软化学法制备纳米ITO材料及其介孔组装体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铟锡氧化物(Indium Tin Oxide,ITO)是一种重要的铟材料,约占铟产品总量的60%以上,是一种高度简并的N型半导体,因其具有优异的光电性能,而在电子工业、汽车工业、建筑工业、太阳能利用,宇航和军事、发光材料和器件领域、微波屏蔽和激光辐射防护等方面,具有极其广泛的应用。本课题是依托国家863高技术研究发展计划项目《多功能纳米复合氧化物导电浆料的制备与开发》(2002AA302606)而开展的研究工作,采用软化学法研制ITO粉体和湿法镀膜用浆料,以及ITO介孔组装体系。这一研究对于开发新型ITO纳米复合材料,以及开拓其新的应用领域,具有重要的意义。
     本课题的研究采用软化学法中的前驱体热解法制备ITO粉体。首先考察了pH值与反应溶液中金属离子浓度的关系,利用双滴加方式,获得合适的ITO前驱体;然后通过热重分析研究了ITO前驱体的热解过程,考察煅烧温度对ITO晶型结构的影响,选择合适温度,前驱体经煅烧分解,得到不同表面形状的ITO粉体。结果发现:当滴加5%氨水时,得到的ITO粉体为¢20nm~¢30nm的类球形,而当选择滴加25%氨水时,得到的ITO粉体为径长比约¢20nm~¢30nm x140nm~300nm的棒形。通过实验,获得的最佳反应条件为:溶液[In~(3+)]浓度为0.10M,掺锡比为9:1,加入分散剂为MC,反应溶液pH值为7~8,反应温度70℃,ITO前驱体锻烧温度为700℃,保温2h,获得ITO粉体晶粒粒径为21.6nm,单分散性,粒度均一,电阻率为1.92×10~(-3)Ω·mm,导电性能较好,ITO粉体结晶完善,具有立方铁锰矿晶形结构。
     为了改善纳米ITO粉体的晶体结构,晶径分布及其分散性,重点研究了添加不同分散剂对纳米ITO粉体的影响。加入非离子型表面活性剂的PP和PG,有较好的分散性,但对ITO晶粒粒径都没有影响,PG对ITO结晶强度有增强作用;当加入高分子化合物的MC时,能减小ITO晶粒粒径。利用LaMer理论的成核和生长机理,分析了分散剂对纳米ITO粉体的作用。并通过研究不同反应条件对纳米ITO粉体的表面形状、晶体结构、晶粒粒径和导电性能的影响,探讨了ITO的半导化和导电机理。用软化学法制备的纳米ITO粉体为制备ITO浆料作好了准备。
     以纳米ITO粉体为原料,采用球磨-超声空化分散法制备了无水乙醇相ITO浆料和水相ITO浆料,重点研究了在球磨分散时间和分散剂对浆料稳定性的影响。对无水乙醇相浆料进行沉降分析研究发现,在球磨分散时间24h,TC和BA分散剂最佳含量(γ)为5%,而PP分散剂γ值为5~10%之间时,分散效果最好。分散剂PP、TC和BA在γ值为5%时,球磨分散时间48h效果最佳,并借助超声空化作用,在15d内,能使浆料沉降高度与浆料总高度的比值(Ratio Sediment Height,RSH)维持在10%以内。在24h~96h球磨分散时间内,ITO浆料稳定性由强转弱的顺序为PP>BA>TC。对水相ITO浆料沉降分析研究发现,随着分散剂MC用量、ITO粉体用量和球磨分散时间的增加,ITO浆料稳定性增强。在MC的γ值为15%,球磨分散时间为48h时,借助超声空化,水相ITO浆料稳定性最好,此时在120d的RSH在1.8%以内。
     利用DLVO稳定理论和空间位阻稳定理论进行分析,发现分散剂PP对ITO浆料的分散机制为空间位阻稳定作用,TC和BA对ITO浆料的分散机制为静电稳定作用,MC对ITO浆料的分散机制为静电和空间位阻稳定作用。利用匀胶涂膜方法,将无水乙醇相ITO浆料在玻璃上涂膜,得到的ITO薄膜平整,方块电阻196Ω/□,可见光透射率≥87.8%,红外光反射率为70%左右。
     以浆料的制备为基础,在软化学法中的溶胶.凝胶法基础上,采用浸泡-加热分解法制备了IO/SiO_2和ITO/SiO_2纳米介孔组装体,发现后者比前者具有较强的光致发光性能,即在激发波长275nm,发射波长360nm处具有荧光增强效应,光谱峰值为504。而在软化学法中的溶胶-凝胶法基础上,采用混合凝胶-干燥法制备了SiO_2气凝胶和ITO/SiO_2气凝胶,发现后者也比前者具有较强的光致发光性能,即在激发波长220nm,发射波长398nm处,具有荧光增强效应,光谱峰值为1647,且PL谱发生了右偏移,偏移量为15nm。气凝胶ITO/SiO_2较介孔组装体ITO/SiO_2有更强的光致发光性能。
     论文中评述了ITO纳米材料制备、性能和应用方面的国内外研究状况;分析了ITO纳米材料制备原理、分散稳定理论和半导化机理;用前驱体热解法制备了纳米ITO粉体,球磨.超声空化分散法制备了ITO浆料,用混合凝胶.干燥法和浸泡.热分解法制备了ITO/SiO_2介孔复合材料,在制备工艺、形成机制、物理性能和影响因素方面进行了有益探索,为ITO隔热或发光材料,以及新型ITO功能性复合材料等产品的研发和应用打下了基础。
ITO (Indium Tin Oxide) is a category of important material bearing indium, which accounts for over 60% of the total indium product yield. ITO is a highly simplified N-type semiconductor. Because of its excellent photoelectric performance, it is extensively used in the fields such as electric industry, automobiles, construction industry, solar energy, space navigation and military affairs, luminescent materials and devices, as well as microwave shield and laser radioprotection. The present work on preparation of ITO powder and suspension for the application of coating with wet method and on the synthesise of ITO mesoporous assembly system, is supported by the National High Tech Research and Development Program of China (863 Program) under Grant No. 2002AA302606, namely, "Preparation and Development of Multi-Functional Nanometer Size Oxide Composite Suspension with Electric Conductivity". The work done here are very important to develop new type nanocomposite materials of ITO for their application in new fields.
     ITO powder was prepared by precursor-pyrolysis method, one of chemie douce, in this dissertation. The relations between pH value and the metallic ion concentration in the reaction solution were studied to prepare a suitable ITO precursor with "two-drop" method at first. And the process of ITO precursor-pyrolysis was then investigated via through thermogravimetric analysis. ITO powder with different surface shapes were gained through the pyrolysis of ITO precursor at the suitable calcinations temperature depending on the effects on the crystal structure of ITO powder. The results show that the clubbed nanometer ITO powder has been prepared when choosing the 25% ammonia solution to add dropwise, with the ratio of diameter to length¢of 30nm~40nm x 140nm~300nm, while the near-spherical nanometer ITO powder has been prepared when choosing the 5% ammonia solution to add dropwise with the diameter of¢of 20nm~30nm, under the other same conditions. The optimal reaction conditions for synthesis of ITO powder with the cubic iron manganese ore crystal structure, perfect crystallization, monodispersity, uniform size, good electrical conductivity, as well as the resistance ratio of 1.92×10~(-3)Ω·mm are: the added dispersant is MC, the reaction temperature is 70℃, the concentration of [In~(3+)] in the reaction solution is 0.10M, and the ratio of Sn-doped is 9:1, and the pH value is 7~8 in the reaction solution, the temperature of heat treatment is 700℃and the time of heat treatment is 2h.
     To improve the crystal structure, distribution of crystallite size and dispersion of ITO powder, the effects of dispersants added in the reaction of preparing ITO precursor on the properties of ITO powder was discussed. No effects on ITO crystallite size are found when non-ion surfactant PP and PG were added, but the enhanced effect on the crystal intensity of ITO powder when PG was added. Moreover, PP and PG are helpful for dispersity of ITO powder. However ITO crystallite size is reduced when polymer MC is added. The effects of the influence factors on the surface shape, crystal structure, crystallite size and electrical conductivity of the prepared nanometer ITO powder was discussed with the nucleation and growth mechanism of LaMer theory and semi-conductivity and electrical conductivity mechanism of ITO. ITO nanopowder prepared by chemic douce is ready for the preparing ITO suspension.
     The stabilized ITO ethanol absolute suspension and ITO aqueous suspension were prepared by ball milling and ultrasonic cavitations dispersion method through dispersing ITO powder into ethanol absolute and distilled water separately, and the effects of ball milling time and dispersants on the stabilization of ITO suspension were studied. The results showed that under ball mill dispersing period of 24h, TC and BA optimalΥvalue of such dispersing agents is 5% separately, while for the dispersing agent PP, itsΥvalue is between 5% and 10%, its dispersible effect is better than that of the first two dispersing agents. It is also discovered that, when the dispersing agent relative ITO powder quality fraction is 5%, ball mill dispersing time of 48h is the optimal ball milling dispersion time, and within 15d, PP, TC and BA can enable the RSH to maintain within 10%. In the ball milling dispersion time period between 24h and 96h, the descending order of ITO suspension stability is PP>BA>TC. It is seen that through the research on the stability of suspension in aqueous phase, dispersing agent MC has good dispersing effects in the ITO suspension process during the ball milling. When the MC amount used accounts for relative ITO powder quality fraction is constant, with MC amount used , ITO powder amount used and ball milling dispersion time increase, ITO suspension stability enhances; When the MC amount used is 15%, the ball milling dispersion time is 48h, the ITO suspension stability becomes best, and its RSH is within 1.8% during 120d.
     Based on DL VO stabilization theory and space steric hindrance theory, the functional mechanisms of four agents on the stability of ITO suspension can be explained as follows: PP is of steric hindrance, TC and BA are of electrostatic hindrance and MC is of electrostatic and steric hindrance. ITO thin film was prepared by the spin coating process of spreading membrane on the ITO ethanol absolute suspension uniformlue. The block resistance of the film is 196Ω/□, the transmittance of the visible light is equal to or more than 87.8%, and the reflectance of the infrared light is about 70%.
     Based on the sol-gel of chemie douce, IO/SiO_2 and ITO/SiO_2 mesoporous nanocomposite were synthesized by immersion- pyrolysis. The results showed that the mesoporous composite ITO/SiO_2 has the better photoluminescence enhancement effect than IO/SiO_2 with the peak intensity value of 504, when excited wave length is 275nm, the emitted wave length in the position of 360nm. Based also on the sol-gel of chemie douce, SiO_2 aero gel and IYO/SiO_2 aero gel were prepared by gel- mixing drying method. The results showed that ITO/SiO_2 aero gel has the better photoluminescence enhancement effect than SiO_2 aero gel with the peak intensity value of 1647, when excited wave length is 220nm, the emitted wave length in the position of 398nm, and at this moment, its PL spectrum has had the right offset, which is 15nm. Thus from the results mentioned above, ITO/SiO_2 aero gel has the best photoluminescence properties among the mesoporous nanocomposites prepared here.
     Review of the preparation, performance and application of ITO nanomaterials in China and abroad was given in this dissertation. The preparation principle, dispersion stability theory and mechanism of semiconducting of ITO nanomaterials were analyzed. ITO nanopowder was prepared by precursor-pyrolysis method, ITO suspension was prepared by ball milling and ultrasonic cavitations dispersion method, ITO/SiO_2 mesoporous composite was synthesized by gel- mixing drying method and immersion- pyrolysis. A useful exploratory experiments of ITO nonmaterial in its preparation technology, forming mechanism, physical performance and influence factors lay the basis of development and application of heat insulation or photoluminescence composites, and new type functional composites of ITO.
引文
[1] Gilbert Rancoule, Jerald L. Bliton. United States Patent :5433901,1995 or WO18138,1994
    [2] 陈世柱,尹志民,黄伯云,等.用喷雾燃烧法制备ITO纳米级粉末的研究.有色金属,2000,05,52(2):88-90.
    [3] 陈世柱,尹志民.快速制备纳米级金属氧化物的喷雾燃烧法.湖南有色金属,1998,01,14(1):24-28.
    [4] 初国强,王子君,赵家民,等.氧离子辅助法沉积ITO透明导电膜的研究,光学精密工程,2001,04,9(2):169-173
    [5] 史济群,周京英,马稚尧等.电子束法沉积ITO透明导电膜的研究,华中理工大学学报,1998,03:55-58
    [6] 高愈尊,李永洪,张泰宋.铟锡氧化物纳米粉的显微结构.中国有色金属学报,1998.06,8(2):278-281
    [7] 张艳峰,张久兴.化学共沉淀法制备纳米ITO粉体及结构表征.功能材料,2003,5(34):573-574
    [8] 张贤高,贺平,贾志杰,等.ITO纳米的低温制备.电子元件与材料,2004,23(6):44-45
    [9] 吕志伟,陈志飞,姚吉升,等.纳米ITO粉体的制备及其性能表征.矿冶工程,2004,06,24(3):70-72
    [10] 张永红,陈明飞.热处理对制备纳米氧化铟锡(ITO)粉末的影响.金属热处理,2003,28(2)18-20
    [11] 宋伟明,周惠良,胡奇林,等.铟锡氧化物纳米晶的溶胶凝胶法合成.宁夏大学学报,2000,12,21(4):339-341
    [12] 黄杏芳,沈晓冬,崔升,等.纳米铟锡氧化物粉体的制备及表面改性.无机盐工业,2004,01,36(1):24-25
    [13] Ki Young Kim,Seung Bin Park.Preparation and property control of nano-sized indium tin oxide particle. Materials Chemistry and Physics ,2004,86(1):210-221
    [14] Shu-Guang Chen,Chen-Hui Li,Wei-Hao Xiong, et al. Preparation of indium-tin oxide (ITO) aciculae by a novel concentration-precipitation and post-calcination method.Materials Letters,2004,58(3-4):294-298
    [15] Dabin Yu, Debao Wang, Weichao Yu ,et al. Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method. Materials Letters, 2004, 58(1-2):84-87
    [16] Steven J. Limmer, Katsunori Takahashi, and Guozhong Cao.Electrochromic and transparent conducting oxide nanorods. Proceedings of SPIE, 2003, 5224:25-32
    [17] Shitao Li,Xueliang Qiao,Jianguo Chen,et al.Effects of temperature on indium tin oxide particles synthesized by co-precipitation. Journal of Crystal Growth,2006,289(1): 151-156
    [18] Hongliang Zhu,Yong Wang, Naiyan Wang, et al.Hydrothermal synthesis of indium hydroxide nanocubes. Materials Letters ,2004,58(21):2631-2634
    [19] 刘雪颖,古映莹.共沉淀法制备纳米ITO粉末.广州化工,2005,33(1):31-33,45
    [20] 吕志伟, 陈志飞, 姚吉升.纳米ITO粉体的制备及其性能表征.矿冶工程,2004,24(3):70-72
    [21] Balamurugan B, Kruis FE, Shivaprasad SM, et al. Size-induced stability and structural transition in monodispersed indium nanoparticles. Applied Physics Letters,2005,86:083102(1-3)
    [22] Xu, Huarui,Zhu, Guisheng,Zhou, Huaiying,et al. Preparation of monodispersed tin-doped indium oxide powders by hydrothermal method. Journal of the American Ceramic Society, 2005, 88(4): 986-988
    [23] 陈世柱,尹志民,黄伯云,等.用喷雾燃烧法制各ITO纳米级粉末的研究.有色金属,2000,52(2):88-90
    [24] 李锦桥.ITO靶材的发展现状.新材料产业,2000(12):35-36,72.
    [25] Sujatha Devi,P.,Chatterjee,M.,Ganguli,D.Indium tin oxide nano-particles through an emulsion technique.Materials Letters,2002,55(4):205-210
    [26] 刘家祥,李敏,甘勇,等.纳米级氧化铟锡复合粉体的制备及其性能.稀有金属材料与工程,2006,35(4):662-664
    [27] 张久兴,张艳峰.液相共沉淀法制备纳米ITO粉体.稀有金属材料与工程,2006,35(3):451-454
    [28] Li ST, Qiao XL, Chen HG, et al.Effects of temperature on indium tin oxide particles synthesized by co-precipitation.Journal of Crystal Growth, 2006,289(1): 151-156
    [29] 徐滨士.纳米表面工程.北京:化学工业出版社,2004.25-33
    [30] Xu HR,Zhu GS,Zhou HY,et al.Preparation of monodispersed tin-doped indium oxide powders by hydrothermal method.Journal Of the American Ceramic Society, 2005,88(4):986-988
    [31] 张贤高,贺平,贾志杰,等.ITO纳米粉的低温制备.电子元件与材料,2004, 23(6):44-45
    [32] 贡长生,张克立.绿色化学化工实用技术.北京:化学工业出版社,2001.
    [33] 贾晓林,谭伟.纳米粉体分散技术发展概况,非金属矿,2003.7:1-3
    [34] 聂福德,李凤生,宋洪昌,等.超细粉体在液相中的研究,化工进展1996,4:24-28
    [35] 李凤生.超细粉体技术,北京:国防工业出版社,2000
    [36] 李凤雷,王庭慰,沈晓东,等.纳米氧化铟锡表面改性研究.合成纤维工业,2005,28(2):7-9
    [37] 曾玉燕,沈培康,童叶翔.纳米二氧化钛粉体的分散研究.自然科学版,2004.5,43(3)18-24
    [38] 梁文平.表面活性剂及其分散体系中的应用.日用化学工业,1999.2,(1):7-11
    [39] 侯峰岩,王为,刘家臣,等,液相中分散剂分散超微颗粒研究进展.材料导报2004,18(6)8-10
    [40] 沈钟,王果庭 编著.胶体与表面化学(第二版),北京:化学工业出版
    [41] 王树林,夏冬林.ITO薄膜的制备工艺及进展,玻璃与搪瓷,2004,32(5):51-54
    [42] Tahar F B H ,Ban T ,Ohya Y,et al.. Journal of Applied Phyisics, 1998,83(5):2631-2645.
    [43] Alam M J, Cameron D C.. Surface and Coatings Technology, 2001,142:776-780.
    [44] Rao KN, Kashyap S. Preparation and characterization of indium oxide and indium tin oxide films by activated reactive evaporation. Surface Review and Letters, 2006, 13(2-3):221-225
    [45] Ren BY, Liu XP, Wang MH, et al.Preparation and characteristics of indium tin oxide (ITO) thin films at low temperature by r. f. magnetron sputtering. Rare Metals, 2006, 25:137-140
    [46] Riveros R, Romero E, Gordillo G.Synthesis and characterization of highly transparent and conductive SnO2:F and In203:Sn thin films deposited by spray pyrolysis. Brazilian Journal of Physics, 2006, 36 (3B): 1042-1045
    [47] Sawada Y.Low-cost deposition of highly-conducting indium-tin-oxide transparent films by chemical process; spray CVD and dip coating. Advanced Materials Processing Ⅱ Materials Science Forum, 2003,437-4:23-26
    [48] Biswas PK, De A, Dua LK, et al .Work function of sol-gel indium tin oxide (ITO) films on glass. Applied Surface Science ,2006, 253 (4):1953-1959
    [49] Biswas PK, De A, Dua LK, et al .Surface characterization of sol-gel derived indium tin oxide films on glass. Bulletin of Materials Science, 2006,29(3): 323-330
    [50] 常天海.氧化铟锡薄膜隔热效果的计算与分析.真空与低温,2004,10(1):43-46
    [51] Aikens John H., Sarkas Harry W., Brotzman Jr. Richard W., et al. Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor [P]. US6416818, July 9,2002
    [52] Nishihara Akira, Hayashi Toshiharu, Sekiguchi Masahiro. Infrared ray cutoff material and infrared cutoff powder use for same. United States Patent, US 5518810, May 21, 1996
    [53] Masato Murouchi, Toshiharu Hayashi, Akira Nishihara, et al. Composition for forming conductive films. United States Patent, US5504133, April 2,1996
    [54] 陈飞霞,付金栋,韦亚兵,等.纳米氧化铟锡透明隔热涂料的制备及性能表征。涂料工业,2004,34(2):48-51
    [55] 付金栋.纳米氧化铟锡制备透明隔热涂料的研究[硕士学位论文].南京:南京工业大学,2003
    [56] 陈飞霞.纳米氧化铟锡透明隔热涂料的制备及性能研究[硕士学位论文].南京:南京工业大学,2004
    [57] Tseng Wenjea J., Tzeng Frank. Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276(1-3):34-39
    [58] Jiakuan Sun, Bhaskar V. Velamakanni, William W. Gerberieh, et al. Aqueous latex/ceramic nanoparticle dispersions: Colloidal stability and coating properties. Journal of Colloid and Interface Science, 2004, 280(2): 387-399
    [59] Sung Ky Park , Jeong In Han. Deposition of indium tin-oxide films on polymer substrates for application in plastic-based flat panel displays. Thin Solid Films ,2001 , (397) : 49-55.
    [60] Li - Te Yin ,Jung-Chuan Chou. Study of indium tin oxide thin film for separative extended gate ISFET. Materials Chemistry and Physics, 2001, (70) :12-16.
    [61] Hai - Ning Cui ,Shi-Quan Xi. The fabrication of dipped CdS and sputtered ITO thin films for photovoltaic solar cells. Thin Solid Films ,1996, (288) :325-329.
    [62])马谨,赵俊卿,叶丽娜,等.有机聚合物衬底ITO薄膜的低温制备及其特 性.稀有金属,1999, 17(增刊1):41.
    [63] Hambergi, Granqvist C G. Evaporated Sn-doped In203 films: Basic optical properties and applications to energy-efficient windows. J Appl Phys, 1986,60(11) :123-159.
    [64] 刘世友.铟锡氧化物薄膜的生产现状和应用.材料科学与工程,1999.17(2):98-80
    [65] 徐美君.ITO透明导电膜玻璃生产及应用.玻璃与搪瓷,2001.29(2):53-59
    [66] 段学臣, 杨向萍.新材料ITO薄膜的应用与发展.稀有金属与硬质合金,1999, 138:58-60.
    [67] 姜燮昌,胡勇.ITO膜透明导电玻璃的应用前景及工业化生产.真空,1995,12:1-3
    [68] 钟毅,王达健,刘荣佩,等.铟锡氧化物(ITO)靶材的应用和制备技术.昆明理工大学学报,1997,22(1):66-70
    [69] 史非,王立久,刘敬肖,等.介孔SiO_2气凝胶的常压干燥制备研究,无机化学学报,2005,21(11):1632-1636
    [70] 周小春,魏坤.两步法常压制备SiO_2气凝胶,中国陶瓷工业,2005,12(2):19-21
    [71] 乐士儒,朴金花,陈新冰,等.阳极支撑型ITSOFC密封材料SrO-La203-A1203-B203.Si02微晶玻璃的研.功能材料,2006,37(8):1256-1258
    [72] 李亚娟,吴松全,王福平.Y203对高分子网络凝胶法制备Li20-A1203-Si02系微晶玻璃性能的影响.硅酸盐通报,2006,25(4):50-53
    [73] 陈炳猛,柴金岭.新型介孔材料M 41S的合成机理及影响产物结构的因素.山东科学,2002,15(4):13-17
    [74] 张立德.纳米材料.北京:化学工业出版社,2000.95-96.
    [75] Schmidt-Winkel P, Lukens W W Jr, Zhao D Y, et al. Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. J. Am. Chem. Soc., 1999, 121:254-255.
    [76] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature, 1992, 359:710-712.
    [77] 王旭华,钱家盛,章于川.有序二氧化硅介孔固体材料制备的研究进展, 过程工程学报,2004,4(1):84-89
    [78] 陈铁红,孙平川,袁忠勇,等.NMR研究表面活性剂在MCM—41分子筛合成溶胶体系中的作用机制.化学物理学报,1999,12(2):239-243.
    [79] 王利军,李宝会,金庆华,等.模板剂在沸石合成过程中的作用机理研究.化学物理学报,2000, 13(3):343—348.
    [80] 钱家盛,王旭华,章于川.介孔材料的制备及表征,中国粉体技术,2005,11(1):36-38
    [81] Chuah G K, Hu X, Zhan P, et al. Catalysts from MCM-41: Framework Modification, Pore Size Engineering, and Organic-Inorganic Hybrid Materials. J. Mol. Catal. A: Chem., 2002, 181:25-31.
    [82] Sage V, Clark J H, Macquarrie D J, et al. Cationic Polymerization of Styrene Using Mesoporous Silica Supported Aluminum Chloride. J. Mol. Catal. A: Chem., 2003, 198: 349-358.
    [83] Alain Moissette, Isabelle Gener, Claude Bremard. Probing the Spontaneous Ionization of Aromatic Amines by Adsorption in Activated Acidic Zeolite HZSM-5. J. Raman Spectrosc., 2002, 33(5): 381-389.
    [84] Ganschow M, Wark M, Wohrle D, et al. Anchoring of Functional Dye Molecules in MCM-41 by Microwave-assisted Hydrothermal Cocondensation-. Angew. Chem. Int. Edit., 2000, 39(1):161-163.
    [85] 姚连增,叶长辉,牟季美,等.纳米PbS/Si02气凝胶介孔组装体的制备及发光特性-.无机材料学报, 2001,16(1):93-97.
    [86] Pan A L, Zheng H G, Yang Z P, et al. Gamma-irradiation-induced Ag/SiO2 Composite Films and Their Optical Absorption Properties. Mater. Res. Bull., 2003, 38: 789-796.
    [87] Kalogeras L M, Aglaia Vassilikou-Dova, Neagu E R. Dielectric Characterization of Poly(methyl methacrylate) Geometrically Confined into Mesoporous SiO2 Glasses. Mat. Res. Innovat., 2001, 4: 322-333.
    [88] Coradin T, Larionova J, Smith A A, et al. Magnetic Nanocomposites Built by Controlled Incorporation of Magnetic Clusters into Mesoporous Silicates. Adv. Mater., 2002, 14(12): 896-898
    [89] Napolsky K S, Eliseev A A, Knotko A V, et al. Preparation of Ordered Magnetic Iron Nanowires in Mesoporous Silica Matrix. Mater. Sci. Eng. C, 2003, 23: 151-154.
    [90] Kresge C T, Leonowlcz M E, Roth W J et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359:710-712.
    [91] Beck J S, Wartuli G C, Roth W J, et al. A new family ofmesoporous molecular-sieves prepared with liquid crystal templates. J Am Chem Soc ,1992, 114 :10834-10843.
    [92] Russo RE, HuntA J. J Non-Crys Solids, 1986,86:219-231.
    [93] Hrubesh L W, Poco F J. J Non-Crys Solids, 1995,188:46-53.
    [94] S .Ohtsuka, T. Koyama, et al, Appl. Phys. Lett., 1992,61 : 2953-2954
    [95] M.D.Dvorak ,B.L. Justus, D.K. Gaskill ,etal, Appl .Phys.Lett., 1995,66(7):804
    [96] S.S. Yao, C.Karaguieff, A .Gabel, etal, Appl .Phys. Lett.,1985, 46(9):801-802
    [97] W.P.Cai, M. Tan, L. D. Zhang, etal, Appl. Phys. Lett., 1996, 69 (20):2980-2982
    [98] V.I.Srdanov,I .Alxneit, G.D.Studky, etal, J. Phys. Chem. B, 1998,102:3341-3344
    [99] J. L.Coffer, G. Beauchamp, T.W. Zerga, J. Non-Cryst. Solids, 1992,142:208-213
    [100] 张立德,蔡伟平,牟季美,自然科学进展,1999,9(2):103-110
    [101] 蔡伟平,张立德,物理,1997,26(4):213-216
    [102] W. P. Cai, L.D. Zhang, Chin. Phys. Lett., 1997,14(2):138-141
    [103] W .P .Cai, L. D. Zhang, Appl. Phys. 1998, A66:419-421
    [104] W .P .Cai, Y. Zhang, etal, Appl. Phys .Lett. ,1998,73(19):2709-2711
    [105] L. W. Wilson, P. F. Szajowski,L.E.Brus,Science, 1993,262:1242-1244
    [106] C.G.Wuand T.Bein, Science, 1994, 264 : 1757-1759
    [107] N. Tohge, M. Asukaand T. Minami, J. Non-Cryst. Solids, 1992,147 & 148 :652-656
    [108] M. Tan, W. P. Cai, and L. d. Zhang, Appl. Phys. Lett., 1997,71:3697-2699
    [109] A. Parvathy Rao, A. Venkateswara Rao, Mater. Chem. Phys. 2001,68:260-265
    [110] S.S. Yao, C. Karaguleff, A. Gabel, et al. Appl. Phys.Lett. 1985,(46): 801.
    [111] W.P. Cai, M. Tan, G.Z. Wang, et al. Appl. Phys. Lett. 1996,(69): 2980.
    [112] J.L. Coffer, G. Beauchamp, and T.W. Zerda, J. Non-Cryst. Matter 1992,(142):208.
    [113] Nooney Robert I., Thirunavukkarasu Dhanasekaran, Chen Yimei, et al. Self-assembly of mesoporous nanoscale silica/gold composites. Langmuir,2003,19(18):7628-7637
    [114] Donglin Li, Haoshen Zhou, Itaru Honma. Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization. Nature Materials, 2004, 3(1): 65-72
    [115] Bhattacharya, A., Mahanti, S.D. Self-assembly of ionic surfactants and formation of macrostructures. Journal of Physics: Condensed Matter, 2001, 13(7): 1413-28
    [116] Huijuan Zhou, Weiping Cai, and Lide Zhang. Synthesis and structure of indium oxide nanoparticles dispersed within pores of mesoporous silica. Materials Research Bulletin, 1999,34(6):845-849
    [117] Mo, C.M., Li, Y.H., Liu, Y.S., et al. Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aero gels. Journal of Applied Physics, 1998, 83(8): 4389-91
    [118] Martemyanov, M.G., Gusev, D.G., Soboleva, I.V., et al. Nonlinear optics in porous silicon photonic crystals and micro cavities. Laser Physics, 2004, 14(5):677-684
    [119] 杨一军,刘强春,杨保华,等.Fe203/Si02介孔组装体系的制备和吸收边的光学性质.江西师范大学学报(自然科学版),2002,26(4):306-309
    [120] 周少敏.PbS/Si02介孔组装体系的光吸收特性.零陵学院学报,2002,23(2):6-10
    [121] 杨一军,刘强春,李村成,等.ZnS/Si02介孔组装体系的发光性质.复合材料学报, 2006,23(2):99-103
    [122] 吴侠,吴玉程,李广海,等.Ag/Si0_2介孔组装体系的结构与光吸收特性.合肥工业大学学报(自然科学版),2004,27(1):27-30
    [123] 沈军,王珏,吴翔.气凝胶——一种结构可控的新型功能材料[J].材料科学与工程,1994,12(3):1-5.
    [124] Hrubesh L W. Aerogel applications. Journal of Non-crystalline solids,1998,225:335-342
    [125] Schmidt M, Schwertfeger F. Applications for silica aerogel products. Journal of Non-Crystalline Solids, 1998,225:364-368
    [126] Hrubesh L W. Aerogel applications. J Non-Cryst Solids ,1998,225:335-342.
    [127] Schmidt M, Schwertfeger F. Applications for silica aerogel products. J Non-Cryst. Solids, 1996,225:364-368.
    [128] A Kimow Yu K. Fields of Application ofAerogels ( Review). Instruments and Experimental Techniques, 2003,46(3):287-299.
    [129] Norlund Christensen A and Broch N C 1967 Acta ChemicaScandinavica 21 1046
    [130] Takuma Ishida, Katsumi Kuwabara and Kunihito Koumoto. 1998 Journal of the Ceramic Society of Japan, Int. Edition 106 400
    [131] 张维佳,王天民.ITO前驱物氢氧化铟In(OH)3理论研究.物理学报,2004,53(6):1923-1929
    [132] Von Schubert K and Seitz A 1948 Zeitschrift fur anorganische Chemic. 226-256
    [133] 闵乃本.晶体生长的物理基础.上海:上海科学技术出版社,1982.339-354,416-417
    [134] 陆杰,王静康.反应结晶沉淀研究进展.化学工程,1999.27(4):24-27
    [135] 朱履冰,表面与界面物理.天津大学出版社,1992.167-175
    [136] 张克从,张乐惠.晶体生长.北京:科学出版社,1981.41
    [137] 钟志勇.固态材料形成过程中的晶体生长机理.人工晶体学报.2004 33(5):848-856
    [138] 尾崎义治.超微颗粒导论.武汉:武汉工业大学出版社,1991
    [139] 徐彬士.纳米表面工程.北京:化学工业出版社,2004.25-27
    [140] 陆厚根,张庆红,梅芳.超细碳酸钙表面改性.上海化工,1996.21(4):15-18
    [141] 李荣生,甄开吉,王国甲编著.催化作用基础.北京:科学出版社,1990
    [142] 李卫.铋铜铬系列氧化物、复合氧化物纳米粉体材料的湿化学法合成、结构与性能研究:[博士学位论文].长沙:中南大学,2005
    [143] T Sugimoto.Preparation of monodeispersed colloidal particles.Adv Colloid Interface Sci. 1987,28, 65-108
    [144] 贾晓林,谭伟.纳米粉体分散技术发展概况.非金属矿,2003.7:1-3
    [145] 聂福德 李凤生 宋洪昌等.超细粉体在液相中的研究.化工进展1996,4:24-28
    [146] 李凤生,超细粉体技术.北京:国防工业出版社,2000
    [147] 杨志伟,韩圣浩,杨田林,等.柔性衬底ITO膜的性质与制备参数关系的研究.太阳能学报,2001,22(3):256-261.
    [148] 马颖,张方辉,牟强.ITO膜透明导电玻璃的特性、制备和应用.陕西科技大学学报,2003,21(1):106-109
    [149] Mizuhashi M., Thin Solid Films, 1980,70(1):91-100
    [150] Dawar A.L.,Joshi J.C.,J.Mater.Sci., 1984,19(1): 1-23
    [151] 李玉增,赵谢群.氧化铟锡薄膜材料开发现状与前景.稀有金属,1996.20(6):455-458
    [152] 史月艳,潘文辉,殷志强.氧化铟锡(ITO)膜的光学及电学性能.真空科学与技术,1994,14(1):35-40.
    [153] 马勇,孔春阳.ITO薄膜的光学和电学性质及其应用.重庆大学学报,2002,(8):114-117.
    [154] Hambergi, Granqv Ist, C, G. Evaporated Sn-doped In203 films: Basic optical properties and applications to energy-efficient Window s. J. App I phys, 1986, 60 (11): 123-159.
    [155] Kentaro Utsum i, Osamu. Matsunaga and Tsutomu Takahata. Th in so lid Films, 1998, 334: 30-34.
    [156] IBaia, M Q uintela, L. Mendes, P. Nunes and R. M art ins. Th in Solid Films, 1999, 337: 171-175.
    [157] 史济群,周京英,马洪磊.电子束法沉积ITO透明导电膜的研究.华中理工大学学报,1998,(3):10-12.
    [158] 张树高,黄伯云,方勋华.ITO薄膜的半导化机理、用途和制备方法.材料导报,1997,11(4):11-14.
    [159] 马颖,张方辉,牟强.ITO膜透明导电玻璃的特性、制备和应用.陕西科技大学学报,2003,21(1):106-109
    [160] 李树棠编.晶体X射线衍射学基础.北京:冶金工业出版社1990.
    [161] 黄培云.粉末冶金原理.北京:冶金工业出版社,1981:133
    [162] 高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社,2003.12:112
    [163] Sanchuan Tang, Jisheng Yao, Jian Chen, etc. Preparation of indium tin oxide (ITO) with a single-phase structure. Journal of Materials Processing Technology,2003, 137:82-85
    [164] 朱协彬,段学臣.在纳米ITO粉末共沉淀法制备过程中pH值的影响.稀有金属与硬质合金, 2006, 34(2):8-11
    [165] 许珂敬,杨新春,许煜汾,表面活性剂在胶体制备过程中的作用.中国有色金属学报,1998,8(增刊2):560-563
    [166] 刘阳桥,高濂.纳米Y-TZP悬浮液的团聚抑制研究.无机材料学报,2002,17(6):1292-1296
    [167] 谭训彦,尹衍升,刘英才,等.纳米ZrO粉体在液相中分散的研究进展.硅酸盐通报,2004,(3):50-55
    [168] ZX Sun, RO Skold. Characterization of barite suspension during synthesis by light scattering. J. Colloid Interface Sci. 2001,242(1):67-74
    [169] ZJ Lu, X Ai, J Zhao, et al. Preparation of agglomerate-free starting powders for TiCp-reinforced beta-sialon nanocomposites. Mater. Sci. Forum 2004, 471-472,282-286
    [170] RH Chu, JC Yan, SY Lian, et al. Shape-controlled synthesis of nanocrystalline titania at low temperature. Solid State Commune. 2004, 130(12):789-792
    [171] T Ding, H Wang, S Xu, et al. Sonochemical synthesis and characterizations of monodispersed PbSe nanocrystals in polymer solvent. J Cryst. Growth 2002, 235(1-4):517-522
    [172] Nimai Chand Pramanik, Sukhen Das, Prasanta Kumar Biswas.The effect of Sn(Ⅳ) on transformation of co-precipitated hydrated In(Ⅲ) and Sn(Ⅳ) hydroxides indium tin oxide (ITO) powder. Materials Letters, 2002, 56(5):671-679.
    [173] 冯乙巳,张立德.介孔二氧化硅干凝胶和气凝胶纳米复合材料的研究进展.功能材料,2003,34(6):619-621,625