. 1991; 64(2):327-336.
    20. Johansson N, Ahonen M, Kahari VM. Matrix metalloproteinases in tumor invasion [J]. Cell Mol Life Sci. 2000; 57(1):5-15.
    21. Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences [J]. Curr Opin Cell Biol. 1998; 10(5): 602-608.
    22. Kahari VM, Saarialho-Kere U. Matrix metalloproteinases and their inhibitors in tumour growth and invasion [J]. Ann Med. 1999; 31(1):34-45.
    23. Sato H, Kida Y, Mai M, et al. Expression of genes encoding type IV collagen- degrading metalloproteinases and tissue inhibitors of metalloproteinases in various human tumor cells [J]. Oncogene. 1992; 7(1):77-83.
    24. Parsons SL, Watson SA, Collins HM, et al. Gelatinase (MMP-2 and -9) expression in gastrointestinal malignancy [J]. Br J Cancer. 1998; 78(11):1495-502.
    25. Bodey B, Bodey B Jr, Siegel SE, et al. Prognostic significance of matrix metalloproteinase expression in colorectal carcinomas. In Vivo. 2000; 14(5):659-666.
    26. Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer [J]. Cancer Metastasis Rev. 2004; 23(1-2):101-117.
    27. Zeng ZS, Cohen AM, Guillem JG. Loss of basement membrane type Ⅳ collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis [J]. Carcinogenesis. 1999; 20(5):749-755.
    1.Hannon GJ.RNA interference [J].Nature.2002; 418(6894):211-251.
    2.McManus MT,Sharp PA.Gene silencing in mammals by small interfering RNAs [J].Nat Rev Genet.2002; 3(10):737-747.
    3.Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].Nature.1998; 391(6669):806-811.
    4.翟荣林,王国斌,夏泽锋.c-myc靶向siRNA真核表达载体的构建和鉴定.天津医学.2005; 33(6):360-362.
    5.Fire A,Albertson D,Harrison S,et al.Production of antisense RNA leads to effective and specific inhibition of gene expression in C.elegans muscle[J].Development.1991;113(2):503-514.
    6.Tuschl T,Zamore P D,Lehmann R,et al.Targeted mRNA degradation by double-stranded RNA in vitro[J].Genes Dev.1999,13(24):3191-3197.
    7.Paddison P J,Caudy A A,Bernstein E,et al.Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells [J].Genes Dev.2002,16 (8):948-958.
    8.陈青,潘秋卫,蔡荣,钱程.RNA聚合酶Ⅱ启动子调控RNA干扰在肿瘤治疗中的应用前景.生物化学与生物物理进展.2007; 34(8):806-815.
    9.He L,Hannon GJ.MicroRNAs:small RNAs with a big role in gene regulation [J].Nat Rev Genet.2004; 5(7):522-531.
    10.孙蕾,吴雅臻,于雷,冯相伟.人血小板源性生长因子A基因发夹结构小干扰RNA真核表达载体的构建及鉴定.中国组织工程研究与临床康复.2007; 11 (46):9289-9292.
    11.Paddison PJ,Caudy AA,Berns tein E,et al.Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells [J].Genes Dev.2002; 16(8):948-958.
    12.Kretschmer-Kazemi Far R,Sczakiel G.The activity of siRNA in mammalian cells is related to structural target accessibility:a comparison with antisense oligonucleotides [J].Nucleic Acids Res.2003; 31(15):4417-4424.
    13.Bohula EA,Salisbury AJ,Sohail M,et al.The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript [J]. J Biol Chem. 2003; 278(18):15991-15997.
    14. Stein JV, Soriano SF, Mrini C, et al. CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway [J]. Blood. 2003, 101(1):38-44.
    15. Yan C, Zhu ZG, Yu YY, et al. Expression of vascular endothelial growth factor C and chemokine recrptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis[J]. World J Gastroenterol. 2000; 10 (6):783-790.
    16. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma [J]. Cancer Res. 2002;62(15): 2937-2941.
    17. Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7[J]. Int J Cancer. 2005; 116(5):726-733.
    18. Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells [J]. Mol Cell. 2002;9(6): 1327-1333.
    19. Chang K, Elledge SJ, Hannon GJ. Lessons from nature: microRNA-based shRNA libraries [J]. Nat Methods. 2006; 3 (9): 707-714.
    20. Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells [J]. RNA. 2003; 9(1):112-123.
    21. Stegmeier F, Hu G, Rickles RJ, et al. A lentiviral microRNA-based system for single-copy polymerase Ⅱ-regulated RNA interference in mammalian cells [J]. Proc Natl Acad Sci USA. 2005; 102(37):13212-13217.
    22. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ [J]. EMBO J. 2004; 23(20):4051-4060.
    1. Kashida H, Kudo SE. Early colorectal cancer: concept, diagnosis, and management [J]. Int J Clin Oncol. 2006; 11(1):1-8.
    2. Wang WS, Chen PM, Su Y. Colorectal carcinoma: from tumorigenesis to treatment [J]. Cell Mol Life Sci. 2006; 63(6): 663-671.
    3. Taylor I. Liver metastases from colorectal cancer: lessons from past and present clinical studies [J]. Br J Surg. 1996; 83(4):456-460.
    4. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited [J]. Nat Rev Cancer. 2003; 3(6):453-458.
    5. Hart IR, Fidler IJ. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma [J]. Cancer Res. 1980; 40(7):2281-2287.
    6. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor [J]. Science. 1997; 197(4306):893-895.
    7. Fidler IJ. Modulation of the organ microenvironment for the treatment of cancer metastasis (editorial) [J]. J Natl Cancer Inst. 1995; 87(21):1588-1592.
    8. Fidler IJ. Critical factors in the biology of human cancer metastasis: Twenty-eighth GHA Clowes Memorial Award Lecture [J]. Cancer Res. 1990; 50(19):6130-6138.
    9. Muller B, Homey H, Soto N, et al., Involvement of chemokine receptors in breast cancer metastasis[J]. Nature. 2001; 410(6824):50-56.
    10. Balkwill F. Cancer and the chemokine network [J]. Nat Rev Cancer. 2004; 4(7):540-550.
    11. Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis [J]. J Leukoc Biol. 2006; 79(4):639-651.
    12. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity [J]. Immunity. 2000; 12(2):121-127.
    13. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. ⅩⅫ. Nomenclature for chemokine receptors [J]. Pharmacol Rev. 2000; 52(1):145-176.
    14. Stein JV, Soriano SF, Mrini C, et al. CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway [J]. Blood. 2003; 101 (1):38-44.
    15. Yan C, Zhu ZG, Yu YY, et al. Expression of vascular endothelial growth factor C and chemokine recrptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis [J]. World J Gastroenterol. 2000; 10(6):783-790.
    16. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma [J]. Cancer Res. 2002;62(15): 2937-2941.
    17. Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7[J]. Int J Cancer. 2005; 116(5):726-733.
    18. Birkedal-Hansen, H. Proteolytic remodeling of extracellular matrix [J]. Cur Opin Cell Biol. 1995; 7(5):728-735.
    19. Mysliwiec AG, Ornstein DL. Matrix metalloproteinases in colorectal cancer [J]. Clin Colorectal Cancer. 2002;1(4):208-219.
    20. Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer [J]. Cancer Metastasis Rev. 2004; 23(1-2):101-117.
    21. Wagenaar-Miller RA, Gorden L, Matrisian LM. Matrix metalloproteinases in colorectal cancer: is it worth talking about? [J] Cancer Metastasis Rev. 2004; 23(1-2):119-35.
    22. Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12 [J]. Prostate. 2006; 66(1):32-48.
    23. Singh S, Singh UP, Grizzle WE, et al. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion[J]. Lab Invest. 2004;84(12):1666-76.
    24. Redondo-Mu(?)oz J, Jos(?) Terol M, Garc(?)a-Marco JA, et al. Matrix metalloproteinase-9 is up-regulated by CCL21/CCR7 interaction via extracellular signal-regulated kinase-1/2 signaling and is involved in CCL21-driven B-cell chronic lymphocytic leukemia cell invasion and migration [J]. Blood. 2008; 111(1):383-6.
    25. Brand S, Dambacher J, Beigel F, et al. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation [J]. Exp Cell Res. 2005, 310(1):117-130.
    26. Gofuku J, Shiozaki H, Tsujinaka T, et al. Expression of E-cadherin and alpha-catenin in patients with colorectal carcinoma [J]. Am J Clin Pathol. 1999; 111(1): 29-37.
    27. Ikeguchi M, Makino M, Kaibara N. Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma [J]. J Surg Oncol. 2001;77(3): 201-207.
    28. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness [J]. Biochim Biophys Acta. 1994;1198(1): 11-26.
    29. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression [J]. Nat Cell Biol. 2000; 2(2):76-83.
    30. Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer[J]. Am J Pathol. 2002; 161(5):1881-1891.
    31. P(?)lmer HG, Larriba MJ, Garc(?)a JM, et al. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer [J]. Nat Med. 2004; 10(9):917-919.
    32. Batlle E, Sancho E, Franc(?) C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells [J]. Nat Cell Biol. 2000; 2(2):84-9.
    1. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics 2002 [J]. CA Cancer J Clin. 2004; 54:8-29.
    2. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer [J]. N Engl J Med. 2005; 352(5):476-87.
    3. Yeatman TJ, Nicholson GL. Molecular basis of tumor progression: mechanisms of organ-specific tumor metastasis [J]. Semin Surg Oncol. 1993; 9(3):256-263.
    4. Radinsky R. Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment [J]. Cancer Metastasis Rev. 1995; 14(4):323-338.
    5. Fidler IJ. Critical factors in the biology of human cancer metastasis: Twenty-eighth GHA Clowes Memorial Award Lecture [J]. Cancer Res. 1990; 50(19):6130-6138.
    6. Fidler IJ. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis [J]. Surg Oncol Clin N Am. 2001; 10(2): 257- 269.
    7. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity [J]. Immunity. 2000; 12(2):121-7.
    8. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites [J]. Nat Rev Cancer. 2002; 2(8):563-72.
    9. Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. [J] Am J Pathol. 1998; 153(3):865-873.
    10. Gutman M, Singh RK, Price JE, Fan D, Fidler IJ. Accelerated growth of human colon cancer cells in nude mice undergoing liver regeneration [J]. Invasion Metastasis. 1994-1995; 14(1-6):362-371.
    11. Markowitz SD, Molkentin K, Gerbic C, et al. Growth stimulation by coexpression of transforming growth factor-a and epidermal growth factor receptor in normal and adenomatous human colon epithelium [J]. J Clin Invest. 1990; 86(1):356-362.
    12. van Dale P, Galand P. Effect of partial hepatectomy on experimental liver invasion by intraportally injected colon carcinoma cells in rats[J]. Invasion Metastasis. 1988; 8(4):217-227.
    13. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer [J]. Cancer Res. 2002; 62(20):5930-8.
    14. Sun YX, Wang J, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo [J]. J Cell Biochem. 2003; 89(3):462-73.
    15. Kato M, Kitayama J, Kazama S, et al. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma [J]. Breast Cancer Res. 2003; 5(5):R144-R150.
    16. Zhou Y, Larsen PH, Hao C, et al. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival [J]. J Biol Chem. 2002; 277(51):49481-7.
    17. Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor lalpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt [J]. Cancer Res. 2003; 63(8):1969-1974.
    18. Ticchioni M, Essafi M, Jeandel PY, et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a[J]. Oncogene. 2007; 26(50):7081-91.
    19. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases [J]. Cancer Res. 2003;63(13):3833-9.
    20. Suzuki Y, Rahman M, Mitsuya H. Diverse transcriptional response of CD4 (+) T cells to stromal cell-derived factor (SDF)-1: cell survival promotion and priming effects of SDF-1 on CD4 (+) T cells [J]. J Immunol. 2001; 167(6):3064-3073.
    21. Watson DS, Brotherick I, Shenton BK, et al. Growth dysregulation and p53 accumulation in human primary colorectal cancer[J]. Br J Cancer. 1999;80(7):1062-1068.
    22. Kim JW, Ferris RL, Whiteside TL. Chemokine C receptor 7 expression and protection of circulating CD8+ T lymphocytes from apoptosis [J]. Clin Cancer Res. 2005; 11(21):7901-7910.
    23. Sanchez-Sanchez N, Riol-Blanco L, et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells [J]. Blood. 2004; 104(3):619-625.
    24. W(?)rnle M, Schmid H, Merkle M, et al. Effects of chemokines on proliferation and apoptosis of human mesangial cells [J]. BMC Nephrol. 2004; 5:8. 25. Kanzler S, Galle PR. Apoptosis and the liver. Semin Cancer Biol. 2000; 10(3): 173-84.
    26. Park YN, Chae KJ, Kim YB, et al. Apoptosis and proliferation in hepatocarcinogenesis related to cirrhosis [J]. Cancer. 2001; 92(11): 2733-2738.
    27. Bedi A, Pasricha PJ, Akhtar AJ, et al. Inhibition of apoptosis during development of colorectal cancer [J]. Cancer Res. 1995; 55(9):1811-1816.
    28. Gryfe R, Swallow C, Bapat B, et al. Molecular biology of colorectal cancer[J]. Curr Probl Cancer. 1997; 21(5): 233-300.
    29. Hashimoto I, Koizumi K, Tatematsu M, et al. Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells [J]. Eur J Cancer. 2008; 44(7):1022-9.
    30. Bronner MP, Culin C, Reed JC, et al. The bcl-2 proto-oncogene and the gastrointestinal epithelial tumor progression model [J]. Am J Pathol. 1995; 146(1): 20-26.
    31. Sinicrope FA, Ruan SB, Cleary KR, et al. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis [J]. Cancer Res. 1995; 55(2): 237-241.
    32. Hockenbery D, Nunez G, Milliman C, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death [J]. Nature. 1990; 348(6299): 334-336.
    33. Pidgeon GP, Barr MP, Harmey JH, et al. Vascular endothelial growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells[J]. Br J Cancer. 2001; 85(2): 273-278.
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70.
    2. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;1:571-3.
    3. Fidler IJ. Critical factors in the biology of human cancer metastasis: Twenty-Eighth GHA Clowes Memorial Lecture. Cancer Res. 1990; 50(19):6130-6138.
    4. Talmadge JE, Fidler IJ. Cancer metastasis is selective or random depending on the parent tumor population. Nature. 1982; 297(5867):593-4.
    5. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991; 64(2):327-336.
    6. Nicolson GL. Paracrine and autocrine growth mechanisms in tumor metastasis to specific sites with particular emphasis on brain and lung metastasis [J]. Cancer Metastasis Rev. 1993; 12(3-4):325-343.
    7. Wang JM, Deng X, Gong W, et al. Chemokines and their role in tumor growth and metastasis[J]. J Immunol Methods. 1998; 220(1-2):1-17.
    8. Muller B, Homey H, Soto N, et al., Involvement of chemokine receptors in breast cancer metastasis[J]. Nature. 2001; 410 (6824):50-56.
    9. Murphy PM, Baggiolini M, Charo IF. International union of pharmacology. ⅩⅫ. Nomenclature for chemokine receptors. Pharmacol Rev. 2000; 52(1):145-176.
    10. Locati M, Otero K, Schioppa T, et al. The chemokine system: tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy. 2002;57(11):972-982.
    11. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000; 12(2): 121-127.
    12. Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol. 2000; 18:593-620.
    13. Cyster JG. Leukocyte migration: scent of the T zone. Curr Biol. 2000; 10(1):R30-R33.
    14. Salvucci O, Bouchard A, Baccarelli A, et al. The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat. 2006; 97(3): 275-283.
    15. Kato M, Kitayama J, Kazama S, et al. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res. 2003; 5(5):144-150.
    16. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 2002; 62(20):5930-5938.
    17. Sun YX, Wang J, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 2003; 89(3):462-473.
    18. Uchida D, Begum NM, Almofti A, et al. Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp Cell Res. 2003; 290(2):289-302.
    19. Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol. 2005; 23(12):2744-2753.
    20. Kim J, Mori T, Chen SL, Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg. 2006; 244(1):113-20.
    21. Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005; 11(5):1743-50.
    22. Hao L, Zhang C, Qiu Y, et al. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Lett. 2007;253(1):34-42.
    23. Takanami. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer. 2003; 105 (2):186-189.
    24. Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res. 2003;9 (9):3406-3412.
    25. Yan C, Zhu ZG, Yu YY, et al. Expression of vascular endothelial growth factor C and chemokine recrptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol. 2000; 10(6):783-790.
    26. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res. 2002; 62(10): 2937-2941.
    27. Takeuchi H, Fujimoto A, Tanaka M, et al. CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res. 2004; 10 (7):2351-2358.
    28. Wiley HE, Gonza EB, Maki W, et al. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst. 2001; 93 (21):1638-1643.
    29. Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer. 2005; 116(5):726-733.
    30. Kimsey TF, Campbell AS, Albo D, et al. Co-localization of macrophage inflammatory protein-3alpha (Mip-3alpha) and its receptor, CCR6, promotes pancreatic cancer cell invasion. Cancer J. 2004; 10(6):374-380.
    31. Uchida H, Iwashita Y, Sasaki A, et al. Chemokine receptor CCR6 as a prognostic factor after hepatic resection for hepatocellular carcinoma. J Gastroen Hepatol. 2006;21(1 Pt 1):161-168.
    32. Rubie C, Oliveira V, Kempf K, et al. Involvement of chemokine receptor CCR6 in colorectal cancer metastasis. Tumor Biol. 2006; 27(3):166-174.
    33. Ghadjar P, Coupland SE, Na I-K, et al. Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. J Clin Oncol. 2006; 24(12):1910-1916.
    34. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003; 3(6):453-458.
    35. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006; 127(4):679-695.
    36. Liotta LA. An attractive force in metastasis. Nature. 2001; 410(6824):24-25.
    37. Byers HR, Etoh T, Vink J, Franklin N, Gattoni-Celli S, Mihm MC Jr. Actin organization and cell migration of melanoma cells relate to differential expression of integrins and actin-associated proteins. J Dermatol. 1992; 19(11):847-852.
    38. Birkedal-Hansen, H. Proteolytic remodeling of extracellular matrix. Cur Opin Cell Biol. 1995; 7(5):728-735.
    39. Mysliwiec AG, Ornstein DL. Matrix metalloproteinases in colorectal cancer. Clin Colorectal Cancer. 2002; 1(4):208-219.
    40. Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004; 23(1-2):101-117.
    41. Wagenaar-Miller RA, Gorden L, Matrisian LM. Matrix metalloproteinases in colorectal cancer: is it worth talking about? Cancer Metastasis Rev. 2004; 23(1-2):119-135.
    42. Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate. 2006; 66(1):32-48.
    43. Singh S, Singh UP, Grizzle WE, et al. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest. 2004;84(12):1666-1676.
    44. Redondo-Munoz J, Jose Terol M, Garcia-Marco JA, et al. Matrix metalloproteinase-9 is up-regulated by CCL21/CCR7 interaction via extracellular signal-regulated kinase-1/2 signaling and is involved in CCL21-driven B-cell chronic lymphocytic leukemia cell invasion and migration. Blood. 2008; 111(1):383-386.
    45. Brand S, Dambacher J, Beigel F, et al. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation [J]. Exp Cell Res. 2005, 310(1):117-130.
    46. Redondo-Mu(?)oz J, Escobar-D(?)az E, Samaniego R, et al. MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4betal or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood. 2006; 108(9):3143-3151.
    47. Jain RK. Barriers to drug delivery in solid tumors. Sci Am. 1994; 271(1):58-65.
    48. Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokinemediated angiogenesis. J Biol Chem. 1995; 270(45): 27348-27357.
    49. Belperio JA, Keane MP, Arenberg DA, et al. CXC chemokines in angiogenesis. J Leukoc Biol. 2000; 68(1):1-8.
    50. Strieter RM, Belperio JA, Burdick MD, et al. CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci. 2004; 1028: 351-360.
    51. Mirshahi F, Pourtau J, Li H, et al. SDF-1 Activity on Microvascular Endothelial Cells: Consequences on Angiogenesis in Vitro and in Vivo Models. Throm Res. 2000; 99(6):587-594.
    52. Branda S, Dambachera J, Beigel F, et al. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exper Cell Res, 2005; 310(1):117-130.
    53. Orimo A, Gupta PB, Sgroi DC, et al. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell. 2005; 121(3):335-348.
    54. Guleng B, Tateishi K, Ohta M, et al. Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res. 2005; 65(13):5864-5871.
    55. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2(8):563-572.
    56. Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998; 153(3):865-873.
    57. Gutman M, Singh RK, Price JE, Fan D, Fidler IJ. Accelerated growth of human colon cancer cells in nude mice undergoing liver regeneration. Invasion Metastasis. 1995;14(1-6):362-371.
    58. Markowitz SD, Molkentin K, Gerbic C, Jackson J, Stellato T, Willson JKV. Growth stimulation by coexpression of transforming growth factor-a and epidermal growth factor receptor in normal and adenomatous human colon epithelium. J Clin Invest. 1990; 86(1):356-362.
    59. Van Dale P, Galand P. Effect of partial hepatectomy on experimental liver invasion by intraportally injected colon carcinoma cells in rats. Invasion Metastasis, 1988; 8(4):217-227.
    60. Nicolson GL, Dulski KM. Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int J Cancer. 1986; 38(2):289-294.
    61. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res. 2003;63(13):3833-3839.
    62. Wilson JL, Burchell J, Grimshaw MJ. Endothelins induce CCR7 expression by breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1. Cancer Res. 2006;66(24):11802-11807.
    63. Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by vonHippel-Lindau tumor suppressor pVHL. Nature. 2003; 425 (6955):307-311.
    64. Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 2003; 198(9):1391-1402.
    65. Li YM, Pan Y, Wei Y, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004; 6(5):459-469.
    66. Mehta SA, Christopherson KW, Bhat-Nakshatri P, et al. Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells:implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene. 2007; 26(23):3329-3337.
    67. Schmausser B, Endrich S, Brandlein S, et al. The chemokine receptor CCR7 is expressed on epithelium of non-inflamed gastric mucosa, Helicobacter pylori gastritis, gastric carcinoma and its precursor lesions and up-regulated by H. pylori. Clin Exp Immunol. 2005; 139(2):323-327.
    68. Pan MR, Hou MF, Chang HC, Hung WC. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J Biol Chem. 2008; 283(17): 11155-11163.