微纳结构四氧化三铁复合材料的制备及吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着吉赫兹(GHz)频率范围的电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。此外,军事领域中的电磁隐身技术与导弹的微波制导需要,使得微波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、质量轻、频带宽、强吸收的吸波材料。Fe304因具有高的磁导率、低毒、低成本且容易获得等优势,被认为是最有可能成为在吉赫兹范围内使用的理想吸波材料。然而,传统的Fe304用于吸波材料仍存在一些缺点,如密度大、吸波频带窄、吸波强度不大等。因此,一些复合吸波材料已被提出,包括Fe304与介电材料复合、Fe304与导电聚合物复合、Fe304与碳纳米管复合等。本论文主要目的是发展一种简单的方法获取尺寸、形貌可控的Fe304基微纳结构复合材料,研究复合材料的吸波性能,并探索吸波性能与材料组分、形貌之间的关系。取得的主要研究结果如下:
     (1)为了降低羰基铁粉(carbonyl iron powders, CIP)的介电常数值以及涡流效应,以提高微波吸收性能,采用了简单的水热合成技术,通过控制反应体系中的pH值(pH=12,13,14),合成了核壳结构CIP/Fe3O4复合材料。对pH值为13的产物(CIP/Fe3O4, pH=13).在宽频区获得了强的微波吸收性能。当其匹配厚度为2.0mmm时,反射损耗低于-10dB的频率范围从8.7GHz一直到15.0GHz,最大反射损耗峰达到-38.1dB。吸波性能远远超过了CIP和Fe3O4单一组分吸波剂所具有的吸波性能。这一优异的吸波性能与这种特殊核壳结构同时具有高的磁损耗与适当的阻抗匹配有关。
     (2)为了实现轻质强吸收的吸波性能,采用球磨和水热合成两步方法制备了片状羰基铁/Fe3O4复合材料。当匹配厚度为3.0mm时,在pH值为12和13的反应系统中得到的BMCI/Fe3O4复合材料,其最大反射损耗峰值分别达到-33.5dB和-28.2dB。与此同时,与上述CIP/Fe3O4复合材料相比,吸波剂的用量减少了一半,体积分数仅为20%。
     (3)采用简单的溶剂热方法,合成了轻质的空心微珠/Fe304复合材料(Hollow glass microspheres/Fe3O4, HGMs/Fe3O4)。所得复合材料呈现优异的吸波性能。当样品厚度超过1.5mm(?)寸,出现强的吸收峰。对于反应2h的样品,在频率6.0-11.8GHz频率范围内反射损耗值低于-20dB。当样品厚度为3.0mm时,在7.3GHz处,最大反射损耗峰达到-36.2dB。空心微珠/Fe304复合材料具有优异吸波性能,与这种空心结构限制电磁波在空腔里面,并导致其在空腔里面发生多次散射、多次反射和多次吸收有关。
     (4)为获得轻质的强吸波材料,采用溶剂热法合成了多壁碳纳米管/Fe304复合材料(multiwalled carbon nanotubes/Fe3O4, MWCNTs/Fe3O4)和碳球/Fe304复合材料(carbon spheres)/Fe3O4, CSs/Fe3O4)。对于MWCNTs/Fe3O4复合材料,当复合材料中MWCNTs含量为40mg(Fe304与MWCNTs的质量比约为30:1)、匹配厚度为2.0mmm时,此时具有最佳反射损耗,11.04GHz处获得了-29.8dB的最大值,同时,反射损耗优于-10dB的频带宽度为9.92-12.4GHz。对于CSs/Fe3O4复合材料,当复合材料的匹配厚度为2.0-3.5mm时,其最佳反射损耗值在8-18GHz频率范围内约为-10dB。
With the rapid spread of wireless communication devices using electromagnetic waves in the range around GHz, several problems such as electromagnetic interference and information leakage have emerged and need to be solved. In addition, there has been a growing and wide spread interest in microwave-absorbing materials due to the self-concealing technology, microwave measurements of missile guidance in military affairs. Therefore, the demands to develop thinner, lighter weight and stronger microwave absorbers with wider absorption bands are ever increasing. Fe3O4are noted as one of the most promising materials for fabricating the microwave absorber in the GHz range due to their high permeability, low toxicity, low cost and easy achievement. However, the traditional Fe3O4still have some disadvantages such as high density, narrow absorption-band, and low absorption properties. Therefore, some kinds of composites, including Fe3O4and dielectric materials, Fe3O4and conducting polymer, Fe3O4and carbon nanotubes and so on, have been proposed for microwave absorption. In this dissertation, the main object is to develop the simple method to achieve size and morphology tuned fabrication of micro/nano-sturctured Fe3O4composites, to research their microwave absorption properties, to explore the relation between microwave absorption properties and the component and morphology of these composites. The main results are summarized as follows:
     (1) In order to decrease the permittivity and eddy-current effects of carbonyl iron powders (CIP) and increase the ability of absorbing the electromagnetic wave, the core/shell structure CIP/Fe3O4composites have been prepared by a simple one-step hydrothermal method through controlling the pH value of the reaction system (12,13and14). A wide region and strong ability of microwave absorption was achieved for the CIP/Fe3O4composites (pH=13). When the matching thickness is2.0mm, the reflection loss of the sample exceeding-10dB was obtained at the frequency range of8.7to15.0GHz and with an optimal reflection loss of about-38.1dB. The microwave absorbing performance of this composite is far beyond superior than that of a single component of CIP or Fe3O4, which is related to the higher permeability and proper impedance matching of the CIP/Fe3O4composite with peculiar core/shell structure.
     (2) In order to obtain the lighter weight and stronger microwave absorbers, flake-like carbonyl-iron/Fe304composites have been synthesized via ball-milling technique and hydrothermal method. Their absorption properties indicate that BMCI/Fe3O4composites synthesized in the pH values of12and13have absorption peak values of about-33.5dB and-28.2dB, respectively, when the matching thickness is3.0mm. Meanwhile, compared with the above-mentioned composite of CIP/Fe3O4, the volume content of this absorber reduces by half and reaches to20%.
     (3)Hollow glass microspheres/Fe3O4(HGMs/Fe3O4) composites with low density were successfully synthesized by solvothermal method. The as-prepared HGMs/Fe3O4composites show excellent microwave absorption properties. When the thicknesses of these HGMs/Fe3O4composites are more than1.5mm, they exhibit strong absorption peaks. For the HGMs/Fe3O4composite obtained for2h, reflection loss values less than-20dB are observed in the range of6.0to11.8GHz with thicknesses of2.0to3.5mm, whereas the minimum RL value of-36.2dB appears at7.3GHz, corresponding to a3.0mm matching thickness. The excellent absorbing performance of HGMs/Fe3O4composite is related to the hollow structure of HGMs/Fe3O4composite, which confines the incident electromagnetic wave within the hollow sphere and causes multiple scattering, multiple reflecting and multiple absorbing inside the hollow sphere.
     (4)In order to obtain lighter weight and stronger microwave absorbers, multiwalled carbon nanotubes (MWCNTs)/Fe3O4and carbon spheres (CSs)/Fe3O4composites were synthesized via a simple low temperature solution method. For MWCNTs/Fe3O4composites, when the weight of MWCNTs is40mg (the weight ratio of Fe3O4to MWCNTs is about30:1) and the matching thickness is2mm, the reflection loss of the sample exceeding-10dB was obtained at the frequency range of9.9-12.4GHz, with an optimal RL of-29.8dB at11.04GHz. For CSs/Fe3O4composites, optimal reflection loss of about-10dB is reached at frequency rang of8to18GHz when the layer thickness is in the range of2.0to3.5mm.
引文
1.李斌鹏,王成国,王雯,材料导报26,9-14(2012).
    2.刘顺华、刘军民、董星龙等编著电磁波屏蔽及吸波材料化学工业出版社北京2006.9.
    3.徐生求,段永法,空军雷达学院学报15,45-48(2001).
    4. B. Rosenstein, I. Shapiro, E. Deutch, B. Y. Shapiro, Phys. Rev. B 84 (13)134521 (2011).
    5. M Golosovsky, P. Monod, P. Muduli, R. Budhani, Phys. Rev. B 85 (18) 184418(2012).
    6. H. Pan, X. Cheng, C. Zhang, C. Gong, L. Yu, J. Zhang, Z. Zhang, Appl. Phys. Lett.102 (1),012410 (2013).
    7.童国秀,官建国,樊希安,王维,宋发辉,无机化学学报24,270-274(2008).
    8.王雯,王成国,郭宇,陈旸,航空材料学报 32,63-67(2012).
    9. J. Huo, L. Wang, H. Yu, J. Mater. Sci. 44 (15),3917-3927 (2009).
    10.马诗宏,La1-xSrxMnO3与纳米Fe、Ni粉复合材料微波吸收性能研究,中南大学硕士论文,2009.
    11. W. B. Ellwood, V. E. Legg, J. Appl. Phys.8 (5),351-358 (1937).
    12. J. O. Gentner, P. Gerthsen, N. A. Schmidt, R. E. Send, J. Appl. Phys.49 (8),4485-4489 (1978).
    13.程涛,李铁虎,李莎莎,赵廷凯,程有亮,侯翠岭,材料导报25,50-52(2011).
    14. H. M. Musal, H. T. Hahn, IEEE Trans. Magn.25 (5),3851-3853 (1989).
    15. E. Michielssen, J. M. Sajer, S. Ranjithan, R. Mittra, IEEE Trans. Microwave Theory Tech.41 (6-7), 1024-1031 (1993).
    16. G. Viau, F. Ravel, O. Acher, F. Fievet-Vincent, F. Fievet, J. Appl. Phys.76 (10),6570 (1994).
    17. A. N. Lagarkov, A. K. Sarychev, Phys. Rev. B 53 (10),6318-6336 (1996).
    18. F. Qin, C. Brosseau, Appl. Phys. Lett.100 (4),046101 (2012).
    19. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, Appl. Phys. Lett.98 (7), 072906 (2011).
    20. F. Qin, C. Brosseau, J. Appl. Phys. 111(6),061301 (2012).
    21. S. Iijima, Nature 354 (6348),56-58 (1991).
    22. Z. Fan, G. Luo, Z. Zhang, L. Zhou, F. Wei, Mater. Sci. Eng., B 132 (1-2),85-89 (2006).
    23. P. C. P. Watts, W. K. Hsu, A. Barnes, B. Chambers, Adv. Mater.15 (7-8),600-603 (2003).
    24. J. E. Atwater, J. R. R. Wheeler, Appl. Phys. A 79(1),125-129 (2004).
    25. Y. Du, T. Liu, B. Yu, H. Gao, P. Xu, J. Wang, X. Wang, X. Han, Mater. Chem. Phys.135 (2-3), 884-891 (2012).
    26. G. De Bellis, A. Tamburrano, A. Dinescu, M. L. Santarelli, M. S. Sarto, Carbon 49 (13), 4291-4300(2011).
    27. Y. Fan, H. Yang, M. Li, G. Zou, Mater. Chem. Phys.115 (2-3),696-698 (2009).
    28. G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, J. Phys. Chem. C 116 (16),9196-9201 (2012).
    29. X. S. Qi, Y. Deng, W. Zhong, Y. Yang, C. A. Qin, C. Au, Y. W. Du, J. Phys. Chem. C 114 (2), 808-814(2010).
    30. A. Katsounaros, K. Z. Rajab, Y. Hao, M. Mann, W. I. Milne, Appl. Phys. Lett.98 (20),203105 (2011).
    31. M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, Carbon 48 (3),788-796 (2010).
    32. M. Oyharcabal, T. Olinga, M. P. Foulc, S. Lacomme, E. Gontier, V. Vigneras, Compos. Sci. Technol.74,107-112(2013).
    33. S. Meng, X. Guo, G. Jin, Y. Wang, S. Xie, J. Mater. Sci.47 (6),2899-2902 (2011).
    34. R. Wu, K. Zhou, Z. Yang, X. Qian, J. Wei, L. Liu, Y. Huang, L. Kong, L. Wang, CrystEng Comm 15(3),570(2013).
    35. S. C. Chiu, H. C. Yu, Y. Y. Li, J. Phys. Chem. C114 (4),1947-1952 (2010).
    36. Z. Zhou, L. Chu, S. Hu, Mater. Sci. Eng., B126 (1),93-96 (2006).
    37. Y. J. Chen, M. S. Cao, T. H. Wang, Q. Wan, Appl. Phys. Lett.84 (17),3367 (2004).
    38. R. F. Zhuo, H. T. Feng, Q. Liang, J. Z. Liu, J. T. Chen, D. Yan, J. J. Feng, H. J. Li, S. Cheng, B. S. Geng, X. Y. Xu, J. Wang, Z. G Wu, P. X. Yan, G. H. Yue, J. Phys. D:Appl. Phys.41 (18),185405 (2008).
    39. H. F. Li, Y. H. Huang, G. B. Sun, X. Q. Yan, Y. Yang, J. Wang, Y. Zhang, J. Phys. Chem. C 1114 (22), 10088-10091 (2010).
    40. Y. F. Zhu, L. Zhang, T. Natsuki, Y. Q. Fu, Q. Q. Ni, ACS Appl. Mater. Interfaces 4 (4),2101-2106 (2012).
    41. F. Xia, J. Liu, D. Gu, P. Zhao, J. Zhang, R. Che, Nanoscale 3 (9),3860-3867 (2011).
    42. Z. Jia, D. Yuping, J. Hui, L. Xiaogang, L. Shunhua, J. Cryst. Growth 312 (19),2788-2794 (2010).
    43. M. Zhou, X. Zhang, L. Wang, J. Wei, L. Wang, K. Zhu, B. Feng, Mater. Chem. Phys.130 (3), 1191-1194(2011).
    44. H. Wu, L. Wang, Y. Wang, S. Guo, Appl. Surf. Sci.258 (24),10047-10052 (2012).
    45. H. T. Feng, R. F. Zhuo, J. T. Chen, D. Yan, J. J. Feng, H. J. Li, S. Cheng, Z. G Wu, J. Wang, P. X. Yan, Nanoscale Res. Lett.4 (12),1452-1457 (2009).
    46. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fievet, Adv. Mater.10 (13),1032-1035 (1998).
    47. J. L. Snoek, Physica 14 (4),207-217 (1948).
    48. F. S. Wen, L. Qiao, D. Zhou, W. L. Zuo, H. B. Yi, F. S. Li, Chin. Phys. B 17 (6),2263-2267 (2008).
    49. R. Han, L. Qiao, T. Wang, F.S. Li, J. Alloys Compd.509 (6),2734-2737 (2011).
    50. B. Wang, J. Wei, Y. Yang, T. Wang, F. Li, J. Magn. Magn. Mater.323 (8),1101-1103 (2011).
    51. X. a. Fan, J. Guan, Z. Li, F. Mou, G. Tong, W. Wang, J. Mater. Chem.20 (9),1676 (2010).
    52. J.R. Liu, M. Itoh, M. Terada, T. Horikawa, K.I. Machida, Appl. Phys. Lett.91 (9),093101 (2007).
    53. G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Chem. Mater.,23,1587-1593 (2011).
    54. L. Qiao, X. Han, B. Gao, J. Wang, F. Wen, F. Li, J. Appl. Phys.105 (5),053911 (2009).
    55. Y. Deng, L. Zhao, B. Shen, L. Liu, W. Hu, J. Appl. Phys.100 (1),014304 (2006).
    56. C. Wang, X. J. Han, P. Xu, J. Y. Wang, Y. C. Du, X. H. Wang, W. Qin, T. Zhang, J. Phys. Chem. C 114 (7),3196-3203 (2010).
    57. G. Tong, Q. Hu, W. Wu, W. Li, H. Qian, Y. Liang, J. Mater. Chem.22 (34),17494 (2012).
    58. H. Wang, L. Zhang, J. Huang, J. Li, J. Nanopart. Res.13 (4),1709-1715 (2010).
    59. F. Ma, Y. Qin, Y. Z. Li, Appl. Phys. Lett.96 (20),202507 (2010).
    60. X. L. Shi, M. S. Cao, J. Yuan, X. Y. Fang, Appl. Phys. Lett.95 (16),163108 (2009).
    61. G. Tong, J. Yuan, W. Wu, Q. Hu, H. Qian, L. Li, J. Shen, CrystEngComm 14 (6),2071 (2012).
    62. C. He, S. Qiu, X. Wang, J. Liu, L. Luan, W. Liu, M. Itoh, K.I. Machida, J. Mater. Chem. 22 (41), 22160(2012).
    63.李雪爱,Fe304基磁性材料的制备及其复合薄膜电磁性能研究哈尔滨工业大学博士论文2011.
    64. C. P. L. Rubinger, D. X. Gouveia, J. F. Nunes, C. C. M. Salgueiro, J. A. C. Paiva, M. P. F. Graca, P. Andre, L. C. Costa, Microwave Opt. Technol. Lett.49 (6),1341-1343 (2007).
    65. X. A. Fan, J. Guan, X. Cao, W. Wang, F. Mou, Eur. J. Inorg. Chem.2010 (3),419-426 (2010).
    66.王海波,尖晶石NixZn1-xFe2O4铁氧体纳米颗粒、块体和薄膜的制备与磁性研究兰州大学博士论文2008.
    67. X. Gu, W. Zhu, C. Jia, R. Zhao, W. Schmidt, Y. Wang, Chem. Commun.47 (18),5337 (2011).
    68. S. Chang, S. Kangning, C. Pengfei, J. Magn. Magn. Mater.324 (5),802-805 (2012).
    69. S. Sugimoto, K. Haga, T. Kagotani, K. Inomata, J. Magn. Magn. Mater.290-291,1188-1191 (2005).
    70. S. Sugimoto, K. Okayama, S. Kondo, H. Ota, M. Kimura, Y. Yoshida, H. Nakamura, D. Book, T. Kagotani, M. Homma, Mater. Trans., JIM 39 (10),1080-1083 (1998).
    71. N. Chen, K.Yang, M. Gu, J. Alloys Compd.490 (1-2),609-612 (2010).
    72. F. Tabatabaie, M. H. Fathi, A. Saatchi.A. Ghasemi, J. Alloys Compd.470 (1-2),332-335 (2009).
    73. Z. W. Li, G. Q. Lin, L. B. Kong, IEEE Trans. Magn.44 (10),2255-2261 (2008).
    74. D. Lisjak, V. B. Bregar, M. Drofenik, J. Magn. Magn. Mater.310 (2),2558-2560 (2007).
    75. G. Li, G. G. Hu, H. D. Zhou, X. J. Fan, X. G. Li, Mater. Chem. Phys.75 (1-3),101-104 (2002).
    76. Y. L. Cheng, J. M. Dai, X. B. Zhu, D. J. Wu, Z. R. Yang, Y. P. Sun, Nanoscale Res. Lett.4 (10), 1153-1158(2009).
    77. A. Ohlan, K. Singh, A. Chra, S. K. Dhawan, Appl. Phys. Lett.93 (5),053114 (2008).
    78. F. X. Qin, H. X. Peng, J. Fuller, C. Brosseau, Appl. Phys. Lett.101 (15),152905 (2012).
    79. R. C. Che, C. Y. Zhi, C. Y. Liang, X. G. Zhou, Appl. Phys. Lett.88 (3),033105 (2006).
    80. H. L. Xu, H. Bi, R. B. Yang, J. Appl. Phys. 111 (7),07A522 (2012).
    81. J. Ma, J. Li, X. Ni, X. Zhang, J. Huang, Appl. Phys. Lett.95 (10),102505 (2009).
    82. X. Ni, Z. Zheng, X. Hu, X. Xiao, J. Colloid Interface Sci.341 (1),18-22 (2010).
    83. X. G Liu, D. Y. Geng, H. Meng, P. J. Shang, Z. D. Zhang, Appl. Phys. Lett.92 (17),173117 (2008).
    84. Y. Qing, W. Zhou, F. Luo, D. Zhu, J. Magn. Magn. Mater.323 (5),600-606 (2011).
    85. Z. He, Y. Fang, X. Wang, H. Pang, Synth. Met.161 (5-6),420-425 (2011).
    86. X. G Chen, Y Ye, S. S. Lv, J. P. Cheng, Funct. Mater. Lett. 05 (04),1250036 (2012).
    87. D. L. Zhao, X. Li, Z. M. Shen, J. Alloys Compd.471 (1-2),457-460 (2009).
    88. G. Tong, W. Wu, Q. Hua, Y. Miao, J. Guan, H. Qian, J. Alloys Compd.509 (2),451-456 (2011).
    89. Y. X. Gong, L. Zhen, J. T. Jiang, C. Y. Xu, W. S. Wang, W. Z. Shao, CrystEngComm 13 (22),6839 (2011).
    90. R. B. Yang, W. F. Liang, C. C. Chang, C. K. Lin, S. T. Liu, K. M. Kuo, Ferroelectrics 434 (1), 77-82(2012).
    91. G. X. Tong, J. H. Yuan, J. Ma, J. G. Guan, W.-H. Wu, L. C. Li, R. Qiao, Mater. Chem. Phys.129 (3),1189-1194(2011).
    92. R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L. Liang, Adv. Mater.16 (5),401-405(2004).
    93. X. G. Liu, Z. Q. Ou, D. Y. Geng, Z. Han, J. J. Jiang, W. Liu, Z. D. Zhang, Carbon 48 (3),891-897 (2010).
    94. H. L. Zhu, Y. J. Bai, R. Liu, N. Lun, Y. X. Qi, F. D. Han, J. Q. Bi, J. Mater. Chem.21 (35),13581 (2011).
    95. J. Guo, X. Wang, P. Miao, X. Liao, W. Zhang, B. Shi, J. Mater. Chem.22 (24),11933 (2012).
    96. J. Guo, X. Wang, X. Liao, W. Zhang, B. Shi, J. Phys. Chem. C 116 (14),8188-8195 (2012).
    97. Z. Ma, C. T. Cao, Q. F. Liu, J. B. Wang, Chin. Phys. Lett.29 (3),038401 (2012).
    98. L. Li, Y. Feng, Y. Li, W. Zhao, J. Shi, Angew. Chem. Int. Ed.48 (32),5888-5892 (2009).
    99. K. Cheng, S. Peng, C. Xu, S. Sun, J. Am. Chem. Soc.131 (30),10637-10644 (2009).
    100. C. H. Hsia, T. Y. Chen, D. H. Son, J. Am. Chem. Soc.131 (26),9146-9147 (2009).
    101. S. A. Corr, Y. K. Gun'ko, A. P. Douvalis, M. Venkatesan, R. D. Gunning, J. Mater. Chem.14 (6), 944 (2004).
    102. W. X. Fang, Z. H. He, X. Q. Xu, Z. Q. Mao, H. Shen, Europhys. Lett.77 (6),68004 (2007).
    103. S. Xuan, L. Hao, W. Jiang, L. Song, Y. Hu, Z. Chen, L. Fei, T. Li, Cryst. Growth Des.7 (2), 430-434 (2007).
    104. Z. Li, L. Wei, M. Y. Gao, H. Lei, Adv. Mater.17 (8),1001-1005(2005).
    105. Z. J. Zhang, X. Y. Chen, B. N. Wang, C. W. Shi, J. Cryst. Growth 310 (24),5453-5457 (2008).
    106. J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Angew. Chem. Int. Ed.48 (32),5875-5879 (2009).
    107. Y. Lee, J. Lee, C. J. Bae, J. G. Park, H. J. Noh, J. H. Park, T. Hyeon, Adv. Funct. Mater. 15 (3), 503-509 (2005).
    108. M. Wu, Y. Xiong, Y. Jia, H. Niu, H. Qi, J. Ye, Q. Chen, Chem. Phys. Lett.401 (4-6),374-379 (2005).
    109. X. Li, B. Zhang, C. Ju, X. Han, Y. Du, P. Xu, J. Phys. Chem. C 115 (25),12350-12357 (2011).
    110. F. Wang, J. Liu, J. Kong, Z. Zhang, X. Wang, M. Itoh, K.I. Machida, J. Mater. Chem.21 (12), 4314(2011).
    111. J. Liu, J. Cheng, R. Che, J. Xu, M. Liu, Z. Liu, J. Phys. Chem. C 117 (1),489-495 (2013).
    112. J. Liu, J. Xu, R. Che, H. Chen, Z. Liu, F. Xia, J. Mater. Chem.22 (18),9277 (2012).
    113. J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, M. Wang, Small 8 (8),1214-1221 (2012).
    114. Y. J. Chen, P. Gao, R. X. Wang, C. L. Zhu, L. J. Wang, M. S. Cao, H. B. Jin, J. Phys. Chem. C 113 (23),10061-10064 (2009).
    115. Y. J. Chen, F. Zhang, G. G. Zhao, X. Y. Fang, H. B. Jin, P. Gao, C. L. Zhu, M. S. Cao, G. Xiao, J. Phys. Chem. C 114 (20),9239-9244 (2010).
    116. Y. J. Chen, G. Xiao, T. S. Wang, Q. Y. Ouyang, L. H. Qi, Y. Ma, P. Gao, C. L. Zhu, M. S. Cao, H. B. Jin, J. Phys. Chem. C 115 (28),13603-13608 (2011).
    117. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, X. Liu, J. Magn. Magn. Mater.323 (7),1006-1010 (2011).
    118. Y. Zhan, F. Meng, Y. Lei, R. Zhao, J. Zhong, X. Liu, Mater. Lett.65 (11),1737-1740 (2011).
    119. Z. Li, Y. Deng, B. Shen, W. Hu, Mater. Sci. Eng., B 164 (2),112-115 (2009).
    120. J. Zhou, S. Zhou, Q. Zhang, G. Shen, D. Xia, J. Huang, Syn. React. Inorg. Met.-Org. Nano-Met. Chem.42 (3),392-397 (2012).
    121. Y. J. Chen, P. Gao, C. L. Zhu, R. X. Wang, L. J. Wang, M. S. Cao, X. Y. Fang, J. Appl. Phys.106 (5),054303 (2009).
    122. S. Lefrancois, D. Pasquet, G. MazeMerceur, IEEE Trans. Microwave Theory Tech.44 (9), 1557-1562(1996).
    123.潘喜峰,钴基金属包覆锶铁氧体复合粉末的制备和吸波性能研究上海交通大学博士论文 2008.
    124. A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, S. A. A. Hamid, J. Appl. Phys.92 (2),876 (2002).
    125. Y. Joon An, K. Nishida, T. Yamamoto, S. Ueda, T. Deguchi, Electron. Commun. Jpn 93 (4),18-26 (2010).
    126. P. A. Miles, W. B. Westphal, A. Vonhippel, Rev. Mod. Phys.29 (3),279-307 (1957).
    127. A. M. Nicolson, G F. Ross, IEEE Trans. Instrum. Meas.4,377-379 (1970).
    128. R. B. Yang, C. Y. Tsay, D. S. Hung, W. F. Liang, Y. D. Yao, C. K. Lin, J. Appl. Phys.105 (7), 07A528 (2009).
    129.童国秀,官建国,张五一,张巍,王维,董德明,金属噹报44,1001-1005(2008).
    130. Y. B. Feng, T. Qiu, C. Y. Shen, X. Y. Li, IEEE Trans. Magn.42 (3),363-368 (2006).
    131. M. Han, W. Tang, W. Chen, H. Zhou, L. Deng, J. Appl. Phys.107 (9),09A958 (2010).
    132. R. Han, X. H. Han, L. Qiao, T. Wang, F. S. Li, Mater. Chem. Phys.128 (3),317-322 (2011).
    133. Z. D. Zhang, Z. C. Shi, R. H. Fan, M. Gao, J. Y. Guo, X. G. Qi K. N. Sun, Mater. Chem. Phys. 130 (1-2),615-618 (2011).
    134. X. J. Wei, J. T. Jiang, L. Zhen, Y. X. Gong, W. Z. Shao, C. Y. Xu, Mater. Lett.64 (1),57-60 (2010).
    135. J. R. Liu, M. Itoh, K. I. Machida, Appl. Phys. Lett.83 (19),4017 (2003).
    136. J. R. Liu, M. Itoh, K. I. Machida, Appl. Phys. Lett.88 (6),062503 (2006).
    137. R. Han, L. Q. Gong, T. Wang, L. Qiao, F. S. Li, Mater. Chem. Phys.131 (3),555-560 (2012).
    138. W. B. Weir, Proc. IEEE 62 (1),33-36 (1974).
    139. O. N. Shebanova, P. Lazor, J. Chem. Phys.119 (12),6100 (2003).
    140. O. N. Shebanova, P. Lazor, J. Raman Spectrosc.34 (11),845-852 (2003).
    141. X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei, C. G Lee, Appl. Phys. Lett.89 (5),053115 (2006).
    142. X. G. Liu, D. Y. Geng, Z. D. Zhang, Appl. Phys. Lett.92 (24),243110 (2008).
    143. P. C. P. Watts, D. R. Ponnampalam, W. K. Hsu, A. Barnes, B. Chambers, Chem. Phys. Lett.378 (5-6),609-614 (2003).
    144. Z. Han, D. Li, X. Liu, D. Geng, J. Li, Z. Zhang, J. Phys. D:Appl. Phys.42 (5),055008 (2009).
    145. C. Kittel, Phys. Rev.73 (2),155-161 (1948).
    146. Z. Ma, Y. Zhang, C. Cao, J. Yuan, Q. Liu, J. Wang, Physica B 406 (24),4620-4624 (2011).
    147. X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang, Z. D. Zhang, Appl. Phys. Lett.100 (19) (2012).
    148. Y. Naito, K. Suetake, IEEE Trans. Microwave Theory Tech.20,65-69 (1971).
    149. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, J. Magn. Magn. Mater.281 (2-3), 195-205(2004).
    150. P. Xu, X. J. Han, X. R. Liu, B. Zhang, C. Wang, X. H. Wang, Mater. Chem. Phys.114 (2-3), 556-560 (2009).
    151. T. Inui, K. Koniski K. Oda, IEEE Trans. Magn.35 (5),3148-3150 (1999).
    152.1. Kong, S. H. Ahmad, M. H. Abdullah, D. Hui, A. N. Yusoff, D. Puryanti, J. Magn. Magn. Mater. 322(21),3401-3409(2010).
    153. S. M. Abbas, A. K. Dixit, R. Chatterjee, T. C. Goel, J. Magn. Magn. Mater.309 (1),20-24 (2007).
    154. X. Huang, J. Zhang, H. Wang, S. Yan, L. Wang, Q. Zhang, J. Rare Earths 28 (6),940-943 (2010).
    155. L. Deng, L. Ding, K. Zhou, S. Huang, Z. Hu, B. Yang, J. Magn. Magn. Mater.323 (14), 1895-1898(2011).
    156. G. R. Amiri, M. H. Yousefi, M. R. Abolhassani, S. Manouchehri, M. H. Keshavarz, S. Fatahian, J. Magn. Magn. Mater.323 (6),730-734 (2011).
    157. B. S. Zhang, Y. Feng, H. Xiong, Y. Yang, H. X. Lu, IEEE Trans. Magn.42 (7),1778-1781 (2006).
    158. S. Yoshida, M. Sato, E. Sugawara, Y. Shimada, J. Appl. Phys.85 (8),4636 (1999).
    159. Q. Liu, Z. Zi, D. Wu, Y. Sun, J. Dai, J. Mater. Sci.47 (2),1033-1037 (2012).
    160. S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, M. Egashira, J. Magn. Magn. Mater.312 (1),181-186 (2007).
    161. R. Han, X. H. Han, L. Qiao, T. Wang, F. S. Li, Physica B 406 (10),1932-1935 (2011).
    162. X. Tang, Q. Tian, B. Zhao, K. Hu, Mater. Sci. Eng, A 445-446,135-140 (2007).
    163. F. Wen, W. Zuo, H. Yi, N. Wang, L. Qiao, F. Li, Physica B 404 (20),3567-3570 (2009).
    164. G. Tong, J. Ma, W. Wu, Q. Hua, R. Qiao, H. Qian, J. Mater. Res.26 (05),682-688 (2011).
    165. S. S. Kim, S. T. Kim, Y. C. Yoon, K. S. Lee, J. Appl. Phys.97 (10),10F905 (2005).
    166. J. R. Liu, M. Itoh, K. Machida, Chem. Lett.32 (4),394-395 (2003).
    167. S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, R. Sato, J. Alloys Compd.330,301-306 (2002).
    168. L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, F. Li, Nanotechnology 21 (9),095708 (2010).
    169. X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang, Z. D. Zhang, Appl. Phys. Lett.100 (19),199902 (2012).
    170. K. Jia, R. Zhao, J. Zhong, X. Liu, J. Magn. Magn. Mater.322 (15),2167-2171 (2010).
    171. J. R. Liu, M. Itoh, K. I. Machida, J. Alloys Compd.408-412,1396-1399 (2006).
    172. J. He, W. Wang, A. Wang, J. Guan, Acta Metall. Sin. (Engl. Lett.) 25 (3),201-206 (2012).
    173.韩相华,铁基微粉/粘合剂复合材料的微波吸收性能研究兰州大学博士论文2010.
    174. Z. G. An, J. J. Zhang, S. L. Pan, J. Phys. Chem. Solids 70 (7),1083-1088 (2009).
    175.曾爱香,空心微珠复合吸波材料的研究华中科技大学博士论文2004.
    176.刘浩,玻璃微珠基复合吸波材料的制备及其性能研究武汉理工大学硕士论文2010.
    177. S. S. Kim, S. T. Kim, J. M. Ahn, K. H. Kim, J. Magn. Magn. Mater. 271(1),39-45 (2004).
    178. S. T. Kim, S. S. Kim, IEEE Trans. Magn.48 (11),3494-3497 (2012).
    179. Z. W. Liu, L. X. Phua, Y. Liu, C. K. Ong, J. Appl. Phys.100 (9),093902 (2006).
    180. Z. G. An, J. J. Zhang, S. L. Pan, Appl. Surf. Sci.256 (7),1976-1982 (2010).
    181. Z. G. An, J. J. Zhang, S. L. Pan, Mater. Chem. Phys.117 (1),209-213 (2009).
    182. J. Wei, J. Liu, S. Li, J. Magn. Magn. Mater.312 (2),414-417 (2007).
    183. W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G Zou, J. Magn. Magn. Mater.316 (1),54-58 (2007).
    184. G. Mu, N. Chen, X. Pan, K. Yang, M. Gu, Appl. Phys. Lett.91 (4),043110 (2007).
    185.牟国洪,空心微球/钡铁氧体轻质复合粉末的制备和吸波性能研究上海交通大学博士论文2008.
    186. G. Tong, W. Wu, J. Guan, H. Qian, J. Yuan, W. Li, J. Alloys Compd.509 (11),4320-4326 (2011).
    187. J. P. Wright, J. P. Attfield, P. G Radaelli, Phys. Rev. B 66 (21) (2002).
    188. S. Ni, X. Sun, X. Wang, G. Zhou, F. Yang, J. Wang, D. He, Mater. Chem. Phys.124 (1),353-358 (2010).
    189. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, Y. Chen, Carbon 45 (8),1614-1621 (2007).
    190. A. Karsa, D. Quintavalle, L. Forro, F. Simon, Phys. Status Solidi B 249 (12),2487-2490 (2012).
    191. L. Q. Jiang, L. Gao, Chem. Mater.15 (14),2848-2853 (2003).
    192. B. Jia, L. Gao, J. Sun, Carbon 45 (7),1476-1481 (2007).
    193. Y. He, L. Huang, J. S. Cai, X. M. Zheng, S. G Sun, Electrochim. Acta 55 (3),1140-1144 (2010).
    194. C. Zhao, A. Zhang, Y. Zheng, J. Luan, Mater. Res. Bull.47 (2),217-221 (2012).
    195. X. M. Sun, Y. D. Li, Angew. Chem. Int. Edit.43 (5),597-601 (2004).
    196. R. B. Yang, W. F. Liang, C. K. Lin, J. Appl. Phys.109 (7),07D722 (2011).
    197. N. Li, Y. Huang, F. Du, X. B. He, X. Lin, H. J. Gao, Y. F. Ma, F. F. Li, Y. S. Chen, P. C. Eklund, Nano Lett.6 (6),1141-1145 (2006).
    198. S. Ni, X. Wang, G. Zhou, F. Yang, J. Wang, D. He, J. Alloys Compd.489 (1),252-256 (2010).
    199. M. Bayat, H. Yang, F. Ko, Polymer 52 (7),1645-1653 (2011).
    200. X. F. Zhang, X. L. Dong, H. Huang, B. Lv, J. P. Lei, C. J. Choi, J. Phys. D:Appl. Phys.40 (17), 5383-5387(2007).
    201. S. Jia, F. Luo, Y. Qing, W. Zhou, D. Zhu, Physica B 405 (17),3611-3615 (2010).