军曹鱼(Rachycentron Canadum)主要水溶性维生素营养生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国新兴海水养殖鱼类军曹鱼(Rachycentron canadum L.)为研究对象,在室内流水养殖系统中(300 L/水族箱)进行为期9-10周的摄食生长实验。探讨饲料中添加不同水平的硫胺素、核黄素、烟酸、维生素C和胆碱对军曹鱼(初始体重:4 g左右)生长和生理状态的影响,并根据不同评价指标确定了军曹鱼对这5种水溶性维生素的需求量。采用梯度营养素法配制半精制饲料,每个实验设置6个处理,每个处理设置3个重复。每天投喂2次(08:00和17:00),每次饱食投喂。实验期间水温变化范围:28.5-32℃;盐度范围:24-26‰;溶氧含量:≥7 mg/L。主要研究结果如下:
     1.未添加硫胺素饲料组(对照组)军曹鱼出现生长不良、摄食下降和死亡率升高等缺乏症。饲料中添加硫胺素显著提高了军曹鱼的存活率、摄食率(feeding rate, FR)、增重率(weight gain, WG)和饲料转化率(feed efficiency ratio, FER)(P<0.05)。对照组军曹鱼的存活率、FR、WG和FER均显著低于添加硫胺素饲料组(P<0.05)。随着饲料中硫胺素水平的升高,军曹鱼WG和FER逐渐升高,当饲料中硫胺素含量达到或超过6.44 mg/kg饲料时,WG和FER逐渐趋于平稳。饲料中添加硫胺素显著影响了军曹鱼肝脏焦磷酸硫胺素(thiamin pyrophosphate, TPP)含量、红细胞转酮醇酶活性(erythrocyte transketolase activity, ETKA)和焦磷酸硫胺素效应(TPP效应)(P<0.05)。肝脏TPP含量和ETKA随着饲料硫胺素含量升高而显著升高(P<0.05),并逐渐趋于稳定,而TPP效应则随着饲料硫胺素含量的升高而显著降低并逐渐趋于稳定(P<0.05)。上述结果表明,硫胺素是军曹鱼必需维生素,硫胺素缺乏时会抑制军曹鱼生长并导致高死亡率。而饲料中高含量的硫胺素不会对军曹鱼的生长产生负面影响。采用折线模型,分别以军曹鱼WG、肝脏TPP含量、ETKA和TPP效应为评价指标时,军曹鱼对硫胺素的适宜需求量为6.80 mg/kg、8.31 mg/kg、9.00 mg/kg和8.56 mg/kg饲料。
     2.未添加核黄素饲料组军曹鱼出现生长不良、摄食下降、死亡率升高、体色变黑和体型短小等缺乏症。饲料中添加核黄素显著提高了军曹鱼的存活率、WG、FR、FER、肝脏核黄素含量(liver riboflavin concentration, LRC)和肝脏D-氨基酸氧化酶(D-amino acid oxidase, D-AAO)活力(P<0.05)。未添加核黄素饲料组军曹鱼的FR显著低于核黄素含量大于或等于31.21 mg/kg饲料组(P<0.05)。未添加核黄素饲料组军曹鱼的存活率、WG、FER、LRC和D-AAO活力显著低于添加核黄素的饲料组(P<0.05)。随着饲料中核黄素水平的升高,军曹鱼的WG显著升高(P<0.05),且当饲料核黄素含量达到或超过6.86 mg/kg时逐渐趋于平稳。LRC和D-AAO活力与WG存在相似的变化趋势,当饲料中核黄素含量达到或超过14.25 mg/kg时,军曹鱼的LRC和肝脏D-AAO活力达到最高水平并趋于平稳。上述结果表明,核黄素是军曹鱼必需维生素,核黄素缺乏时不仅抑制军曹鱼生长,导致高死亡率,而且会产生一系列缺乏症。而饲料中高含量的核黄素不会对军曹鱼生长产生负面影响。当分别以WG、LRC或肝脏D-AAO活力为评价指标时,通过折线模型得到军曹鱼对核黄素的最适需要量分别为7.63、9.13或9.40 mg/kg饲料。
     3.烟酸缺乏的饲料组军曹鱼出现厌食、生长不良、死亡率升高等缺乏症。饲料中添加烟酸显著提高了军曹鱼的存活率、FR、WG和FER(P<0.05)。未添加烟酸饲料组军曹鱼FR显著低于烟酸水平大于或等于18.9 mg/kg饲料组(P<0.05),添加烟酸饲料组军曹鱼FR差异不显著(P>0.05)。未添加烟酸饲料组军曹鱼的存活率、WG和FER均显著低于添加烟酸的饲料组(P<0.05)。随着饲料中烟酸水平的升高,军曹鱼的存活率、WG和FER均显著升高(P<0.05)。当饲料烟酸水平达到或超过18.9 mg/kg时,军曹鱼的存活率、WG和FER逐渐趋于稳定。饲料中添加烟酸显著提高了军曹鱼肝脏烟酸含量(P<0.05),当饲料烟酸水平达到或超过38.6 mg/kg时,军曹鱼肝脏烟酸含量达到最高水平并逐渐趋于稳定。上述结果表明,烟酸是军曹鱼必需的维生素,烟酸缺乏会抑制军曹鱼生长并导致高死亡率。在本研究条件下,高含量的烟酸不会对军曹鱼生长产生负面影响。分别以WG和肝脏烟酸含量为评价指标,军曹鱼对烟酸的最适需求量分别为15.03 mg/kg和23.26 mg/kg饲料。
     4.维生素C缺乏饲料组军曹鱼表现出生长下降、死亡率增高和厌食等缺乏症。饲料中添加维生素C显著提高了军曹鱼的存活率、WG、FR和FER (P<0.05)。未添加维生素C饲料组军曹鱼的FR显著低于维生素C水平大于或等于80.6 mg/kg饲料组(P<0.05)。未添加维生素C饲料组军曹鱼的存活率、WG和FER均显著低于添加维生素C的饲料组(P<0.05)。随着饲料中维生素C水平的提高,军曹鱼的存活率、WG和FER均显著升高(P<0.05),并逐渐趋于平稳。当饲料中维生素C含量达到或超过80.6 mg/kg时,军曹鱼生长最佳。饲料中添加维生素C显著提高了军曹鱼肝脏和肌肉维生素C含量(P<0.05)。随着饲料维生素C水平的提高,军曹鱼肝脏和肌肉维生素C含量随之显著升高(P<0.05),当饲料维生素C水平达到或者超过80.6 mg/kg饲料时,军曹鱼肝脏维生素C含量逐渐趋于稳定。而当饲料维生素C水平达到或者超过240.8 mg/kg饲料时,军曹鱼肌肉维生素C含量逐渐趋于稳定。上述结果表明,维生素C是军曹鱼必需的维生素,维生素C缺乏会抑制军曹鱼生长并导致高死亡率,而饲料中高含量的维生素C不会对军曹鱼生长产生负面影响。当分别以WG、肝脏中维生素C含量和肌肉中维生素C的含量为评价指标时,军曹鱼对饲料中维生素C的最适需要量分别为44.74、53.94和103.72 mg/kg饲料。
     5.未添加胆碱饲料组军曹鱼出现生长下降、厌食、饲料转化率降低和肝脏脂肪含量升高等缺乏症。饲料中添加胆碱显著提高了军曹鱼的存活率、WG、FER和FR(P<0.05)。未添加胆碱的饲料组军曹鱼的存活率显著低于添加胆碱的饲料组(P<0.05)。随着饲料中胆碱水平的升高,军曹鱼WG和FER显著升高(P<0.05),并分别在饲料胆碱含量大于或等于939.6 mg/kg和大于或等于547.9 mg/kg时,达到稳定状态。军曹鱼肝指数随着饲料胆碱含量的升高而显著降低(P<0.05)。军曹鱼肝脏脂肪含量总体上呈现逐渐降低的趋势,而肌肉脂肪含量则逐渐升高。未添加胆碱的饲料组军曹鱼肝脏脂肪含量显著低于胆碱含量为350.0 mg/kg饲料组(P<0.05)。此后,随着饲料中胆碱含量的不断升高,军曹鱼肝脏脂肪含量显著降低(P<0.05),并在饲料中胆碱含量达到或超过939.6 mg/kg时逐渐趋于稳定。未添加胆碱饲料组军曹鱼肌肉脂肪含量显著低于饲料胆碱含量大于或等于2016.7 mg/kg饲料组(P<0.05)。未添加胆碱饲料组军曹鱼肝脏和肌肉胆碱含量显著低于添加胆碱饲料组(P<0.05)。随着饲料中胆碱水平的升高,军曹鱼肝脏和肌肉中的胆碱含量显著升高并逐渐趋于稳定。当分别以WG、肝脏和肌肉中胆碱含量为评价指标时,军曹鱼对胆碱的最适需求量为695.89、876.75和949.81 mg/kg饲料。
Nine-week or ten-week feeding trials were conducted to investigate the nutritional physiology of major water-soluble vitamins for cobia (Rachycentron canadum L.). The dietary requirements of thiamin, riboflavin, niacin, vitamin C and choline for cobia (average initial weight: about 4 g) were estimated using different indicators. Semi-purified diet was used and the experiments were conducted in indoor flow-through system (300 L/tank). Results of these studies are presented as follows:
     1. Fish fed the diet without supplemented thiamin appeared poor growth, depressed feed intake and high mortality. Supplementation of dietary thiamin significantly improved the survival, feeding rate (FR), weight gain (WG) and feed efficiency ratio (FER) of cobia. The survival, WG and FER of cobia in the control group were significantly lower than fish fed the diets with supplemented thiamin. With the increasing dietary thiamin, the WG and FER of cobia were improved significantly and then leveled off. When the dietary thiamin was equal to or higher than 6.44 mg/kg diet, the WG and FER of cobia reached the highest level and then leveled off. The supplementation of thiamin significantly infulenced the liver thiamin pyrophosphate (TPP) concentration, erythrocyte transketolase activity (ETKA) and thiamin pyrophosphate effect (TPP-effect) of cobia. With the increase of dietary thiamin, the liver TPP concentration and ETKA increased significantly and then leveled off. However, the TPP-effect reduced significantly and then leveled off. These results indicate that thiamin is the necessary vitamin for cobia, thiamin deficiency restrains growth of cobia and leads to high mortality. There is no negative effect on growth or physiological metabolism of cobia fed diets with excessive deitary thiamin. Based on WG, liver TPP concentration, ETKA and TPP-effect of cobia, the optimal dietary thiamin requirement were estimated to 6.80 mg/kg, 8.31 mg/kg, 9.00 mg/kg and 8.56 mg/kg, respectively.
     2. After nine weeks feeding trial, fish fed the riboflavin-deficient diet performed poorly in terms of growth parameters and exhibited typical signs of riboflavin deficiency such as anorexia, poor growth, dark skin coloration and short body dwarfism. Supplementation of dietary riboflavin significantly improved the survival, FR, WG and FER of cobia. Fish fed the diet containing 0.83 mg riboflavin/kg dry diet showed significantly lower survival, lower WG and lower FER compared with fish fed the other diets. With the increasing dietary riboflavin, the survival, WG and FER of cobia were improved significantly and then leveled off. Supplementation of dietary riboflavin significantly increased liver riboflavin concentration (LRC) and liver D-amino acid oxidase (D-AAO) activity of cobia. When dietary riboflavin was equal to or higher than 14.25 mg/kg diet, the LRC and D-AAO acitvity reached the highest level and then leveled off. These results indicate that riboflavin is the necessary vitamin for cobia, riboflavin deficiency inhibits growth of cobia and leads to a series of deficiency signs. There is no negative effect on growth or physiological metabolism of cobia fed diets with excessive deitary riboflavin. Based on broken-line analysis, the dietary riboflavin requirements were 7.63, 9.13 and 9.40 mg/kg diet, based on maximum weight gain, liver riboflavin content and D-AAO activity, respectively.
     3. After nine weeks feeding trial, fish fed diet without supplemented niacin appeared poor growth, higher mortality and lower FR. Supplementation of niacin definitely improved the growth of cobia. Fish fed the control diet had the significantly lower survival, WG, FR, FER and liver niacin concentration. With increasing dietary niacin, the survival, WG, FR, FER and liver niacin concentration increased significantly. When dietary niacin was equal to or higher than 18.9 mg/kg diet, the WG, FER and liver niacin concentration reached the highest leveled and then leveled off. These results indicate that niacin is the necessary vitamin for cobia, niacin deficiency restrains growth of cobia and leads to high mortality. There is no negative effect on growth or physiological metabolism of cobia fed diets with excessive deitary niacin. The dietary niacin requirement of cobia was estimated to 15.03 mg/kg diet based on maximum growth or 23.26 mg/kg diet based on liver niacin concentration, respectively.
     4. After ten weeks feeding trial, fish fed diet without supplemented AA appeared poor growth, higher mortality and lower FR. Supplementation of dietary AA significantly improved the survival, FR, WG and FER of cobia. Fish fed the control diet had significantly lower survival, lower WG and lower FER. With the increase of dietary AA, the survival, WG, FER, liver and muscle AA concentrations of cobia significantly increased and then leveled off. Fish fed the diets with equal to or higher than 28.3 mg/kg diet had the similar survival and significantly higher than fish fed other diets. The WG and FER of fish fed diets with equal to or higher than 80.6 mg/kg diet were similar and significantly higher than fish fed other diets. Supplementation of dietary AA significantly increased the liver and muscle AA concentration. Fish fed the diets with equal to or higher than 80.6 mg/kg diet had similar liver AA concentrations and significantly higher than fish fed other diets. Fish fed diets with equal to or higher than 240.8 mg/kg diet had similar muscle AA concentrations and signigicantly higher than fish fed other diets. These results indicate that AA is the necessary vitamin for cobia, AA deficiency restrains growth of cobia and leads to high mortality. There is no negative effect on growth or physiological metabolism of cobia fed excessive deitary AA. The dietary AA requirement of cobia was estimated to be 44.74 mg kg-1 based on WG, 53.94 mg kg-1 or 103.72 mg kg-1 based on either liver or muscle AA concentration, respectively.
     5. After ten weeks feeding trial, fish fed diet without supplemented choline appeared poor growth, high mortality, depressed feed intake and higher liver lipid concentration. Supplementation of choline significantly influenced the survival, FR, WG, FER, hepatosomatic index (HSI), liver lipid concentration and choline concentration in liver and muscle of cobia. The fish in the control group had significantly lower survival than other groups. With increasing dietary choline, WG or FER of cobia increased significantly and then leveled off. HSI of fish in groups containing choline equal to or lower than 350.0 mg/kg were significantly higher than the value of groups with dietary choline equal to 939.6 mg/kg or higher. Generally, liver lipid concentration appeared reduced trend and muscle choline concentration appeared increased trend, correspondingly. Choline concentration in liver and muscle was positively correlated with dietary choline and had the similar pattern as WG. When dietary choline was equal to or higher than 939.6 mg/kg diet, the liver and muscle choline concentration reached the highest level and then leveled off. These results indicate that choline is the necessary vitamin for cobia, choline deficiency restrains growth of cobia and leads to high mortality. There is no negative effect on growth or physiological metabolism of cobia fed diets with excessive deitary choline. Based on WG, liver or muscle choline concentration, the optimal dietary choline requirement for cobia was estimated to be 695.89, 876.75 or 949.81mg/kg diet, respectively.
引文
艾春香,2004。军曹鱼的养殖生物学特性及营养需求。饲料研究2,41–44.
    蔡春芳,1997。鱼类对糖利用的研究进展。上海水产大学学报6(2),116–123。
    曹俊明,吴建开,梁海鸥等,2004。饲料中n-3/n-6脂肪酸比例对军曹鱼幼鱼生长、肌肉和肝胰脏脂肪酸组成的影响。飞禧特水产动物营养论文集。pp. 168–174.
    刘凯,2008。军曹鱼吡哆醇、肌醇和泛酸营养生理研究。中国海洋大学研究生学位论文。
    刘兴旺,2005。军曹鱼必需脂肪酸和磷营养生理的初步研究。中国海洋大学研究生学位论文。
    刘兴旺,谭北平,麦康森等,2007。饲料中不同水平n-3 HUFA对军曹鱼生长及脂肪酸组成的影响。水生生物学报31(2),190–195。
    乔永刚,2007。军曹鱼微量元素锌_铁_铜营养生理研究。中国海洋大学学位论文。
    谭北平,阳会军,梁海鸥,2001。饲料中不同蛋白和能量水平对军曹鱼幼鱼的影响。水生生物学26 (2),215–220。
    文华,赵智勇,蒋明,刘安龙,吴凡,刘伟,2007。草鱼幼鱼肌醇需要量的研究。中国水产科学14,794–800。
    吴建开,曹俊明,梁海鸥等,2004。饲料中不同碳水化合物水平对军曹鱼(Rachycentron canadum)幼鱼生长、血清生化指标和肝脏糖代谢酶的影响。飞禧特水产动物营养论文集。pp. 175–181。
    张春晓,2006。大黄鱼(Pseudosciaena crocea R.)、鲈鱼(Lateolabrax japonicus)主要B族维生素和矿物质–磷的营养生理研究。中国海洋大学研究生学位论文。
    周萌等,2005。军曹鱼幼鱼对赖氨酸需要量的初步研究。长江大学学报(自然版)2,50–52。
    朱旺明,赵红霞,曹俊明,2004a。军曹鱼(Rachycentron canadum)幼鱼对蛋氨酸的需要量。飞禧特水产动物营养论文集。pp. 188–194。
    朱旺明,谭永刚,曹俊明等,2004b。军曹鱼(Rachycentron canadum)幼鱼对精氨酸的需要量。飞禧特水产动物营养论文集。pp. 194–201。
    朱伟,2001。皱纹盘鲍B族维生素营养生理及营养需要的研究。中国海洋大学研究生学位论文。
    Adron, J.W., Knox, D., Cowey, C.B., 1978. Studies on the nutrition of marine flatfish. The pyridoxine requirements of turbot (Scophthalmus maximus). Br. J. Nutr. 40, 261–268.
    Azevedo, P.A., Bureau, D.P., Leeson, S., Cho, C.Y., 2002. Growth and efficiency of feed usage by Atlantic salmon (Salmo salar) fed diets with different dietary protein: energy ratios at two feeding levels. Fish. Sci. 68, 878–888.
    Agrawal, N.K., Mahajan, C.L., 1983. Pathology of vitamin B6 deficiency in Channa (=Ophiocephalus) punctatus Bloch. J. Fish Dis. 6, 439–450.
    Aguirre, P., Gatlin, D.M., 1999. Dietary vitamin C requirement of red drum Sciaenops ocellatus. Aquacult. Nutr. 5, 247–249.
    Ai, Q.H., Mai, K.S., Zhang, C.X., Xu, W., Duan, Q.Y., Tan, B.P., Liufu, Z.G., 2004. Effects of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicus. Aquaculture 242, 489–500.
    Ai, Q.H., Mai, K.S., Tan, B.P., Xu, W., Zhang, W.B., Ma, H.M., Liufu, Z.G., 2006. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture 261, 327–336.
    Aksnes, A., Mundheim, H., 1997. The impact of raw material freshness and processing temperature for fish meal on growth, feed efficiency and chemical composition of Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 149, 87–106.
    Al–Amoudi, M.M., El–Nakkadi, A.M.N., El–Nouman, B.M., 1992. Evaluation of optimum dietary requirement of vitamin C for the growth of Oreochromis spilurus fingerlings in water from the Red Sea. Aquaculture 105, 165–173.
    Albrektsen S, Sandnes K, Glette J, Waagbo, R., 1995. Influence of dietary vitamin B6 on tissue vitamin B6 contents and immunity in Atlantic salmon, Salmo salar L. Aquacult. Res. 26, 331–339.
    Albrektsen, S., Waagbo, R., Sandnes, K., 1993. Tissue vitamin B6 concentrations and aspartate aminotransferase (AspT) activity in Atlantic salmon (Salmo salar) fed graded dietary levels of vitamin B6. FiskDir Skr (Ser Ernaring). 6, 21–34
    Allan, G.L., Rowland, S.J., Mifsud, C., Glendenning, D., Stone, D.A.J., Ford, A., 2000. Replacement of fish meal in diets for Australian silver perch, Bidyanusbidyanus V. Least–cost formulation of practical diets. Aquaculture 186, 327–340.
    Amezaga, M.R., Knox, D., 1990. Riboflavin requirements in on–growing rainbow trout, Oncorhynchus mykiss. Aquaculture 80, 87–98.
    Anbarasu, K., Chandran, M.R., 2001. Effects of ascorbic acid on the immune response of the catfish, Mystus gulio (Hamilton), to different bacterins of Ameromonas hydrophila. Fish Shellfish Immunol. 11, 347–355.
    Anderson, P.A., Baker, D.H., Sherry, P.A., Corbin, J.E., 1979. Choline methionine interrelationships in feline nutrition. J. Anim. Sci. 49, 522–527.
    Anderson, J., Jackson, A.J., Matty, A.J., Capper, B.S., 1984. Effects of dietary carbohydrate and fibre on the tilapia Oreochromis niloticus (Linn.). Aquaculture 37, 303–314.
    Andrew J. C., Nathan D.B. 1993. A depletion–repletion folate bioassay based on growth and tissue folate concentrations of rats. J. Nutr. 123, 926–932.
    Andrews, J.W., Murai, T., 1978. Dietary niacin requirements for channel catfish. J. Nutr. 108, 1508–1511.
    Andrews, J.W., Murai, T., 1979. Pyridoxine requirements of channel catfish. J. Nutr. 109, 533–537.
    Aoe, H., Masuda, I., 1967. Water–soluble vitamin requirements of carp:Ⅱ. Requirements for p–aminobenzoie acid and inositol. J. Bull. Jpn. Soc. Sci. Fish. 33, 674–680.
    Aoe, H., Masuda, I., Saito, T., Komo, A., 1967a. Water–soluble vitamin requirement of carp-IV. Requirement for thiamine. Bull. Jpn. Soc. Sci. Fish. 33, 970–974.
    Aoe, H. Masuda, I, Saito, T., Komo, A., 1967b. Water–soluble vitamin requirements of carp.1. Requirement for vitamin B2. Bull. Jpn. Soc. Sci. Fish. 33, 355–360.
    Aoe, H., Masuda, I., Takada, T., 1967c. Water–soluble vitamin requirements of carp–III. Requirement for niacin. Bull. Jpn. Soc. Sci. Fish. 33, 681–685.
    Aoe, H. Masuda, I, Saito, T., Komo, A., 1967d. Water–soluble vitamin requirements of carp.5. Requirement for folic acid. Bull. Jpn. Soc. Sci. Fish. 33, 1068–1071.
    Aoe, H., Masuda, I., Mimura, T., Saito, T., Komo, A., Kitamura, T., 1969. Water–soluble vitamin requirements of carp-VI. Requirement for thiamine and effects of antithiamines. Bull. Jpn. Soc. Sci. Fish. 35, 459–465.
    Arai, S., Nose, T., Hashimoto, Y., 1972. Qualitative requirements for of young eels, Anguilla japonica, for water–soluble vitamins and their symptoms. Bull.Freshwater Res. Lab. Tokyo 22, 69–83.
    Ashley, L.M., 1972. Nutritional pathology. In, Halver J.E. (Ed.), Fish Nutrition. Academic Press, Inc., New York, pp. 439–537.
    The Association of Vitamin Chemists Inc., 1947. Methods of Vitamin Assay, Chicago. New York: Interscience Publishers, Inc. 189 pp.
    Association of Official Analytical Chemists (AOAC), 1990. Official Methods of Analysis of Official Analytical Chemists International. 16th edn. Association of Official Analytical Chemists, Arlington, VA.
    Axelrod, A.E., 1971. Immune processes in vitamin deficiency states. Am. J. Clin. Nutr. 24, 265–271.
    Bell, G.R., Higgs, D.A., Traxler, G.S., 1984. The effect of dietary ascorbate, zinc, and manganese on the development of experimentally induced bacterial kidney disease in sockeye salmon (Onchorhynchus nerka). Aquaculture 36, 293–311.
    Bell, M.V., Henderson, R.J., Sargent, J.R., 1985. Effects of dietary polyunsatuated fatty acid deficies on mortality, growth and gill structure in the turbot, Scophthalmus maximus. J. Fish Biol. 26, 181–191.
    Bjerkeng, B., Refstie, S., Fjalestad, K.T., Storebakken, T., R?dbotten, M., Roem, A.J., 1997. Quality parameters of the flesh of Atlantic salmon (Salmo salar) as affected by dietary fat content and full–fat soybean meal as a partial substitute for fish meal in the diet. Aquaculture 157, 297–309.
    Blaxter, J.H.S., Roberts, R.J., Balbontin, F., McQueen, A., 1974. B group vitamin deficiency in cultured herring. Aquaculture 3, 387–389.
    Boni, L., Kieckens, L., Hendrikx, A., 1980. An evaluation of a modified erythrocyte transketolase assay for accessing thiamin nutritional adequacy. J. Nutr. Sci. Vitaminol. 25, 507–514.
    Boonyaratpalin, M., Unprasert, N., Buranapanidgit, J., 1991. Optimal dietary ascorbic acid level and ascorbic acid deficiency symptoms in sea bass (Lates calcarifer). In: Wenk, C., Fenster, R., V?lker, L. (Eds.), Ascorbic Acid in Domestic Animals. Kartause Ittingen, Switzerland, 9–12 October 1990, pp. 149–156.
    Boonyaratpalin, M., Wanakowat, J., 1993. Effects of thiamin, riboflavin, pantothenic acid and inositol on growth, feed efficiency and mortality of juvenile sea bass. In: Kaushik, S.J., Luguet, P. (Eds.), Fish Nutrition in Practice, vol. 61. Les Collogues, Paris, pp. 819–828.
    Briggs, J.C., 1960. Fishes of worldwide (circumtropical) distribution. Copeia, 3,171—180.
    Brunson, M.W., Robinette, H. R., Bowser, P. R., Wellborn, T. L., 1983. Nutritional gill disease associated with starter feeds for channel catfish fry. Prog. Fish–Cult. 45, 119–120.
    Buhler, D.R., Halver, J.E., 1961. Nutrition of salmonid fishes: IX. Carbohydrate requirements of chinook salmon. J. Nutr., 74, 307–318.
    Bureau, D.P., Harris, A.M., Bevan, D.J., Simmons, L.A., Azevedo, P.A., Cho, C.Y., 2000. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture 181, 281–291.
    Burtle, G.J., Lovell, R.T., 1989. Lack of response of channel catfish (Ictalurus punctatus) to dietary myo–inositol. Can. J. Fish. Aquat. Sci. 46, 218–222.
    Butthep, C., Sitasit, P., Bonyaratpalin, M., 1985. Water–soluble vitamins essential for the growth of Clarias. In, Cho, C.Y., Cowey, C.B., Watanabe, T. (Eds.), Finfish nutritoion in Asia, methodological approaches to reach and development. International Development Research Center, Ottawa. pp. 118–129.
    Carter, C.G., Hauler, R.C., 2000. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture 185, 299–311.
    Castledine, A.J., Cho, C.Y. Silnger, S.J., Hicks, B., Bayley, H.S., 1978. Influence of dietary biotin level on growth, metabolism and pathology of rainbow trout. J. Nutr. 108, 698–711.
    Catacutan, M.R., Coloso, R.M., 1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture 131, 125–133.
    Catcutan, M.R., De La Cruz, M., 1979. Growth and midgut cell profile of Penaeus monodon juvenile fed water-soluble vitamin diets. Aquaculture 81, 137–144.
    Chan, M.M., 1991. Choline. In: Handbook of Vitamins (Machlin, L. I., ed.), 2nd ed., pp. 537–556. Marcel Dekker, New York, NY.
    Chen, B.S., 2001. Studies on the net–cage culture and disease control technology of cobia, Rachycentron canadum Linneaus. 6th Asian Fisheries Forum Book of Abstracts. Asian Fisheries Society, Manila, Philippines, p. 41.
    Chen, H.Y., Hwang, G., 1992. Estimation of the dietary riboflavin required to maximize tissue riboflavin concentraction in juvenile shrimp (Penaeus monodon). J. Nutr. 122, 2474–2478.
    Chen, H.Y., Wu, F.C., Tang, S.Y., 1991. Thiamin requirement of juvenile shrimp (Penaeus monodon). J. Nutr. 121, 1984–1989.
    Chen, H.Y., Wu, F.C., Tang, S.Y., 1994. Sensitivity of transketolase to the thiamin status of juvenile marine shrimp (Penaeus monodon). Comp. Biochem. Physiol. 109A, 655–659.
    Chiu, L., Ting–Shih, H., Wann–Sheng, T., Cheng–Ming, H., Su–Lean, C., Eduardo M. Leano, 2004. Cobia culture in Taiwan: current status and problems. Aquaculture 237, 155—165.
    Cho, C.Y., Cowey, C.B., 1993. Utilization of monophosphate esters of ascorbic acid by rainbow trout (Oncorhynchus mykiss). In: Kaushik, S.J., Luquet, P. (Eds.), Fish Nutrition in Practice, Biarritz (France). LesColloques, vol. 61. INRA, Paris, pp. 149–156.
    Cho, C.Y., Kaushik, S.J., 1985. Effects of protein intake on metabolizable and net energy values of fish diets. In: Cowey, C.B., Mackie, A.M., Bell, J.G. (Eds.), Nutrition and Feeding in Fish. Academic Press, London, pp. 95–117.
    Cho, C.Y., Woodward, B., 1990. Dietary pantothenic acid requirements of young rainbow trout (Oncorhynchus mykiss). FASEB J. 4, 3747.
    Chou, R.L., Her, B.Y., Su, M.S., Hwang, G., Wu, Y.H., Chen, H.Y., 2004. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229, 325–333.
    Chou, R.L., Su, M.S., Chen, H.Y., 2001. Optimal dietary protein and lipid levels for juvenile cobia Rachycentron canadum. Aquaculture 193, 81–89.
    Chuang, J.L., 1991. Fish and Shrimp. In: Niacin in Animal Nutrition (eds R., Fenster & RA Blum), pp. 34–37.
    Coates, J.A., Halver, J.E., 1958. Water–soluble vitamin requirements of silver salmon. Special Scientific Report Fisheries 281. Washington, D.C., Bureau of Sport Fisheries and Wildlife.
    Company, R., Calduch–Giner, J.A., Kaushik, S., Perez–Sanchez, J., 1999. Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture 171, 279–292.
    Cowey, C.B., 1992. Nutrition: estimating requirements of rainbow trout. Aquaculture, 100, 177–189.
    Cowey, C.B., Adron, J.W., Knox, D., Bell, G.T., 1975. Study on the nutrition of marine flatfish: the thiamine requirement of turbot (Scophthalmus maximus). Br.J. Nutr. 34, 383–390.
    Cowey, C.B., Woodward, B., 1993. The dietary requirement of young rainbow trout (Oncorhynchus mykiss) for folic acid. J. Nutr. 123, 1594–1600.
    Craig, S.R., 1994. Dietary manipulation of lipid deposition and cold tolerance in juvenile red drum, Sciaenops ocellatus. Doctoral thesis, Texas A&M university, college station, TX.
    Craig, S.R., Gatlin, D.M., 1996. Dietary choline requirement of juvenile red drum Sciaenops ocellatus . J. Nutr. 126, 1696–1700.
    Craig, S.R., Schwarz, M.H., McLean, E., 2006. Juvenile cobia (Rachycentron canadum) can utilize a wide range of protein and lipid levels without impacts on production characteristics. Aquaculture 261, 384–391.
    Dabrowski, K., Hinterleitner, S., Sturmbauer, C., El-Fiky, N., Wieser, W., 1988. Do carp larvae require vitamin C? Aquaculture 72, 295–306.
    Dabrowski, K., Segner, H., Dallinger, R., Hinterleitner, S., Sturmbauer, C., Wieser, W., 1989. Rearing of roach larvae; the vitamin C, minerals interrelationship and nutrition-related histology of the liver and intestine. J. Anim. Physiol. Anim. Nutr. 62, 188–202.
    Dabrowski, K., Kock, G., Frigg, M., Wieser, W., 1990. Requirement and utilization of ascorbic acid and ascorbate sulfate in juvenile rainbow trout. Aquaculture 91, 317–337.
    Dabrowski, K., 1991. Administration of gulonolactone does not evoke ascorbic acid synthesis in teleost fish. Fish Physiol. Biochem. 9, 215–221.
    Dabrowski, K., Matusiewicz, M., Blom, J.H., 1994. Hydrolysis, absorption and bioavailability of ascorbic acid esters in fish. Aquaculture 124, 169–191.
    Deng, D.F., Hemre, G.I., Wilson, R.P., 2002. Juvenile sunshine bass (Morone chrysops×Morone saxatilis) do not require dietary myo–inositol. Aquaculture 213, 387–393.
    Deng, D.F., Wilson, R.P., 2003. Dietary riboflavin requirement of juvenile sunshine bass (Morone Chrysops♀×Morone Saxatilis♂). Aquaculture, 218, 695–701.
    Deshimaru, O., Kuroki, K., 1979. Requirement of prawns for dietary thiamin, pyridoxine, and choline chloride. Bull. Jpn. Soc. Sci. Fish. 45, 363–367.
    De Silva, S.S., Gunasekera, R.M., Shim, K.F., 1991. Interactions of varying dietary protein and lipid levels in young red tilapia: evidence of protein sparing.Aquaculture 95, 305– 318.
    Ditty, J.G., Shaw, R.F., 1992. Larval development, distribution, and ecology of cobia Rachycentron canadum (Family: Rachycentridae) in the northern Gulf of Mexico. Fish. Bull. 90, 668–677.
    Dixon, D.G., Hilton, J.W., 1981. Influence of available dietary carbohydrate content on tolerance of waterbone copper by rainbow trout Samo gairdneri Richardson. J. Fish. Biol., 19, 509—517.
    Duncan, P.L., Lovell, R.T., 1991. Effect of folic acid on growth, survival and hematology in channel catfish (Ictalurus punctatus). Twenty–second Annual Conference of the World Aquaculture Society, San Juan, Puerto Rico, June 16–20, 1991.
    Duncan, P.L., Lovell, R.T., Butterworth, C.E., Freeberg, L.F., Tamura, T., 1993. Dietary folate requirement determined for channel catfish, Ictalurus punctatus. J. Nutr. 123, 1888–1897.
    Dupree, H.K., 1966. Vitamin essential for the growth of channel catfish, Ictalurus punctatus. U.S. Sport fish and wildlife Tech. Papers 7. pp. 7–13.
    Durve, V.S., Lovell, R.T., 1982. Vitamin C and disease resistance in channel catfish (Ictalurus punctatus). Can. J. Fish. Aquat. Sci. 39, 948–951.
    El Naggar, G.O., Lovell, R.T., 1991. L-Ascorbyl-2-monophosphate has equal antiscorbutic acitivity as L-ascorbic acid but L-ascorbyl-2-sulfate is inferior to L-ascorbic acid for channel catfish. J. Nutr.121, 1622–1626.
    El–Sayed, A.F.M., 1994. Evaluation of soybean meal, spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 127, 169–176.
    El–Sayed, A.F.M., 1998. Total replacement of fish meal with animal protein sources in Nile tilapia. Aquac. Res. 29, 275–280.
    Fickeisen, D.H., Brown, G.W., 1977. D–amino acid oxidase in various fishes. J. Fish Biol. 10, 102–105.
    Folch, J., Lees, M., Sloane–Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.
    Fowler, L.G., 1990. Feather meal as a dietary protein source in fall chinook salmon diets. Aquaculture 89, 301– 314.
    Fowler, L.G., 1991. Poultry by–product meal as a dietary protein source in fall chinook salmon diets. Aquaculture 99, 309–321.
    Fracalossi, D.M., Allen, M.E., Yuyama, L.K., Oftedal, O.T., 2001. Ascorbic acid biosynthesis in Amazonian fishes. Aquaculture 192, 321–332.
    Furuichi, M., Yone, Y., 1980. Effects of dietary dextrin levels on growth and feed efficiency, the chemical composition of liver and dorsal muscle and the absorption of dietary protein and dextrin in fishes. Bull. Jpn. Soc. Sci. fish., 46, 225—229.
    Furuichi, M., Yone, Y., 1982a. Availability of carbohydrate in nutrition of carp and red sea bream. Bull. Jpn. Soc. Sci. Fish. 48, 945–948.
    Furuichi, M., Yone, Y., 1982b. Effect of insulin on blood sugar levels of fishes. Bull. Jpn. Soc. Sci. Fish. 48, 1289–1291.
    Gabor, B., Laszlo, B., Miklos, C., Ferenc, P., Jozsef, M., 1997. Ascorbate Metabolism and its regulation in animals. Free Radic. Biol. Med. 23, 793–803.
    Goldsmith, G.A., 1971. The B vitamins. In: Beaton, G.H. (Ed.), Nutrition, vol. II. Academic Press, New York, NY, pp. 110–206.
    Gouillou–Coustans, M.F., Bergot, P., Kaushik, S.J., 1998. Dietary ascorbic acid needs of common carp (Cyprinus carpio) larvae. Aquaculture 161, 453–461.
    Graeve, M., Kattner, G., Wiencke, C., Karsten, U., 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar. Ecol. Prog. Ser., 231, 67–74.
    Griffin, M.E., Wilson, K.A., White, M.R., Brown, P.B., 1994. Dietary choline requirement of juvenile hybrid striped bass. J. Nutr. 124, 1685–1689.
    Gurr, M.I., Harwood, J.L., Frayn, K.N., 2002. Lipid Biochemistry, 5th edition. Blackwell Science, Malden, MA, pp. 1–320.
    Halver, J.E., 1957. Nutrition of salmonid fishes. III. Water–soluble vitamin requirements of chinook salmon. J. Nutr. 62, 225–243.
    Halver, J.E., 2002. The vitamins. In, Halver J.E. (Eds), Fish Nutrition, 3nd edition. Academic Press, New York, pp. 66–98.
    Halver, J.E., Ashley, L.M., Smith, R.E., 1969. Ascorbic acid requirements of coho salmon and rainbow trout. Trans. Am. Fish. Soc. 98, 762–772.
    Halver, J.E., Tiews, K., eds. Berlin, Heeneman GmbH. Hashimoto, Y., S. Arai, and T. Nose. 1970. Thiamin deficiency symptoms experimentally induced in the eel. Bull. Jpn. Soc. Sci. Fish. 36, 791–797.
    Hardy, R.W., Barrows, F.T., 2002. Diet formulation and manufacture. In: Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition, 3rd edn. Academic Press, San Diego, CA, pp.505–600.
    Hasan, M.R., Haq, M.S., Das, P.M., Mowlah, G., 1997. Evaluation of poultry–feather meal as a dietary protein source for Indian major carp. Labeo rohita fry. Aquaculture 151, 47–54.
    Hashimoto, Y., Arai, S., Nose, T., 1970. Thiamin deficiency symptoms experimentally induced in the eel. Bull. Jpn. Soc. Sci. Fish. 36, 791–797.
    Hastings, N., Agaba, M., Tocher, D.R., Leaver, M.L., Dick, J.R., Sargent, J.R., Teale, A.J., 2001. A vertebrate fatty acid desaturase with D5 and D6 activities. Proc. Natl. Acad. Sci. U. S. A., 98, 14304–14309.
    Henrique, M.M.F., Gomes, E.F., Gouillou-Coustans, M.F., Oliva-Teles, A., Davies, S.J., 1998. Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquaculture 161, 415–426.
    Hillestad, M., Johnsen, F., Austreng, E., Asgard, T., 1998. Longterm effects of dietary fat level and feeding rate on growth, feed utilization and carcass quality of Atlantic salmon. Aquacult. Nutr. 4, 89–97.
    Hilton, J.W., Cho, C.Y., Slinger, S.T., 1977. Factors affecting the stability of supplemental ascorbic acid in practical trout diets. J. Fish Res. Board Can. 34, 683–687.
    Hodges, J.E., Bean, W.B., Ohlsojn, M.A., Bleiler, R.E., 1962a. Factors affecting human antibody response. III. Immunologic responses of men deficient in pantothenic acid. Am. J. Clin. Nutr. 11, 85–93.
    Hodges, J.E., Bean, W.B., Ohlsojn, M.A., Bleiler, R.E., 1962b. Factors affecting human antibody response. V. Combined deficiencies of pantothenic acid and pyridoxine. Am. J. Clin. Nutr. 11, 187–119.
    Hosokawa, H., 1989. The vitamin requirements of fingerling yellowtail, Seriola quinqueradiata. Ph. D. dissertation. Kochi University, Japan.
    Horeker, B.L., 1957. The orcinol reaction for mixtures of pentose and heptulose. In: Colowick, S.P., Kaplan, N.O. (Eds.), Methods of Enzymology III. Academic Press, New York, NY, pp. 105–107.
    Hsu, T.S., Shiau, S.Y., 1998. Comparison of vitamin C requirement for maximum growth of grass shrimp, Penaeus monodon, with L–ascorbyl–2–monophosphate –Na and L–ascorbyl–2–monophosphate–Mg. Aquaculture 163, 203–213.
    Huang, J.W., Tian, L.X., Du, Z.Y., Yang, H.J., Liu, Y.J., 2007. Effects of dietarythiamin on the physiological status of the grouper Epiniphelus coioides. Fish. Physiol. Biochem. 33, 167–172.
    Hughes, S.G., Rumsey, G.L., Nichum, J.G., 1981. Riboflavin requirement of fingerling rainbow trout. Prog. Fish–Cult. 43, 167–172.
    Hung, S.S.O., 1989. Choline requirement of hatchery–produced juvenile white sturgeon (Acipenser transmontanas). Aquaculture 78, 183–194.
    Ikeda, M., Tsuji, M., Nakamura, S., Ichiyama, A., Nishizuka, Y., Hayaishi, O., 1965. Studies on the biosynthesis of nicotinamide adenine dinucleotide. J. Biol. Chem. 240: 1395–1401.
    Ikeda, S., Ishibash, Y., Murata. O., Nasu, T., Harada, T., 1988. Qualitative requirements of the Japanese parrot fish for water–soluble vitamins. Bull. Jpn. Soc. Sci. Fish. 54, 2029–2035.
    Ishibashi, Y., Ikeda, S., Murata, O., Nasu, T., Harada, T., 1992. Optimal supple– mentary ascorbic acid level in the Japanese parrot fish diet. Nippon Suisan Gakkaishi 58, 267–270.
    Jacobs, R., Kilburn, E., Majerus, P.W., 1970. Acetyl CoA carboxylase. The effect of biotin deficiency on enzyme in rat liver and adipose tissue. J. Biol. Chem. 245, 6462–6467.
    Jacobsohn, K.P., Azevedo, M.D., 1947. On the enzymatic destruction of thiamine. Arch. Biochem. 14, 83–86.
    Jobling, M., 1985. Growth. In: Tylter, P., Calow, P. (Eds.), Fish Energetics: New Perspective. Croom Helm, London, pp. 213–230.
    John, M.J., Mahajan, C.L., 1979. The physiological response of fishes to a deficiency of cyanocobalamin and folic acid. J. Fish Biol. 14, 127–133.
    Jover, M., Garc?′a-Go′mez, A., De la Ga′ndara, F., Pe′rez, L., 1999. Growth of Mediterranean yellowtail (Seriola dumerilii) fed extruded diets containing different levels of protein and lipid. Aquaculture 179, 25–33.
    Jurss, K., Jonas, L., 1981. Electron microscopic and biochemical investigations on the pyridoxine deficiency of the rainbow trout (Salmo gairdneri Richardson). Zool. Jahrb. Physiol. 85, 181–196. Karges, R. G., and B.
    Kashiwada, K., Kanazawa, A., Teshima, S., 1971. Studies on the production of B vitamins by intestinal bacteria. 6. Production of folic acid by intestinal bacteria of carp. Mem. Fac. Fish. Kagoshima Univ. 20, 185–189.
    Kashiwada, K., Teshima, S., Kanazawa, A., 1970. Studies on the production of Bvitamins by intestinal bacteria of carp, Cyprinus carpio. Bull. Jpn. Soc. Sci. Fish. 36, 421–424.
    Kasper, C.S., White, M.R., Brown, P.B., 2000. Choline is required by tilapia when methionine is not in excess. J. Nutr. 130, 238–242.
    Kawatsu, H., 1975. Studies on the anemia of fish–VII. Folic acid anemia in brook trout. Bull. Freshwater Fish. Res. Lab. 25, 21–31.
    Ketola, H.G., 1976. Choline metabolism and nutritional requirement of lake trout (Salvelinus namaycush). J. Anim. Sci. 43, 474–477.
    Kissil, G.W., Cowey, C.B., Adron, J.W., Richerds, R.H., 1981. Pyridoxine of the gilthead bream, Sparus aurata. Aquaculture 23, 243–255.
    Kitamura, S., Suwa, T., Ohara, S., Nakagawa, K., 1967. Studies on vitamin requirements of rainbow troutⅡ. The deficiency symptoms fourteen kinds of vitamin. Bull. Jpn. Soc. Sci. Fish. 33, 1120–1125.
    Kitamura, S., Ohara, S., Suwa, T., Nakagawa, K., 1965. Studies on vitamin requirements of rainbow trout, Salmo gairdneri. 1. On the ascorbic acid. Bull. Jpn. Soc. Sci. Fish.31, 818–826.
    Knox, E., Goswami, M.N.D., 1961. Ascorbic acid in man and animals. Adv. Clin. Chem 4, 121–205.
    Kroening, G. H., Pond, W.G., 1967. Methionine, choline and threonine interrelation- ships for growth and lipotropic action in the baby pig and rat. J. Anim. Sci. 26, 352–360.
    Kureshy, N., Davis, D.A., Aronld, C.D., 2000. Partial replacement of fish meal with meat–and–bone meal, flash–dried poultry by product meal, enzyme digested poultry by–product meal in practical diets for juvenile red drum. N. Am. J. Aquac. 62, 266– 272.
    Lall, S.P., Olivier, G., Weerakoon, D.E.M., Hines., J.A., 1990. The effect of vitamin C deficiency and excess on immune response in Atlantic salmon (Salmo salar L.). pp. 427–441 in Proceedings of the Fish Nutrition Meeting, Toba, Japan, M. Takeda and T. Watanabe, eds. Tokyo: Japan Translation Center.
    Lederer, W.H., Kumar, M., Axelrod, A.E., 1975. Effects of pantothenic acid deficiency on cellular antibody synthesis in rats. J. Nutr. 105, 17–25.
    Lee, D.J., Putnam, G.B., 1973. The response of rainbow trout to varying protein/energy ratios in a test diet. J. Nutr. 103, 916–922.
    Lee, S.M., Chou, S.H., Kim, D.J., 2000. Effects of feeding frequency and dietaryenergy level on growth and body composition of juvenile flounder, Paralichthys olivaceus (Temminck and Schlegel). Aquac. Res. 31, 917–921.
    Lehmitz, R., Spannhof, L., 1977. Transketolase activity and thiamin deficiency in the kidney of rainbow trout, Salmo gairdneri, fed raw herring. Arch. Tierenaehr. 27, 287–295.
    Leith, D., Holmes, J., Kaattari, S., 1990. Effects of vitamin nutrition on the immune response of hatchery–reared salmonids. Final Report, Project 84–45A and 84–45B. Portland, Ore., Bonneville Power Administration.
    Li, Y., Lovell, R.T., 1985. Elevated levels of dietary ascorbic acid increase immune responses in channel catfish. J. Nutr. 115, 123–131.
    Liao, I.C., Huang, T.S., Tsai, W.S., Hsueh, C.M., Chang, S.L., Leano, E. M., 2004. Cobia culture in Taiwan: current status and problems. Aquaculture 237, 155–165.
    Lim, C., Klesius, P.H., 2001. Influence of dietary folic acid on growth and resistance of Nile tilapia, Oreochromis niloticus to Streptococcus iniae. 6th Asian Fisheries Forum Book of Abstracts. pp. 150.
    Lim, C., LeaMaster, B.R., Brock, J.A., 1993. Riboflavin requirement of fingerlings red hybrid tilapia grown in seawater. J. World Aquacult. Soc. 24, 451–458.
    Lim, C., LeaMaster, B.R. Brock, J.A., 1995. Pyridoxine requirement of fingerling red hybrid tilapia growth in seawater. J. Appl. Aqualt. 5, 49–60.
    Lim, C., Lovell, R.T., 1978. Pathology of the vitamin C deficiency syndrome in channel catfish (Ictalurus punctatus). J. Nutr. 108, 1137–1146.
    Limsuwan, T., Lovell, R., 1981. Intestinal synthesis and absorption of vitamin B12 in channel catfish. J. Nutr. 111, 2125–2132.
    Lin, M.F., Shiau, S.Y., 2005. Dietary L–ascorbic acid affects growth, nonspecific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244, 215–221.
    Lovell, R.T., Buston, J.C., 1984. Biotin supplementation of practical diets for channel catfish. J. Nutr. 114, 1092–1096.
    Lovell, R.T., Lim, C., 1978. Vitamin C in pond diets for channel catfish. Trans. Am. Fish. Soc. 107, 321–325.
    Lovell, R.T., Limsuwan, T., 1982. Intestinal synthesis and dietary nonessentiality of vitamin B12 for tilapia nilotica. Trans. Am. Fish. Soc. 111, 485–490.
    Lunger, A.N., Craig, S.R., McLean, E., 2006. Replacement of fish meal in cobia(Rachycentron canadum) diets using an organically certified protein. Aquaculture 257, 393–399.
    Lunger, A.N., McLean, E., Craig, S.R., 2007. The effects of organic protein supplementation upon growth, feed conversion and texture quality parameters of juvenile cobia (Rachycentron canadum). Aquaculture 264, 342–352.
    Lunger, A.N., McLean, E., Gaylod, T.G., Kuhn, D., Craig, S.R., 2007. Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture 271, 401–410.
    Mahajan, C.L., Agrawal, N.K., 1979. Vitamin C deficiency in Channa punctatus Bloch. J. Fish Biol. 15, 613–622.
    Mahajan, C.L., John, M.J., 1981. Haematological and haemopoietic studies in an air–breathing fish on cyanocobalamin and folacin deficient diet. Scand. J. Haematol. 27, 346–354.
    Marson, J.V., Donaldson, W.E., 1972. Fatty acid synthesising systems in chick liver. Influences of biotin deficiency and dietary fat. J. Nutr. 102, 667–672.
    Martinez, C.D., Escobar, B.L., Olvera-novoa, M.A., 1990. The requirement of Cilasoma urophthalmus (Cunther) fry for pantothenic acid and the pantothenic signs of deficiency. Aquacult. Fish. Manag. 21, 145–156.
    Mathews, C.K., van Holde, K.E., 1990. Biochemistry. Benjamin Cumming, Redwood City, CA. Masumoto, T., Hardy, R.W., Casillas, E., 1987. Comparison of transketolase activity and thiamin pyrophosphate levels in erythrocytes and liver of rainbow trout (Salmo gairdneri) as indicators of thiamin status. J. Nutr. 117, 1422–1426.
    Masumoto, T., Hardy, R.W., Stickney, R.R., 1993. Gill lipid metabolism in pantothenic acid-deficient rainbow trout (Oncorhynchus mykiss). In: Fish Nutrition in Practice (Kanshik, S.J., Luquet, P., eds.), pp. 247–256. INRA, (Les Colloques, n.61), Paris, France.
    Mattivi, F., Monetti, A., Vrhov?ek, U., Tonon, D., Andrés–Lacueva, C., 2000. High–performance liquid chromatographic determination of the riboflavin concentration in white wines for predicting their resistance to light. Journal of Chromatography A 888, 121–127.
    
    Mazik, P.M., Brandt, T.M., Tomasso, J.R., 1987. Effects of dietary vitamin C on growth, caudal fin development and tolerance of aquaculture–related stressors in channel catfish. Prog. Fish–Cult. 49, 13–16.
    McDowell, L.R., 1989. Vitamins in animal nutrition. pp.236–255.
    McGoogan, B.B., Gatlin III, D.M., 1999. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus: I. Effects of dietary protein and energy levels. Aquaculture 178, 333–348.
    McLaren, B.A., Keller, E., O'Donnell, D.J., Elvehjem, C.A., 1947. The nutrition of rainbow trout. I. Studies of vitamin requirements. Arch. Biochem. Biophys. 15, 169–178.
    Miller, C.L., Davis, D.A., Phelps, R.P., 2005. The effects of dietary protein and lipid on growth and body composition of juvenile and sub-adult red snapper, Lutjanus campechanus (Poey, 1860). Aquac. Res. 36, 52–60.
    Milliamena, O.M., 2002. Replacement of fish meal by animal byproduct meals in a practical diet for grow–out culture of grouper Epinephelus coioides. Aquaculture 204, 75– 84.
    Mitra, G., Mukhopadhyay, P.K., 2003. Dietary essentiality of ascorbic acid in rohu larvae: Quantification with ascorbic acid enriched zooplankton. Aquacult. Inter. 11, 81–93.
    Mohamed, J.S., 2001. Dietary pyridoxine requirement of the Indian catfish, Heteropneustes fossilis. Aquaculture, 194, 327–335.
    Mohanty, S.S., Samantaray, K., 1997. Effects of varing levels of dietary protein on the growth performance and feed conversion efficiency of fingerling snakehead Channa striata. Aquacult. Nutri. 2, 89–94.
    Montero, D., Marrero, M., Izquierdo, M.S., Robaina, L., Vergara, J.M., Tort, L., 1999. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture 171, 269– 278.
    Moon, H.Y.L., Gatlin III, D.M., 1994. Effects of dietary animal proteins on growth and body composition of the red drum (Sciaenops ocellatus). Aquaculture 120, 327–340.
    Morris, P.C., Davies, S.J., 1995. The requiretient of the gilthead seabream (Sparus aurata L) for nicotinic acid. Animal Science 61, 437– 443.
    Morito, C.L.H., Conrad, D.H., Hilton, J. W., 1986. The thiamin deficiency signs and requirement of rainbow trout (Salmo gairdneri, Richardson). Fish Physiol. Biochem.1, 93–104.
    Mulero, V., Esteban, M.A., Meseguer, J., 1998. Effects of in vitro addition ofexogenous vitamins C and E on gilthead seabream (Sparus aurata L.) phagocytes. Vet. Immunol. Immunopathol. 66, 185–199.
    Murai, T., Andrews, J.W., 1978a. Riboflavin requirement of channel catfish fingerlings. J. Nutr. 108, 1512–1517.
    Murai, T., Andrews, J.W., 1978b. Thiamin requirement of channel catfifh fingerlings. J. Nutr. 108, 176–180.
    Murai, T., Andrews, J.W., 1979. Pantothenic acid requirements of channel catfish fingerlings. J. Nutr. 109, 1140–1142.
    Mustin, W.G., Lovell, R.T., 1992. Na–L–Ascorbyl–2–monophosphate as a source of vitamin C for channel catfish. Aquaculture 105, 95–105.
    Nagata, Y., Shimojo, T., Akino, T., 1988. Two spectrophotometric assay for D–amino acid oxidase: for the study of distribution patterns. Int. J. Biochem. 20, 1235–1238.
    Navarre, O., Halver, J., 1989. Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture 79, 207–221.
    Nematipour, G.R., Brown, M.L., Gatlin III, D.M., 1992. Effects of dietary carbohydrate: lipid ratio on growth and body composition of hybrid striped bass. J. World Aquac. Soc. 23, 128–132.
    Nematipour, G.R., Gatlin, D.M., 1993. Requirement of hybrid striped bass for dietary (n–3) highly unsaturated fatty acids. J. Nutr. 123, 744–753.
    Ng, W.K., Serrini, G., Zhang, Z., Wilson, R.P., 1996. Niacin requirement and inability of tryptophan to act as a precursor of NAD+ in channel catfish, Ictalurus punctatus. Aquaculture 152, 273–285.
    NRC (National Research Council), 1993. Nutrient Requirements of Fish. National Academy Press, Washington, DC.
    Ogino, C., 1965. B vitamins requirements of carp, Cyprinus carpio–I. Deficiency symptons and requirement of vitamin B6. Bull. Jpn. Soc. Sci. Fish. 31, 546–551.
    Ogino, C., 1967. B vitamin requirements of carp–II. Requirements for riboflavin and pantothenic acid. Bull. Jpn. Soc. Sci. Fish. 33, 351–354.
    Ogino, C., Uki, N., Watanabe, T., lida, Z. & Ando, K., 1970. B vitamin requirements of carp. IV. Requirement for choline. Bull. Jpn. Soc. Sci. Fish. 36, 1140–1146.
    Ogino, C., Watanabe, T., Kakino, J., Iwanaga, N., Mizuno, M., 1970. B vitamin requirements of carp–Ⅲ. Requirement for biotin. Bull. Jpn. Soc. Sci. Fish. 36,734–740.
    Ortuno, J., Esteban, Meseguer, J., 1999. Effects of high dietary intake of vitamin C on non–specific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 9, 429– 443.
    Ortuno, J., Cuesta, A., Esteban, A., Meseguer, J., 2001. Effect of oral administration of high vitamin C and E dosages on the gilthead seabream (Sparus aurata L.) innate immune system. Vet. Immunol. Immunopathol. 79, 167–180.
    Ozorio, R.O.A., Valente, L.M.P., Pousao-Ferreira, P., Oliva-Teles, A., 2006. Growth performance and body composition of white sea bream (Diplodus sargus) juveniles fed diets with different protein and lipid levels. Aquac. Res. 37, 255–263.
    Peres, H., Lim, C., Klesius, P.H., 2004. Growth, chemical composition and resistance to Streptococcus iniae challenge of juvenile Nile tilapia (Oreochromis niloticus) fed graded levels of dietary inositol. Aquaculture 235, 423–432.
    Phillips, A.M., 1963. Folic acid as an anti–anemia factor for brook trout. Prog. Fish–Cult. 25, 132–134.
    Phillips, A.M., Brockway, D.R., 1947. The niacin and biotin requirement of trout. Trans. Am. Fish. Soc. 76, 152–159.
    Phillips. A.M., Jr., Podoliak. H.A. Brockway, D.R., Vaughn, R.R., 1958. The nutrition of the trout. Fish. Res. Bull., 21, 93.
    Phillips, A.M., Tunison, A.V., Shaffer, H.B., White, G.K., Sallivan, M.W., Vincent, C., Brockway, D.R., McCay, C.M., 1945. The nutrition of trout. The vitamin requirement of trout. Fish. Res. Bull. 7, 1–31.
    Pieper, A., Pfeffer, E., 1980. Studies on the effect of increasing proportion of sucrose or gelatinized maize starch in diet for rainbow trout (Salmo gairdneri, R.) on the utilization of dietary energy and protein. Aquaculture, 20, 333–342.
    Poston, H.A., 1967. Effect of dietary L–ascorbic acid on immature brook trout. pp. 45–51 in Fisheries Research Bulletin No 31. Albany, N.Y.: State of New York Conservation Department.
    Poston, H.A. 1969. The effect of excess levels of niacin on the lipid metabolism of fingerling brook trout. pp. 9–12 in Fisheries Research Bulletin No. 32. Albany, N.Y., State of New York Conservation Department.
    Poston, H.A., 1976a. Relative effect of two dietary water–soluble analogues os menaquinone on coagulation and packed cell volume of blood of lake trout,Salvelinus namaycush. J. Fish. Res. Board Can. 33, 1791–1793.
    Poston, H.A., 1976b. Optimum level of dietary biotin for growth, feed utilization, and swimming stamina of fingerling lake trout (Salvelinus namaycush). J. Fish. Res. Board Can. 33, 1803–1806.
    Poston, H.A., 1991. Choline requirement of swim–up rainbow trout fry. Prog. Fish–Cult. 53, 220–223.
    Poston, H.A., DiLorenzo, R.N., 1973. Tryptophan conversion to niacin in the brook trout (Salvelinus fontinalis). Proc. Soc. Exp. Biol. Med. 144, 110–112.
    Poston, H.A., McCartney, T.H., 1974. Effect of dietary biotin and lipid on growth, stamina, lipid metabolism and biotin–containing enzymes in brook trout (Salvelinus fontinalis). J. Nutr. 104, 315–322.
    Poston, H.A., Page, J.W., 1982. Gross and histological signs of dietary deficiencies of biotin and pantothenic acid in lake trout, Salvelinus namaycush. Cornell Vet. 72, 242–261.
    Poston, H.A., Wolfe, M.J., 1985. Niacin requirement for optimum growth, feed conversion and protection of rainbow trout, Salmo gairdneri Richardson, from ultraviolet–B–irraduaiton. J. Fish Dis. 8, 451–460.
    Quartararo, N., Allan, G.L., Bell, J.D., 1998. Replacement of fish meal in diets for Australian snapper, Pagrus auratus. Aquaculture 166, 279–295.
    Raclot, T., Groscolas, R., Cherel, Y., 1998. Fatty acid evidence for the importance of myctophid fishes in the diet of king penguins, Aptenodytes patagonicus. Mar. Biol., 32, 523–533.
    Refstie, S., Storebakken, T., Baeverfjord, G., Roem, A.J., 2001. Long–term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture 193, 91–106.
    Robaina, L., Moyano, F.J., Izquierdo, M.S., Socorro, J., Vergara, J.M., Montero, D., 1997. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 157, 347–359.
    Robbins, K.R., Norton, H.W., Baker, D.H., 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109, 1710–1714.
    Roberts, M.L., Davies, S.J., Pulsford, A.L., 1995. The influence of ascorbic acid (vitamin C) on non–specific immunity in the turbot (Scophthalmus maximus L.).Fish Shellfish Immunol. 5, 27–38.
    Robinson, E.H., 1990. Reevaluation of the ascorbic acid (vitamin C) requirement of channel catfish (Ictalurus punctatus). FASEB J.4: 3745 (abstr.).
    Robinson, E.H., Lovell, R.T., 1978. Essentiality of biotin for channel catfish Ictalurus punctatus fed lipid and lipid–free diets. J. Nutr. 108, 1600–1605.
    Roem, A.J., Stickney, C.C., Kohler, C.C., 1990. Vitamin requirements of blue tilapia in a recirculating water system. Prog. Fish–Cult. 52, 15–18.
    Roem, A.J., Sticjney, R.P., Kohler, C.C., 1991. Dietary pantothenic acid requirement of the blue tilapia. Prog. Fish–Cult. 53, 216–219.
    Ronald, G. T., Paul, B. B., 2000. Dietary choline requirement of juvenile yellow perch (Perca flavescens). J. Nutr. 130, 95–99.
    Rumsey, G.L., 1991. Choline–betaine requirements of rainbow trout Oncorhynchus mykiss . Aquaculture 95, 107–116.
    Sakaguchi, H., Takeda, F., Tange, K., 1969. Studies on vitamin requirements by yellowtail I. Vitamin B6 and vitamin C deficiency symptoms. Bull. Jpn. Soc. Sci. Fish. 35, 1201–1206.
    Sakti Vel, M., Sampath, K., Pandian, T.J., 1990. Dosage effect of pyridoxin, folacin and ascorbic acid on the blood parameters of Cyprinus carpio. In, Hirano, R., Hanyu, I. (Eds.), The Second Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines, pp. 263–266.
    Samantaray, K., Mohanty, S.S., 1997. Interactions of dietary levels of protein and energy on figing snakehead, Channa striata. Aquaculture 156, 241–149.
    Sato, M., Yoshinaka, R., Ikeda, S., 1978. Dietary ascorbic acid requirement of rainbow trout for growth and collagen formation. Bull. Jpn. Soc. Sci. Fish. 44, 1029–1035.
    Satoh, S., Hernández, A., Tokoro, T., Morishita, Y., Kiron, V., Watanabe, T., 2003. Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet. Aquaculture 224, 271–282.
    Sealey, W.M., Gatlin III, D.M., 1999. Dietary vitamin C requirement of hybrid striped bass Morone chrysops×M. saxatilis. J. World Aquac. Soc. 30, 297–301.
    Serrini, G., Zhang, Z., Wilson, R.P., 1996. Dietary riboflavin requirement of fingerling channel catfish (Ictalurus punctatus). Aquaculture 139, 285–290.
    Shiau, S.Y., Chen, M.J., 1993. Carbohydrate utilization by tilapia (Oreochromisniloticus×O. aureus) as influenced by different chromium sources. J. Nutr. 123, 1747–1753.
    Shiau, S.Y., Chin, Y.H., 1998. Dietary biotin requirement for maximum growth of juvenile grass shrimp, Penaeus monodon. J. Nutr. 128, 2494–2497.
    Shiau, S.Y., Chin, Y.H., 1999. Estimation of the dietary biotin requirement of juvenile hybrid tilapia, Oreochromis niloticus×O. aureus. Aquaculture 170, 71–78.
    Shiau, S.Y., Hsieh, H.L., 1997. Vitamin B6 requirements of tilapia Oreochromis niloticus×O. aureus fed two dietary protein concentrations. Fisheries Sci. 6, 1002–1007.
    Shiau, S.Y., Hsu, C.W., 1999. Dietary pantothenic acid requirement of juvenile grass shrimp, Penaeus monodon. J. Nutr. 129, 718–721.
    Shiau, S.Y., Hsu, T.S., 1999. Quantification of vitamin C requirement for juvenile hybrid tilapia, Oreochromis niloticus×Oreochromis aureus, with L–ascorbyl–2– monophosphate–Na and L–ascorbyl–2–monophosphate–Mg. Aquaculture 175, 317– 326.
    Shiau, S.Y., Huang, S.Y., 2001. Dietary folic acid requirement determined for grass shrimp, Penaeus monodon. Aquaculture 200, 339– 347.
    Shiau, S.Y., Lan, C.W., 1996. Optimaldietary protein level and energy ratio for growth of grouper(Epinephelus malabaricus). Aquaculture 145, 259–266.
    Shiau, S.Y., Lin, S.F., 1993. Effect of supplemental dietary chromium and vanadium on the utilization of different carbohydrates in tilapia, Oreochromis niloticus×O. aureus. Aquaculture 110, 321–330.
    Shiau, S.Y., Lo, P.S., 2000. Dietary choline requirements of juvenile hybrid tilapia, Oreochromis niloticus×O.aureus. J.Nutr. 130, 100–103.
    Shiau, S.Y., Lung, C.Q., 1993a. Estimation of the vitamin B12 requirement of the grass shrimp, Penaeus monodon. Aquaculture 117, 157–163.
    Shiau, S.Y., Lung, C.Q., 1993b. No dietary vitamin B12 required for juvenile tilapia Oreochromis niloticus×O. aureus. Comp. Biochem. Physiol. 105A, 147–150.
    Shiau, S.Y., Su, S.L., 2005. Juvenile tilapia (Oreochromis niloticus×Oreochromis aureus) requires dietary myo-inositol for maximal growth. Aquaculture 243, 273–277.
    Shiau, S.Y., Suen, G.S., 1992. Estimation of the niacin requirements for tilapia fed diets containing glucose or dextrin. J. Nutr. 122, 2030–2036.
    Shiau, S.Y., Suen, G.S., 1994. The dietary requirement of juvenile grass shrimp(Penaeus monodon) for niacin. Aquaculture 25, 139–145.
    Shiau S.Y., Wu, M.H., 2003. Dietary vitamin B6 requirement of grass shrimp, Penaeus monodon. Aquaculture 225, 397–404.
    Shimeno, S., 1991. Yellowtail, Seriola quinqueradiata. In, Handbook of Nutrition Requirement of Finfish, Wilson, R.P. (Ed.), Boca Raton, pp. 181–191.
    Smith, C.E., Brin, M., Halver, J.E., 1974. Biochemical, physiological, and pathological changes in pyridoxine deficient rainbow trout (Salmo gairdneri ). J. Fish. Res. Board Can. 31, 1893–1898.
    Smith, C.E., Halver, J.E., 1969. Folic acid anemia in coho salmon. J. Fish. Res. Board Can. 26, 111–114.
    Soliman, A.K., Jauncey, K., Roberts, R.T., 1987. Stability of ascorbic acid vitamin C and its forms in fish feeds during processing, storage and leaching. Aquaculture 60, 73–83.
    Soliman, A.K., Wilson, R.P., 1992a. Water-soluble vitamin requirements of tilapia. 2. Riboflavin requirement of blue tilapia, Oreochromis aureus. Aquaculture 104, 309–314.
    Soliman, A.K., Wilson, R.P., 1992b. Water-soluble vitamin requirements of tilapia. 1. Pantothenic acid requirement of blue tilapia, Oreochromis aureus. Aquaculture 104, 121–126.
    Steffens, W., 1970. The vitamin requirements of rainbow trout (Salmo gairdneri). Int. Rev. Gesamten Hydrobiol. 59, 255–282.
    Steffens, W., 1994. Replacing fish meal with poultry by-product meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture 124, 27–34.
    Stetten, M.R., Stetten, D.W., Jr., 1946. Biological conversion of inositol into glucose. J.Biol. Chem. 164, 85
    Steven, R.C., Delbert, M.G., 1996. Dietary choline requirement of juvenile red drum (Sciaenops ocellatus). J. Nutr. 126, 1696–1700.
    Stickney, R.R., McGeachinD., R.B., Lewis, H., Marks, J., Riggs, A., Sis, R.F., Robinson, E. H., Wurts., W., 1984. Response of Tilapia aurea to dietary vitamin C. J. World Maricult. Soc. 15, 179–185.
    Storebakken, T., Kvien, I.S., Shearer, K.D., Grisdale-Helland, B., Helland, S.J., Berge, G.M., 1998. The apparent digestibility of diets containing fish meal, soybean meal or bacterial meal fed to Atlantic salmon (Salmo salar): evaluation of different faecal collection methods. Aquaculture 169, 195–210.
    Sugita, H., Miyajima, C., Deguchi, Y., 1990. The vitamin B12 producing ability of intestinal bacteria isolated from tilapia and channel catfish. Nippon Suisan Gakkaishi 56, 701.
    Sugita, H., Miyajima, C., Deguchi, Y., 1991a. Vitamin B12 pruducing ability of the intestinal microflora of fresh water fish. Aquaculture 92, 267–276.
    Sugita, H., Takahashi, J., Deguchi, Y., 1992. Production and consumption of biotin by the intestinal microflora of cultured freshwater fishes. Biosci., Biotechnol., and Biochem. 56, 1678–1679.
    Sugita, H., Takahashi, J., Miyajima, C., Deguchi, Y., 1991b. Vitamin B12 pruducing ability of the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Agric. Biol. Chem. 55, 893–894.
    Takeda T, Yone Y., 1971. Studies of nutrition of red seabream. 2. Comparison of vitamin B6 requirementlevel between fish fed a synthetic diet and fish fed beef liver during prefeeding period. Rep Fish Res Lab, Kyushu Univ. pp. 37–47.
    Takeuchi, L., Takeuchi, T., Ogino, C., 1980. Riboflavin requirements in carp and rainbow trout. Bull. Jpn. Soc. Sci. Fish. 46, 733–737.
    Takeuchi, T., Yokoyama, M., Watanabe, T., Ogino, C., 1978. Optimum ratio of dietary energy to protein for rainbow trout. Nippon Suisan Gakkaishi 44, 729–732.
    Thomas, P., 1984. Influence of some environmental variables on the ascorbic acid status of mullet, Mugil cephalus L., tissues. I. Effect of salinity, capture-stress, and temperature. J. Fish Biol. 25, 711–720.
    Thompson, I., White, A., Fletcher, T.C., Houlihan, D.F., Secombes, C.J., 1993. The effect of stress on the immune response of Atlantic salmon (Salmo salar L.) fed diets containing different amounts of vitamin C. Aquaculture 114, 1–18.
    Tucker, B.W., Halver, J.E., 1986. Utilization of ascorbate-2-sulfate in fish. Fish Physiol. Biochem. 2, 151–160.
    Twibell, R.G., Brown, P.B., 2000. Dietary choline requirement of juvenile yellow perch (Perca flavescens). J. Nutr. 130, 95–99.
    Venugopal, P.B., 1985. Choline. In: Methods of Vitamin Assay (Augustin, J., Klein, B.P., Becker, D., Venugopal, P., eds.), pp. 555–573. John Wiley and Sons, New York, NY.
    Verlhac, V., Gabaudan, J., 1994. Influence of vitamin C on the immune system of salmonids. Aquac. Fish. Manage. 25, 21–36.
    Walter, G.M., Lovell, R.T., 1992. Na-L-ascorbyl-2-monophosphate as a source of vitamin C for channel catfish. Aquaculture 105, 95–100.
    Walton, M.J., Cowey, C.B., Andron, J.W., 1984. Effects of biotin deficiency in rainbow trout (Salmo gairdneri) fed diets of different lipid and carbohydrate content. Aquaculture 37, 21–38.
    Wang, J.T., Liu, Y.J., Tian, L.X., Mai, K.S., Du, Z.Y. Wang, Y., Yang, H.J., 2005. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 249, 439–447.
    Wang, X.J., Kim, K.W., Bai, S.C., 2003a. Comparison of L-ascorbyl-2-monophos- phate-C a with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish (Sebastes schlegeli). Aquaculture 225, 387–395.
    Wang, X.J., Kim, K.W., Bai, S.C., Huh, M.D., Cho, B.Y., 2003b. Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture 215, 21–36.
    Wang, Y., Guo, J. L., Bureau, D. P., Cui, Z. H., 2006. Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibea miichthioides). Aquaculture 252, 476–483.
    Warnock, L.G., 1970. A new approach to erythrocyte transketolase measurement. J. Nutr. 100, 1057–1062.
    Webster, C.D., Thompson, K.R., Morgan, A.M., Grisby, E.J., Gannam, A.L., 2000. Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass (Morone chrysops×M. saxatilis). Aquaculture 188, 299–309.
    White, A., Fletcher, T.C., Secombes, C.J., Houlihan, D.F., 1993. The effect of different dietary levels of vitamins C and E on their tissue levels in the Atlantic salmon, Salmo salar L. In: Kaushik, S.J., Luquet, P. (Eds.), Fish Nutrition in Practice, Biarritz, France, 24–27 June 1991. INRA Editions, Les Colloques, pp. 203–207.
    Williams, K.C., Barlow, C.G., Rodgers, L., Hockings, I., Agcopra, C., Ruscoe, I., 2003. Asian seabass Lates calcarifer perform well when fed pelleted diets high in protein and lipid. Aquaculture 225, 191–206.
    Wilson, R.P., 1973. Absence of ascorbic acid synthesis in channel catfish (Ictaluruspunctatus) and blue catfish (Ictalurus furcatus). Comp. Biochem. Physiol., B 46, 635–638.
    Wilson, R.P., Bowser, P.R., Poe, W.E., 1983. Dietary pantothenic acid requirement of fingerling catfish. J. Nutr. 113, 2224–2228.
    Wilson, R.P., Poe, W.E., 1973. Impaired collagen formation in the scorbutic channel catfish. J. Nutr. 103, 1359–1364.
    Wilson, R.P., Poe, W.E., 1988. Choline nutrition of fingerling channel catfish. Aquaculture 68, 65–71.
    Wood, E.M., Yasutake, W.T., 1957. Histopathology of fish-V. Gill disease. Prog. Fish-Cult. 19, 7–13.
    Woodward, B. 1982. Riboflavin supplementation of diets for rainbow trout. J. Nutr. 112, 908–913.
    Woodward, B., 1983a. Riboflavin nutrition of the rainbow trout. Proceedings of the 17th annual nutrition conference for feed manufacturers. pp. 102–107.
    Woodward, B., 1983b. Sensitivity of hepatic D-amino acid oxidase and glutathione reductase to the riboflavin status of the rainbow trout (Salmo gairdneri). Aquaculture 34, 193–201.
    Woodward, B., 1984. Symptoms of severe riboflavin deficiency without ocular opacity in rainbow trout (Salmo gairdneri). Aquaculture 39, 275–281.
    Woodward, B., 1985. Riboflavin requirement for growth, tissue saturation and maximal flavin-dependent enzyme activity in young trout (Salmo gairdneri) at two temperatures. J. Nutr. 115, 78–84.
    Woodward, B., 1989. Dietary requirements of some water soluble vitamins for young rainbow trout. In, Proceedings of the 25th Annual Nutrition Conference for Feed Manufacturers, Toronto, Ontario, pp. 25–33.
    Woodward, B. 1990. Dietary vitamin B6 requirements of young rainbow trout (Oncorhynchus mykiss). FASEB J. 4, 3748 (abstr.).
    Woodward, B., 1994. Dietary vitamin requirements of cultured young fish, with emphasis on quantitative estimates for salmonids. Aquaculture 124, 133–168.
    Woodward, B., Frigg, M., 1989. Dietary biotin requirements of young rainbow trout (Salmo gairdneri) determined by weight gain, hepatic biotin concentration and maximal biotin-dependent enzyme activities in liver and white muscle. J. Nutr. 119, 54–60.
    Wu, M.S, 2000. Vitamin B6 requirements of juvenile grass shrimp, Penaeus monodonand juvenile malabar grouper, Epinephelus malabaricus. Master thesis, National Taiwan Ocean University, Keelung, Taiwan.
    Yano, T., Nakao, M., Furuichi, M., Yone, Y., 1988. Effect of dietary choline, pantothenic acid and vitamin C on the serum complement activity of red sea bream. Bull. Jpn. Soc. Sci. Fish. 54, 141–144.
    Yone, Y., Fujii., M., 1974. Studies on nutrition of red sea bream. 10. Qualitative requirements for water-soluble vitamins. Rep. Fish. Res. Lab. Kyushu Univ. (Jpn) 2, 25–32.
    Yone, Y., Furuichi, M., Shitanda, K., 1971. Vitamin requirements of red sea bream: 1. Relationship between inositol requirements and glucose levels in diet. J. Soc. Sci. Fish. 37, 149–155.
    Zeisel, S. H., 1990. Choline deficiency. J. Nutr. Biochem. 1, 332–344.
    Zeitoun, I.H., Ullrey, D.E., Magee, W.T., 1976. Quantifying nutrient requirements of fish. J. Fish. Res. Board Can. 33, 167–172.
    Zhang, Z., Wilson, R.P, 1999. Reevaluation of the choline requirement of fingerling channel catfish (Ictalurus punctatus) and determination of the availability of choline in common feed ingredients. Aquaculture 180, 89–98.
    Zhou, Q.C., Tan, B.P., Mai, K.S., Liu, Y.J., 2004. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture 241, 441-451.
    Zhou, Q.C., Wu, Z.H., Tan, B.P., Chi, S.Y., Yang, Q.H., 2006. Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum). Aquaculture 258, 551–557.
    Zhou, Q.C., Wu, Z.H., Chi S.Y., Yang, Q.H., 2007. Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture 273, 634–640.
    Zhu, W, Mai, K.S., Wu, G.T., 2002. Thiamin requirement of juvenile abalone, Haliotis discus hannai Ino. Aquaculture 207, 331–343