智能交通系统中的时空数据分析关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济社会的快速发展,城市规模不断扩大,城市交通面临着巨大的压力。通过智能交通系统建设,提高交通管理与服务的信息化水平和决策支持能力,是减少交通事故,解决交通拥堵,促进城市环保,提高人民生活质量的根本途径。纵观国内外智能交通系统的建设情况,道路、信号灯、摄像头等交通基础设施不断完善,传感、无线通信、智能终端、互联网、云计算等信息技术得到综合利用,交通信息平台中积累了越来越多的交通数据,交通实时监控、定位导航、城市应急管理等新型应用不断涌现。智能交通产业迎来了极大的发展机遇,并且在较长一段时间内都将继续呈现高速增长的态势。
     对具有时空特征的交通数据进行智能分析,可获取丰富的、有价值的知识,如时空分布、时空关联规则、时空变化趋势等,这些知识能够为交通调度、路径规划、目标跟踪等提供决策支持。本文面向动态交通流和交通路网拥堵状态分析需求,分析时空数据组织和管理策略,并基于运动轨迹、交通流量、道路拥堵状态等不同数据元素研究时空相似性、时空相关性和时空关联性的度量和表达方法,在此基础上进行时空聚类、时空预测、关联规则挖掘、异常检测等操作,并应用于交通热点、路网拥堵趋势、短时交通流量预测、异常轨迹检测等分析。
     本文面向动态交通数据分析需求,主要研究工作包括以下几个方面:
     (1)研究多粒度动态交通网络的数据组织与管理策略,适应不同用户兴趣、不同时空范围的动态交通数据分析需求。(第2章)
     基于“多粒度动态交通数据集成管理”的核心思想,突破传统空间数据库管理动态交通信息的瓶颈,解决交通数据在多时空粒度下统一组织与有效管理的难题,在减少数据冗余的同时,支持多时空粒度的数据访问和分级存储,增强系统普适性。同时,引入流数据管理技术,在提供空间分析的同时,支持静态数据查询、连续查询和混合查询,提高系统实时分析能力。
     (2)以位置序列(轨迹)为数据元素,综合考虑轨迹的时空特征和语义,研究时空相似性分析方法,并与轨迹聚类相结合,分析用户移动模式及其时空分布状态。(第3章)
     该方法首先依据路网约束,利用道路交叉点、停留点等语义提取轨迹特征点并进行轨迹划分,从而大大减小后续处理的数据量。之后,分别计算轨迹间的时间相似度和空间相似度并进行归一化操作,以此计算轨迹间的时空距离,并进行轨迹聚类。试验表明,聚类所得的轨迹簇能够直观、准确地反映用户运动模式、热点路径等信息。
     (3)以流量序列为数据元素,综合考虑序列间的时空特征和语义,研究时空相关性分析方法,并结合预测模型预测区域内的短时交通流量。(第4章)
     交通流量序列的产生与路网的空间可达性密切相关,而且空间相关的道路之间其流量序列必然存在着时间差异关系。为此,引入了空间权重矩阵与时间延迟以表达各流量序列间的时空相关性,并以时空相关系数为依据,快速选取与预测点相关的预测因子,最后采用支持向量机进行短时交通流量预测。试验表明,该方法具有较高的短时交通流量预测精度。
     (4)以拥堵状态为数据元素,综合拥堵状态间的时空特征和语义,研究时空关联性分析和表达方法,并结合时空关联规则挖掘分析交通拥堵的趋势和成因。(第5章)
     同时考虑时间和空间约束,能够在分析过程中及时过滤时空不相关的数据,提高时空关联规则的获取效率。基于这一思路,在频繁项集的产生过程中同时分析数据的时间有效性和空间关联性,首先对时空数据进行时间段划分和空间关联性分析并形成事务表,然后对空间关联的项集进行连接并产生时空关联规则。实验表明,该方法具有较高的处理性能,可以利用路段间拥堵状态的时空关联规则进行交通拥堵趋势分析与预测。
     (5)以实时运动轨迹和预定义路线为数据元素,研究动态时空序列距离计算方法,并应用于异常轨迹实时检测。(第6章)
     在公共交通、物流运输等应用领域,移动对象的运动轨迹受路网约束且大多被预先设定,偏离预先设定的正常轨迹可能预示着某种异常。异常轨迹实时检测方法在事先设定的检测时间内,采用流数据连续查询模式获取用户的实际轨迹,并动态调整参与计算的正常轨迹段,最后利用改进的有向Hausdorff距离反映实际轨迹的偏离程度。实验表明,该方法能够及时有效地检测异常。
     本文的主要贡献在于结合交通领域约束,对时空数据集成管理、时空语义扩展、时空相似性分析、时空相关性分析、时空关联性分析等关键技术进行研究和应用实践,对提升智能交通管理和出行者服务水平具有一定的借鉴意义和参考价值。
With the rapid development of economy and society, the city scale continues to expand while transportation is under great stress. Constructing the intelligent transportation system is an effective solution to improve the level of transportation management and decision support. It can alleviate the traffic accident and congestion influence, and improve the urban environment and living quality of residents. Throughout the construction of intelligent transportation system in the world, the transportation infrastructure such as road, signal lamp and camera are developed and progressed greatly. With the development of information technologies such as sensor, wireless communication, smart device, Internet and cloud computing, massive traffic data are collected. Many applications such as real-time monitor, navigation and urban emergency management are emerging, which makes a new opportunity and challenge for intelligent transportation industry.
     There are many valuable spatio-temporal knowledge are implied in massive traffic data, such as spatio-temporal distribution, association rule, variation trend, etc. Spatio-temporal knowledge is useful for decision supporting in traffic scheduling, road planning, target tracking, etc. Facing to the requirement of dynamic analysis of traffic data and status, this dissertation studies multi-granularity and dynamic model of transportation network, and analyzes the spatio-temporal data organization and management strategy. Measure and expression methods of similarity, correlation and association are studied from different data elements such as trajectory, traffic flow and congestion status. These methods are applied for analyzing hotspot distribution, congestion trend, short-time traffic forecasting and anomaly detection.
     Facing to the requirements of dynamic transportation analysis, the main research works of this dissertation are listed as follows.
     (1) The data organization and management strategy of multi-granularity and dynamic transportation network is studied. It adapts to the requirement of knowledge acquisition for different user interests and spatio-temporal area.(Chapter2)
     Based on the core idea of "integrated management of multi-granularity and dynamic transportation data", the spatio-temporal model breaks through the bottleneck of traditional spatial data management and provides a solution for dynamic transportation data organization and management. It reduces the data redundancy and supports multi-granularity data access and multi-level storage. It is useful for constructing a ubiquitous system. On the other hand, this model introduces the data stream technology to support the static, continuous and hybrid query. It helps to improve the capability of real-time processing.
     (2) Considering the trajectory data and combining with their spatio-temporal features and semantics, the spatio-temporal similarity measure method is studied. Trajectory clustering based on spatio-temporal similarity analysis can be used for mining user moving pattern and spatio-temporal distribution.(Chapter3)
     This method firstly extracts characteristic points according to the road constraints, such as crossings and stops, to partition the trajectories. This step sharply reduces the data size. Then, the temporal similarity and spatial similarity are measured separately. The spatio-temporal distance of trajectories is calculated after normalization and is applied for clustering. Experiment results show that this method gains good performance. The clusters reflect the knowledge of moving pattern, hot path, etc.
     (3) Considering the traffic flow data and combining with their spatio-temporal features and semantics, a spatio-temporal correlation analysis method is studied. It can be used for short-term traffic flow forecasting.(Chapter4)
     In this method, spatio-temporal correlation coefficient is defined firstly to reveal the relationship of different traffic flow series, a quick calculation method of spatio-temporal correlation coefficient is proposed after analyzing the corresponding properties. Secondly, a spatio-temporal analysis algorithm based on spatio-temporal correlation coefficient matrix is proposed to choose the proper predictor. At last, a forecasting model is presented based on support vector machine due to the nonlinear characteristics of traffic flow. Experiment results show that this method can gain higher prediction precision.
     (4) Considering the congestion states data and combining with their spatio-temporal features and semantics, the spatio-temporal association analysis and expression methods are proposed. It can be used for spatio-temporal association rule mining to analyze the congestion trend and reason.(Chapter5)
     This method considers the spatial and temporal constraints simultaneously, which filters irrelevant data in advance and improves the efficiency of spatio-temporal association rule discovering. Based on the idea, this method analyzes the time validity and spatial relativity simultaneously during the generation of frequency item sets. It classifies the time duration of spatio-temporal data and considers the spatial relationship firstly and generates the transaction table, then performs join operation on spatial-related item sets. Experiments illuminate that the algorithm is well performed. The algorithm is applied in intelligent transportation system to analyze the trend of traffic congestion by identifying spatio-temporal association between road segments.
     (5) Considering the real-time moving trajectory and predefined route, the dynamic distance calculation method of spatio-temporal sequence is studied. It can be integrated in real-time detection of trajectory anomaly.(Chapter6)
     In many fields such as public transportation and logistics service, the trajectories of moving objects are constrained by road network and mostly predefined. Deviating from the normal trajectory might imply some problems. During the detection period, partial sequence of the real trajectory is selected dynamically based on continuous query model of stream data, and the scope of normal trajectory is adjusted correspondingly. The improved Hausdorff Distance is used to reflect the degree of deviation finally. Experiments show that, comparing with the conventional map matching method, the proposed algorithm is more efficient for anomaly detection.
     The main contribution of this dissertation is the research and application of spatio-temporal data analysis methods with the domain constrains. The research results of key techniques such as spatio-temporal data integration and management, spatio-temporal semantic expansion, spatio-temporal similarity measure, spatio-temporal correlation measure and spatio-temporal association rule are useful for improving the management and service quality of intelligent transportation system.
引文
[1]王笑京.智能交通系统体系框架原理与应用[M],北京:中国铁道出版社,2004.
    [2]吴忠泽.迎接中国智能交通的新时代[J].科学,2010,62(1):3-6.
    [3]毕然,党梅梅.智能交通系统标准化现状及发展趋势[J].电信网技术,2011,4:44-47.
    [4]李贻斌.ITS智能车辆关键技术研究[D].天津大学博士学位论文,2009.
    [5]吴正升,胡艳,何志新.时空数据模型研究进展及其发展方向[J].测绘与空间地理信息,2009,32(6):15-21,24.
    [6]陈新保,SongnianLi,朱建军.时空数据模型的相关概念及分类[J].海洋测绘,2009,29(5):74-76,81.
    [7]薛存金,谢炯.时空数据模型的研究现状与展望[J].地理与地理信息科学,2010,26(1):1-6.
    [8]余志文.城市交通网络面向对象的时空数据模型研究[J].测绘科学,2002,27(4):31-34.
    [9]Guoyin Wang. Introduction to 3DM:Domain-Oriented Data-Driven Data Mining[C]. RSKT 2008,2008:25-26.
    [10]Guoyin Wang, Ying Xia. Domain-oriented Data-driven Data Mining with Application in GIS[C]. ASGIS2008,2008:1-4.
    [11]林广发,冯学智,江辉仙.时空数据模型建模方法研究[C].中国地理信息系统协会第八届年会论文集,2004:810-814.
    [12]张林,汤大权,张种.时空索引的演变与发展[J].计算机科学.2010,37(4):15-20.
    [13]王在涛.路网与动态交通信息一体化的导航时空数据库研究[J].田径职业大学学报,2010,19(3):86-90.
    [14]刘明皓.地理信息系统导论[M].重庆:重庆大学出版社,2010.
    [15]Long-Van Nguyen-Dinh, Walid G. Aref, Mohamed F. Mokbel. Spatio-Temporal Access Methods:Part2 (2003-2010)[J]. Data Engineering,2010,33(2):46-55.
    [16]丁治明,李南,余波.网络受限移动对象过去、现在及将来位置的索引[J].软件学报,2009,20(12):3193-204.
    [17]李子杰,郑诚.流数据和传统数据存储及管理方法比较研究[J].计算机技术与发展,2009,19(4):101-104.
    [18]冯卫兵,李战怀.流数据的连续查询优化技术[J].计算机应用研究,2008,25(1):131-133,199.
    [19]Xia Ying, Hong Mei Gan, Gyoung Bae Kim. Design and Implementation of Advanced Traffic Monitoring System Based on Integration of Data Stream Management System and Spatial DBMS[J]. Journal of Korea Spatial Information System Society,2009,11(2):162-169.
    [20]夏英,甘红梅.基于空间数据与流数据集成管理的交通实时监控系统设计与实现[J].数字通信,2009,36(1):65-68.
    [21]王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版社,2001.
    [22]范明,孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2006.
    [23]李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].北京:科学出版社,2006.
    [24]焦李成,刘芳,鍭水平,刘静,陈莉.智能数据挖掘与知识发现[M].西安:西安电子科技大学出版社,2006.
    [25]骆剑承,周成虎,粱怡,裴韬.时空数据智能化处理与分析的理论和方法探讨[J].中国图象图形学报:A辑,2001,6(9):836-841.
    [26]刘大有,胡鹤,王生生,谢琦.时空推理研究进展[J].软件学报,2004,15(8):1141-1149.
    [27]赵彬彬,李光强,邓敏.时空数据挖掘综述[J].测绘科学,2010,35(2):62-65.
    [28]Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, Dan Steinberg. Top 10 Algorithms in Data Mining[J]. Knowledge and Information Systems.2008,14(1):1-37.
    [29]Qiang Yang, Xindong Wu.10 Challenging Problems in Data Mining Research[J]. International Journal of Information Technology & Decision Making,2006,5(4): 597-604.
    [30]刘学军,徐鹏.交通地理信息系统[M].北京:科学出版社,2006.
    [31]符锌砂,郭云开.交通地理信息系统[M].北京:人民交通出版社,2007.
    [32]Zhiming Ding, Ralf Hartmut Guting. Managing Moving Objects on Dynamic Transportation Networks[C]. Proceedings of International Conference on Scientific and Statistical Database Management,2004:287-296.
    [33]李清泉,杨必胜,郑年波.时空一体化GIS-T数据模型与应用方法[J].武汉大学学报(信息科学版),2007,32(11):1034-1040.
    [34]丛新宇,虞慧群,范贵生.基于组合模型的交通流量预测方法[J].华东理工大学学报(自然科学版),2011,37(3):340-345.
    [35]杨胜,李莉,胡福乔,施鹏飞.基于决策树的城市短时交通流预测[J].计算机工程,2005,31(8):35-36.
    [36]王宏杰,林良明,徐大淦,颜国正.基于改进BP网交通流动态时序预测算法的研究[J].交通与计算机,2001,19(3):11-14.
    [37]张玉梅,曲仕茄,温凯歌.基于混沌和RBF神经网络的短时交通流量预测[J].系统工程,2007,25(11):26-30.
    [38]Zhanquan Sun, Yinglong Wang, Jingshan Pan. Short-term Traffic Flow Forecasting Based on Clustering and Feature Selection[C]. Proceedings of International Conference on Neural Networks, IEEE,2008:577-583.
    [39]Fan Wang, Guozhen Tan, Chao Deng, Zhu Tian. Real-time Traffic Flow Forecasting Model and Parameter Selection Based on ε-SVR[C]. Proceedings of International Conference on Intelligent Control and Automation, IEEE,2008:2870-2875.
    [40]孙占全,潘景山,张赞军,张立东,丁青艳.基于主成分分析与支持向量机结合的交通流预测[J].公路交通科技,2009,26(5):127-131.
    [41]Pang Ming-bao, He Guo-guang. Traffic Flow Predicting of Chaos Time Series Using Support Vector Learning Mechanism for Fuzzy Rule-based Modeling[C]. Proceedings of International Conference on Automation and Logistics, IEEE,2007: 666-670.
    [42]杨兆升,朱中.基于卡尔曼滤波理论的交通流量的实时预测模型[J].中国公路学报,1999,13(3):63-67.
    [43]韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统 仿真学报,2004,16(7):1530-1535Voort M, Dougtherty M., Watson S. Combining Kohonen Maps with ARIMA Time Series Models to Forcast Traffic Flow[J]. Transpotation Research,1996,4(5):307-318.
    [44]Chao Han, Su Song. A Review of Some Main Models for Traffic Flow Forecasting[C]. Proceedings of Intelligent Transportation Systems, IEEE,2003,1: 216-219.
    [45]Brian L. Smith, Michael J. Demetsky. Traffic Flow Forecasting:Comparision of Modeling Approachies[J]. Journal of Transportation Engineering,1997,123(4): 261-266.
    [46]殷礼胜.交通流量时间序列混沌特征分析及预测研究[D].重庆大学博士学位论文,2007.
    [47]李天瑞,徐扬,潘无名.频繁闭项目挖掘问题及其算法[J].西南交通大学学报,2001.36(3):225-228.
    [48]肖娟,叶枫.智能交通系统开发中关联规则挖掘算法的应用[J].计算机系统应用,2009,9:136-139.
    [49]孔庆杰,陈宜开,刘允才.基于证据融合的实时交通状态估计[J].上海交通大学学报,2008,42(10):1682-1686,1691.
    [50]Jia Lu, Li Cao. Congestion Evaluation from Ttraffic Flow Information Based on Fuzzy Logic[C]. Proceedings of Intelligent Transportation Systems, IEEE,2003,1: 50-53.
    [51]Der-Horng Lee, Shin-Ting Jeng. Applying Data Mining Techniques for Traffic Incident Analysis[J]. Journal of The Institution of Engineers,2004,44(2):90-102.
    [52]卫寒梅,郑应文.基于粗糙集和D-S证据理论的交通拥堵预警[J].福州大学学报(自然科学版),2008,36(1):69-72.
    [53]杨祖元,黄席樾,杜长海,唐明霞.基于FFCM聚类的城市交通拥堵判别研究[J].计算机应用研究,2008,25(9):2768-2770.
    [54]Anand Ranganathan, Anton Riabov, Olivier Verscheure, Haris Koutsopoulos, Mahmood Rahmani, Baris Giis. Real-time Traffic Information Management Using Stream Computing[J]. Data Engineering,2010,33(2):64-68.
    [55]徐琳,曲仕茹.基于数据流挖掘的交通流状态辨识方法研究[J].西北工业大学学报,2011,29(1):34-38.
    [56]黄磊.流数据挖掘综述[J].软件学报,2004,(15)1:1-7.
    [57]金澈清,钱卫宁,周傲英.流数据分析与管理综述[J],软件学报,2004,15(8):1173-1181.
    [58]Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and Issues in Data Sreams[C]. Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,2002:1-16.
    [59]Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. STREAM:The Stanford Data Stream Management System[EB/OL].2004. http://dbpubs.stanford.edu/pub/2004-20.
    [60]Chandrasekharan S, Cooper O. TelegraphCQ:Continuous Dtaflow Pocessing for an Uncertain World[C]. Proceedings of the 1st Conference.on Innovative Data Systems Research. Asilomar,2003:269-280.
    [61]Abadi D J, Carney D. Aurora:A New Model and Architecture for Data Stream Management[J]. VLDB Journal,2003,12(2):120-139.
    [62]Oje Kwon, Yong-Soo Song, Jae-Hun Kim, Ki-Joune Li. SCONSTREAM:A Spatial Context Stream Processing System[C]. International Conference on Computational Science and Its Applications (ICCSA),2010:165-170.
    [63]Mohamed Ali, Badrish Chandramouli, Balan Sethu Raman, Ed Katibah. Spatio-Temporal Stream Processing in Microsoft StreamInsight[J]. Data Engineering, 2010,33(2):69-74.
    [64]Ying Xia, GuoYin Wang, Song Gao. An Efficient Clustering Algorithm for 2D Multi-density Dataset in Large Database[C]. MUE2007,2007:78-82.
    [65]Li Xiao-lei, Han Jia-wei, Lee Jae-Gil, Gonzalez Hector. Traffic Density-Based Discovery of Hot Routes in Road Networks[C]. Proceedings of the 10th International Symposium on Spatial and Temporal Databases,2007:441-459.
    [66]陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2): 332-344.
    [67]Ying Xia, Guo Yin Wang, Zhang Xu, Gyoung Bae Kim, Hae Young Bae. Research of Spatio-temporal Similarity Measure on Network Constrained Trajectory Data[C]. RSKT2010,2010:491-498.
    [68]Ying Xia, Zhang Xu, Guo Yin Wang. Cluster-based Congestion Outlier Detection Method on Trajectory Data[C]. FSKD2009,2009:243-247.
    [69]Kharrat A., K. Zeitouni, I. Sandu-Popa. Clustering Algorithm for Network Constraint Trajectories[C]. Proceedings of the 13th International Symposium on Spatial Data Handling,2008:631-647.
    [70]张旭.基于时空约束的轨迹聚类方法研究与应用[D].重庆邮电大学硕士学位论文,2010.
    [71]温海平.基于轨迹聚类的热点路径分析方法研究[D].重庆邮电大学硕士学位论文,2011.
    [72]Yutaka Yanagisawa, Jun-ichi Akahani, Tetsuji Satoh. Shape-Based Similarity Query for Trajectory of Mobile Objects[C]. Proceedings of the 4th International Conference on MDM,2003:63-77.
    [73]Brinkhoff T. A Framework for Generating Network-Based Moving Objects[J]. GeoInformatica,2002,6(2):153-180.
    [74]孟小峰,丁志明.移动数据管理:概念与技术[M].北京:清华大学出版社,2009.
    [75]范明等.数据挖掘导论[M].北京:人民邮电出版社,2006.
    [76]L. Chen, M. Ozsu, V. Oria. Robust and Fast Similarity Search for Moving Object Trajectories[C]. Proceedings of the ACM SIGMOD,2005:491-502.
    [77]S. Chu, E. Keogh, D. Hart, M. Pazzani. Iterative Deepening Dynamic Time Warping for Time Series[EB/OL].2002, http://www.cs.ucr.edu/-eamonn/sdm-02.pdf.
    [78]M. Vlachos, G. Kollios, D. Gunopulos. Discovering Similar Multidimensional Trajectories[C]. Proceedings of the 18th International Conference on Data Engineering, IEEE,2002:673-684.
    [79]J. I. Won, S. W. Kim, J. H.Baek, Junghoon Lee. Trajectory Clustering in Road Network Environment[C]. Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining,2009:299-305.
    [80]J. R. Hwang, H. Y. Kang, K. J. Li. Spatio-temporal Similarity Analysis between Trajectories on Road Networks[J]. Lecture Notes in Computer Science,2005, (3770): 280-289.
    [81]J. R. Hwang, H. Y. Kang, K. J. Li. Searching for Similar Trajectories on Road Networks Using Spatio-temporal Similarity[J]. Advances in Databases and Information Systems,2006, (4152):282-295.
    [82]E. Tiakas, A. N. Papadopoulos, A. Nanopoulos, Y. Manolopoulos. Trajectory Similarity Search in Spatial Networks[C]. Proceedings of 10th International Conference on Database Engineering and Applications Symposium, IEEE,2006: 185-192.
    [83]J. W. Chang, R. Bista, Y. C. Kim, Y. K. Kim. Spatio-temporal Similarity Measure Algorithm for Moving Objects on Spatial Networks[C]. Proceedings of International Conference on Computational Science and its Applications,2007:1165-1178.
    [84]J. G. Lee, J. W. Han, K. Y. Whang. Trajectory Clustering:A Partition-and-group Framework[C]. Proceedings of ACM SIGMOD International Conference on Management of Data,2007:593-604.
    [85]J. Han, M. Kamber. Data Mining:Concepts and Techniques[M]. The 2nd. Morgan Kaufmann Publishers, Pittsburgh, PA, USA.2006.
    [86]P. N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining[M]. Addison Wesley, Boston, MA, USA.2006.
    [87]E. Tiakas, A. N. Papadopoulos, A. Nanopoulos, Y. Manolopoulos, Dragan Stojanovic, Slobodanka Djordjevic-Kajan. Searching for Similar Trajectories in Spatial Networks[J]. Journal of Systems and Software,2009,82(5):772-788.
    [88]Brinkhoff T. Network-based Generator of Moving Objects[EB/OL].2006, http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/.
    [89]Jae-Woo Chang, Rabindra Bista, Young-Chang Kim, Yong-Ki Kim. Spatio-Temporal Similarity Measure Algorithm for Moving Objects on Spatial Networks[C]. Proceedings of International Conference on Computational Science and Its Applications-Volume Part Ⅲ,2007:1165-1178.
    [90]梁中军.基于时空相关分析的短时交通流量预测方法研究[D].重庆邮电大学硕士学位论文,2010.
    [91]马寿峰,贺国光,王世彤.一种基于状态空间重构的交通流短期可预测性判别方法[J].土木工程学报,2001,1(1):68-74.
    [92]高慧,赵建玉,贾磊.短时交通流预测方法综述[J].济南大学学报(自然科学版),2008,22(1):88-94.
    [93]王进,史其信.短时交通预测模型综述[J].智能交通,2005,6(1):92-98.
    [94]杨英,唐平,王越超,丘衍航.基于LMBP改进算法的神经网络结构优化[J].计算机工程,2008,34(1):215-217.
    [95]尚宁,覃明贵,王亚琴,崔中发,崔岩,朱扬勇.基于BP神经网络的路口短时交通流量预测方法[J].计算机应用与软件,2006,23(2):32-33.
    [96]况爱武,黄中样.基于RBF神经网络的短时段交通预测模型[J].系统工程,2004,22(2):63-65.
    [97]杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884.
    [98]郭牧,孙占全,潘景山,徐梅.短时交通流预测方法研究[J].计算机应用研究,2008,25(9):2676-2678.
    [99]孙占全,潘景山,张赞军,张立东,丁青艳.基于主成分分析与支持向量机结合的交通流预测[J].公路交通科技,2009,26(5):127-131.
    [100]夏英,梁中军,王国胤.基于时空分析的短时交通流量预测模型[J].南京大学学报,2010,46(5):552-560.
    [101]谢明文.关于协方差、相关系数与相关性的关系[J].数理统计与管理,2004,23(3):33-36.
    [102]Vapnik V, Golowich S, Smola A. Support Vector Method for Function Approximation Regression Estimation and Signal Processing[C]. Proceedings of the 1996 Neural Information Processing Systems Conference NIPS,1997:281-287.
    [103]许兆霞,林勇,李树斌,党文修,胡大鹤.实时交通预估预测仿真系统dynaCHINA参数标定及应用[J].山东科学,2009,22(6):46-49.
    [104]樊博,张志波.多层次空间拓扑关系谓词的计算方法研究[J].哈尔滨工业大学学报:自然科学版,2009,41(8):244-248.
    [105]夏英,张俊,王国胤.时空关联规则挖掘算法及其在ITS中的应用[J].计算机科学,2011,38(9):173-176.
    [106]张俊.时空关联性分析方法研究与应用[D].重庆邮电大学硕士学位论文,2010.
    [107]Florian Verhein, Sanjay Chawla. Mining Spatio-Temporal Patterns in Object Mobility Database[J]. Data Mining and Knowledge Discovery,2008,16(1):5-38.
    [108]李波,濮培民,韩爱民.洪泽湖水质的时空相关性分析[J].湖泊科学,2001,14(3):259-266.
    [109]岳慧颖.含有时空约束的关联规则挖掘方法研究[D].哈尔滨工程大学硕士学位论文,2004.
    [110]Shekhar, S, Huang, Y. Discovering Spatial Co-location Patterns:A Summary of Results[J]. Proceedings of the 7th International Symposium on Spatial and Temporal Databases,2001, (2121):236-256.
    [111]沙宗尧.时序空间关联规则挖掘及其应用研究[J].地理空间信息,2008,6(5):18-21.
    [112]R Agrawl, R Srikant. Fast Algorithms for Mining Association Rules in Large Databases [C]. Proceedings of the 20th VLDB Conference,1994:487-499.
    [113]Marcin Gorawski, Pawel Jureczek. Using Apriori-like Algorithms for Spatio-Temporal Pattern Queries[C]. Proceedings of Intermational Multiconference on Computer Science and Information Technology,2009:43-48.
    [114]Billor N, Hadi A, Velleman P. BACON:Blocked Adaptive Computationally Efficient Outlier Nominators[J]. Computational Statistics & Data Analysis,2000,34(3): 279-298.
    [115]Ke Zhang, Marcus Hutter, Huidong Jin. A New Local Distance-Based Outlier Detection Approach for Scattered Real-World Data[J]. Knowledge Discovery and Data Mining,2009,29(2):813-822.
    [116]刘欢,吴介军,苏锦旗.基于分化距离的离群点检测算法[J].计算机应用研究,2010,27(9):3316-3318.
    [117]Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jorg Sander. LOF: Identifying Density-Based Local Outliers[C]. Proceedings of ACM SIGMOD International Conference on Management of Data,2000,23(4):93-104.
    [118]Jae-Gil Lee, Jiawei Han, Xiaolei Li. Trajectory Outlier Detection:A Partition-and-Detect Framework[C]. Proceedings of International Conference on Data Engineering,2008:140-149.
    [119]刘良旭,乔少杰,刘宾,乐嘉锦,唐常杰.基于R-Tree的高效异常轨迹检测算法[J].软件学报,2009,20(9):2426-2435.
    [120]陈嘉,胡继华,张飞舟.面向车辆监控导航的地图匹配算法研究[J].北京大学学报,2009:299-305.
    [121]秦文斌,王培东.基于投影的GPS地图匹配算法研究[J].硅谷,2008,24:23-24.
    [122]彭飞,柳重堪,张其善.基于代价函数的组合导航地图匹配算法[J].北京航空航天大学学报,2002,28(3):261-264.
    [123]张维,王忠,薛晓娜.确定性值地图匹配算法的改进[J].四川大学学报,2009,46(1):52-56.
    [124]K. Miyashita, T. Terada, S. Nishio. A Map Matching Algorithm for Car Navigation Systems That Predict User Destination[J]. Advanced Information Networking and Applications,2008,23(5):1551-1556.
    [125]武靖.车辆导航中地图匹配算法的研究[J].科技创新导报,2008,20(8):10-11.
    [126]陈波,王茂林,王宏,杨天克.一种基于网络拓扑关系的地图匹配算法[J].测绘科学技术学报,2006,23(5):331-334.
    [127]王忠,薛晓娜.基于模糊逻辑的地图匹配算法[J].导航,2009,45(1):23-26.
    [128]夏英,葛君伟,彭大芹,刘兆宏,邹永贵,李宗浩,金明根,裴海英.适用于TD-SCDMA系统的混合定位技术.国家发明专利(ZL 200410062755.0),2006.
    [129]袁正午,王方竹,夏英,邹永贵,刘兆宏,鱼详训,周鹏,葛君伟,襄海英.移动通信网络中AOA/TOA与GPS混合定位方法.国家发明专利(ZL 200610054396.3),2008.
    [130]夏英,罗跃峰,葛君伟,彭大芹,刘兆宏,邹永贵,金镐时,裴海英.LBS中动态改变用户定位频率的系统和方法.国家发明专利(ZL 200510057481.0),2008.
    [131]蒋新土,吕岳.基于改进的加权Hausdorff距离的图像匹配[J].计算机应用研究,2007,24(4):182-185.
    [132]张廷玲.关于移动对象轨迹的分割与聚类算法研究[J].河南大学,2009,19(2):23-24.
    [133]任江涛,何武,印鉴,张毅.一种时间序列快速分段及符号化方法[J].计算机科学,2005,32(9):166-169.
    [134]杜洪波,张颖,赵莹.基于形态的实践序列子序列相似性研究[J].沈阳工程学院学报,2009,25(2):160-165.
    [135]雷小锋,谢昆青,金星星,夏征义.基于时空邻域的多粒度轨迹相似性查询[J].计算机研究与发展,2006,43(z3):86-90.
    [136]张建业,潘泉,张鹏,梁建海.基于斜率表示的时间序列相似性度量方法[J].模式识别与人工智能,2007,20(2):271-274.
    [137]夏英,刘申艺.实时异常轨迹检测方法及其应用[J].重庆邮电大学学报(自然科学版),2011,23(4):496-499.
    [138]刘申艺.异常轨迹动态检测方法研究[D].重庆邮电大学硕士学位论文,2010.
    [139]李光强,郑茂仪,邓敏.时空数据异常探测方法[J].计算机工程,2010,36(5):35-36,39.
    [140]Cheng Tao, Li Zhilin. A Multiscale Approach for Spatio-temporal Outlier Detection[J]. Transactions in GIS,2006,10(2):253-263.
    [141]Adam N R, Vandana P J, Atluri V. Neighborhood-based Detection of Anomalies in High Dimensional Spatio-temporal Sensor Datasets[C]. Proceedings of the ACM Symposium on Applied Computing,2004:576-583.
    [142]John F. Roddick, Max J. Egenhofer, Erik Hoel, Dimitris Papadias, Betty Salzberg. Spatial Temporal and Spatio-temporal Databases-Hot Issues and Directions for Phd Research[J]. SIGMOD Record,2004,33(2):126-131.
    [143]Guohui, L., Yanhong, L., Jianjun, L., Shu, L., Fumin, Y. Continuous Reverse K Nearest Neighbor Monitoring on Moving Objects in Road Networks[J]. Information Systems,2010,35(8):860-883.
    [144]Maike Buchin, Anne Driemel, Marc van Kreveld, Vera Sacristan. An Algorithmic Framework for Segmenting Trajectories Based on Spatio-Temporal Criteria[C]. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems,2010:202-211.
    [145]Jun Wook Lee, Ok Hyun Paek, Keun Ho Ryu. Temporal Moving Pattern Mining for Location-based Service[J]. The Journal of Systems and Software,2004,73(3): 481-490.
    [146]徐薇,黄厚宽,王英杰.一种基于数据融合和方法融合的时空综合预测算法[J].计算机研究与发展,2005,42(7):1255-1260.
    [147]陈新保,Li Song-nian,朱建军,陈建群.“多元”关联模式的时空数据挖掘[J].中南大学学报(自然科学版),2011,42(1):106-114.
    [148]Mennis J, Liu J. Mining Association Rules in Spatio-Temporal Data:An Analysis of Urban Socioeconomic and Land Cover Change[J]. Transactions in GIS,2005,9: 5-17.
    [149]Yang H, Parthasarathy S. Mining Spatial and Spatio-temporal Patterns in Scientific Data[C]. Proceedings of the 22nd International Conference on Data Engineering Workshops. IEEE Computer Society,2006:146-150.
    [150]曾玲,熊才权,胡恬.关联规则在空间数据挖掘中的研究[J].计算机与数字工程.2005,33(6):71-73.
    [151]马荣华,蒲英霞,马晓冬.GIS空间关联模式发现[M].北京:科学出版社,2007:251-360.
    [152]Anthony J T Lee, Yi-An Chen, Weng-Chong Ip. Mining Frequent Trajectory Patterns in Spatial-temporal Databases[J]. Information Sciences.2009,179(13):2218-2231.
    [153]Wynne Hsu, Mong Li Lee, Junmei Wang. Temporal and Spatio-temporal Data Mining[M]. NewYork:IGI Publishing,2007:127-143.
    [154]Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, Young-Koo Lee. Eficient Single-pass Frequent Pattern Mining Using a Prefix-tree[J]. Information Sciences,2009,179(5):559-583.
    [155]M. Cho, J. Pei, K. Wang. Answering Ad Hoc Aggregate Queries from Data Streams Using Prefix Aggregate Trees[J]. Knowledge and Information Systems, Springer-Verlag,2007,12(3):301-329.
    [156]Hector Gonzalez, Jiawei Han, Xiaolei Li. FlowCube:Constructing RFID FlowCubes for Multi-Dimensional Analysis of Commodity Flows[C]. Proceedings of International Conference on Very Large Data Bases,2006:834-845.
    [157]Hector Gonzalez, Jiawei Han, Xiaolei Li, Diego Klabjan. Warehousing and Analysis of Massive RFID Data Sets[C]. Proceedings of the 22nd International Conference on Data Engineering,2006:1-10.
    [158]Beyer K, Ramakrishnan R. Bottom-up Computation of Sparse and Iceberg Cubes[C]. Proceedings of ACM-SIGMOD International Conference on Management of Data, 1999:359-370.
    [159]J. Han and Y. Fu. Discovery of Multiple-level Association Rules from Large Databases[C]. Proceedings of International Conference of Very Large Data Bases, 1995:420-431.
    [160]Dong Xin, Jiawei Han, Xiaolei Li, Zheng Shao, Benjamin W. Wah. Computing Iceberg Cubes by Top-Down and Bottom-Up Integration:The StarCubing Approach[J]. IEEE Transactions on Knowledge and Data Engineering,2007,19(1): 111-126.
    [161]郭旦怀,崔伟宏.面向实时交通信息提取的车辆轨迹数据挖掘[J].武汉理工大学学报(交通科学与工程版),2010,34(1):6-9.
    [162]Li Xiaolei, Han Jiawei, Lee Jae-Gil, Hector Gonzalez. Traffic Density Based Discovery of Hot Routes in Road Networks[C]. Advances in Spatial and Tempor al Databases,2007:441-459.
    [163]Jae-Woo Chang, Rabindra Bista, Young-Chang Kim, Yong-Ki Kim. Spatio-temporal Similarity Measure Algorithm for Moving Objects on Spatial Networks[C]. Proceedings of International Conference of Computational Science and Its Applications,2007:1165-1178.
    [164]施颖男,李德敏,蔡葛峰.移动计算环境中用户移动模式的挖掘[J].计算机工程,2004,30(5):186-187.
    [165]翁剑成,周翔,翟雅峤等.浮动车数据在城市宏观交通特征研究中的应用[J].武 汉理工大学学报(交通科学与工程版),2008,32(5):707-710.
    [166]赵洪斌,韩启龙,潘海为.移动对象轨迹时空相似性度量方法[J].计算机工程与应用,2010,46(29):9-12.