微生物燃料电池中多元生物质产电特性与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机废水处理是能源密集型综合技术,高能耗是其主要问题之一。在世界性能源危机的环境中,传统的废水处理技术不仅导致了较高的化石能源需求,而且有机物降解和能耗造成了大量的碳排放,引发了一系列新的环境问题。微生物燃料电池(Microbial fuel cell,MFC)是21世纪环境工程领域新兴的废水处理同步能源回收技术,能在胞外产电菌的作用下将有机废物中的化学能直接转化为电能,然而目前产电机理尚不清晰。考虑到未来应用,MFC成本过高以及产电过程中的影响机制有待进一步研究。本论文围绕多元生物质在MFC中的转化规律、新型电极材料的开发和双室MFC的低成本运行规律,其目的是降低MFC技术的成本,将MFC技术推向市场化。
     本文首次验证了啤酒废水可以直接作为MFC底物产电。在单室空气阴极方形MFC中,以啤酒废水中的土著微生物为接种菌源,全浓度废水为底物,获得了最大功率密度为205mW·m-2(30℃)。温度影响了阴极电位,20℃下功率密度降低至170 mW·m-2,但COD去除率和库仑效率(CE)变化不大。加入50和200mmol·L-1 PBS后功率密度上升。随废水浓度的升高,CE降低而功率密度线性升高。秸秆汽爆洗液同样也可以作为阳极廉价底物产电,最大功率密度644mW·m-2。电导率的变化影响了阳极电位,使功率密度先上升而后下降。而PBS浓度升高使阴极区表面pH缓冲能力增强,提高了阴极性能。在纤维素糖化菌群(H-C)和产电菌的协同作用下,首次在MFC中实现了天然固体秸秆产电,获得了331mW·m-2的最大功率密度。将底物更换为汽爆秸秆后,最大功率密度升高至406mW·m-2。微生物群落演替分析表明,体系中可能的产电菌为Rhodopseudomonas palustris。
     开发出了基于低成本碳纤维布的阳极材料和Nafion/PTFE新型阴极粘结剂材料,使MFC的单位容积和单位功率成本降低70%以上。使用碳纤维布替代传统E-TEK碳布后,阳极成本降低了75%,功率输出提高了7%。未经预处理的碳纤维布产电性能较差。使用马弗炉对碳纤维布进行热处理后(450℃,30min)获得了922mW·m-2的最大功率密度,比只经过丙酮清洗的碳纤维布阳极高3%,仅比高温氨处理的碳布低7%。预处理提高MFC性能的机理是:丙酮清洗和热处理是通过去除电极表面影响电子传递的杂质,提供了更大的电化学活性表面积,促进了产电过程进行。高温氨处理后除清洁作用外,表面N/C原子个数比与热处理相比升高了近1倍(由2.9%升高至4.6%),说明氨处理过程中生成的含氮官能团(如胺基)对产电过程有促进作用。在此基础上,使用重氮盐向碳布表面连接不同含量的胺基,测试了胺基含量对产电性能的影响。在较低的胺基含量下,MFC的功率输出并无显著变化。当官能团比重上升至0.4%和0.9%后,MFC的功率密度有显著提升,最大功率密度与氨处理电极相同,阳极表面的微生物蛋白含量也与氨处理电极相近。然而过量的胺基连接量抑制了微生物的生长,降低了功率输出。开发出了廉价空气阴极Nafion-PTFE催化剂粘结剂,降低了阴极成本。发现MFC的最高功率输出随粘结剂中Nafion含量线性增加。经过25个周期运行后,Nafion为粘结剂的MFC获得的CE为20-29%,而粘结剂中加入PTFE略微降低CE至17-26%,而所有MFC最高电压输出变化不大。
     发现了阳极恒定+200mV(Ag/AgCl)电位加速启动,降低了MFC运行成本。启动期内恒电位系统较高的输出电流是由于阳极恒定正电位提高了底物氧化推动力造成的。启动完成后,不同方法启动的MFC性能相同。进一步的研究表明,阳极电位在-400mV至+200mV(Ag/AgCl参比)范围内,随着阳极电位升高最大输出电流升高,而最高电流获得的时间缩短。但当阳极电位进一步升高至+400mV,峰电流却降低至6.9mA。CE随阳极电位的升高而增大,低电位下(-400mV至0mV)的CE较低主要是由于氢气甲烷的产生造成的。升高阳极电位可以提高产电菌氧化底物的推动力,从而在竞争中有效抑制发酵气体生成。在较高的阳极电位下微生物生长获得的电量比例降低,生长受到抑制。
     构建了无曝气双室微生物碳捕获电池(MCCs),通过在阴极溶液中培养小球藻(Chlorella vulgaris)原位捕获阳极产生的CO2,同时产生O2供给阴极作为电子受体,消除了双室MFC阴极高能耗高成本的曝气过程,最大功率密度为5.6W·m-3。CV和DO测试结果表明MCC阴极反应的机理是藻类光合产氧,然后氧气被还原,周期内阳极室产生的所有气态CO2均被捕获。碳平衡计算表明MCC的碳捕获率高达94±1%,为废水的零碳排处理提供了新方法。
Since organic wastewater treatment is an energy intensive technology, high energy consumption is one of main problems for wastewater treatment. Traditional wastewater treatment processes not only needed large amount of fossil energy, but also discharged CO2 into atmosphere, incurring new environmental problems. Microbial fuel cell (MFC) is a new environmental technology for wastewater treatment with simultaneous energy recovery in 21st century. In MFCs, chemical energy from organic pollutant can be directly converted into electrical energy by anodic exoelectrogenic bacteria. However, the mechanism of electron transfer in MFCs is still not clear. Considering for its future applications, high cost and the mechanisms of environmental factors affected the performance of MFCs still need to be investigated. In present thesis, research works were performed focusing on the multiple biomass conversion, development of new electrode materials and low-cost operation of MFCs. The aim is to decrease the cost of MFCs for future applications. Beer brewery wastewater was demonstrated for the first time as substrate in MFCs, and the maximum power density was 205mW·m-2 (30°C) in an air-cathode MFC using aboriginal bacteria as inoculum and full-strength wastewater as substrate. Decrease of temperature resulted in the decline of cathode potential and power density (170 mW·m-2). However, the COD removal efficiency and Coulombic efficiency (CE) were not affected by the temperature. Addition of buffer with concentrations of 50 and 200mmol·L-1 increased power densities. Power densities increased with increase of wastewater concentration, accompanied with a decrease of CE. Corn stover hydrolysate was also demonstrated to be suitable substrate for electricity generation in MFCs. The maximum power density was 644mW·m-2. Conductivity affected the anode potential, resulting in an increase of power density, followed by a decrease to 351mW·m-2. When the PBS concentration increased, power density possiblely due to high buffer capacity provided a neutral surface condition for cathode. By the bioaugmentation of exoelectrogenic bacteria and celluosic saccharificating bacteria (H-C), it was demonstrated for the first time that natural corn stover can be used for electricity generation in MFCs. The maximum power density was 331mW·m-2. Power can be increased into 406mW·m-2 when substrate was switched into steam exploded corn stover residual solids. Community analysis showed that the potential exoelectrogene in this system was Rhodopseudomonas palustris.
     New inexpensive anode material, carbon mesh, and Nafion/PTFE binder for cathodes can decrease both the unit volume cost and unit power cost by more than 70%, When using carbon mesh instead of E-TEK carbon cloth, the cost of anode materials reduced by 75%, and the maximum power density increased by 7%. The performance of carbon mesh without any pretreatment was low. However, after heating in furnace (450°C, 30min), the maximum power density was 3% higher than that using carbon mesh only cleaned by acetone, or 7% lower than ammonia treated carbon cloth. The mechanisms of performance enhancement after pretreatments were as follow: Acetone cleaning and heat pretreatment removed the surface contaminations that affected electron transfer, provided a larger electrochemical active area for electron transfer. Besides surface cleaning, N/C atomic ratio was one time higher after high temperature ammonia treatment than untreated samples, showing that nitrogen related functional groups (e.g. amine group) that facilitated electron transfer from bacteria to electrodes were formed. Based on the hypothesis, functionalization was performed using diazonium salt to connect amine group on the surface of carbon cloth anode. Power densities were not significantly increased when the amine group content is low. However, when the functional group content increased to 0.4% and 0.9% (w/w), the maximum power densities were similar with that obtained using ammonia treated anode, and the surface protein content were also similar. Over fictionalization inhibited bacterial growth, resulted in a decrease of power density. Novel inexpensive Nafion-PTFE mixed binders were developed to decrease the total cost of air-cathode. The maximum power densities linearly increased with percentage of Nafion in binders. The cost of binder will be decreased by 50 % with only a decrease of 25 % in power. During 25 cycles, the CEs of MFCs with Nafion binder was 20-29%, addition of PTFE into binders slightly decreased CEs to 17-26 %. No distinct change in maximum voltages was observed.
     The start-up time was decreased by poising anode potential at +200mV versus Ag/AgCl, which decreased the operational costs. High current generated in poised potential system was due to the high driving force of substrate oxidation. Similar performances were observed in MFCs using different start-up methods when systems were well acclimated. Further tests showed that higher anode potential over a range from -400 to +200mV resulted in a higher and earlier current peak. However, when anode potential increased further to +400mV, the peak current decreased to 6.9mA. CEs increased with anode potentials, and the low CE at low anode potentials (-400 to 0mV) were due to H2 and CH4 generation. Increasing anode potentials enhanced driving force of substrate oxidation and therefore inhibited the production of fermentation gas. The fraction of electron for bacterial growth decreased at high anode potential, indicating that the growth of bacteria was inhibited.
     To remove the energy consumable cathodic aeration, microbial carbon capture cells (MCCs) were constructed by growing Chlorella vulgaris in catholyte for in situ carbon capture and oxygen generation. The maximum power density was 5.6W·m-3. Cyclic voltammetry and dissolved oxygen tests showed that the cathode reaction was oxygen reduction. All the gaseous CO2 was sequestrated. Carbon balance showed that the carbon capture rate of MCC was 94±1%. MCC provided a new method for wastewater treatment with zero carbon emission.
引文
1 S. Solomon, G. K. Plattner, R. Knutti, et al. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America. 2009, 106(6):1704-1709
    2 O. E. Sala, F. S. Chapin, J. J. Armesto, et al. Biodiversity - Global biodiversity scenarios for the year 2100. Science. 2000, 287(5459):1770-1774
    3 IPCC (Intergovernmental Panel On Climate Change). Climate Change 2007: Impacts, adaptations and vulnerability. fourth assessment report of working group II. University Press, 2007
    4吴建国,吕佳佳,艾丽.气候变化对生物多样性的影响:脆弱性和适应.生态环境学报. 2009, 18(2):693-703
    5 B. E. Logan. Microbial fuel cells. John Wiley & Sons, 2008
    6杨凌波,曾思育,鞠宇平等.我国城市污水处理厂能耗规律的统计分析与定量识别.给水排水. 2008, 34(10):42-45
    7 J. Rifkin. The hydrogen economy. Tarcher/Putnam, 2002
    8中华人民共和国国家统计局.中国统计年鉴(2001~2009).中国统计出版社, 2001-2009
    9 A. Bilcan, O. Le Corre, A. Delebarre. Thermal efficiency and environmental performances of a biogas-diesel stationary engine. Environmental Technology. 2003, 24(9):1165-1173
    10 N. Q. Ren, B. Z. Wang, J. C. Huang. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering. 1997, 54(5):428-433
    11夏金兰,万民熙,王润民等.微藻生物柴油的现状与进展.中国生物工程杂志. 2009, 29(7):118-126
    12 Y. Z. Fan, H. Q. Hu, H. Liu. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science & Technology. 2007, 41(23):8154-8158
    13 R. A. Rozendal, H. V. M. Hamelers, C. J. N. Buisman. Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science & Technology. 2006, 40(17):5206-5211
    14 S. J. You, Q. L. Zhao, J. N. Zhang, et al. A microbial fuel cell using permanganate as the cathodic electron acceptor. Journal of Power Sources. 2006, 162(2):1409-1415
    15 D. R. Lovley, J. F. Stolz, G. L. Nord Jr, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 1987, 330(6145):252-254
    16 D. R. Bond, D. E. Holmes, L. M. Tender, et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 2002, 295(5554):483-485
    17 D. R. Bond, D. R. Lovley. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology. 2003, 69(3):1548-1555
    18 H. J. Kim, H. S. Park, M. S. Hyun, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme and Microbial Technology. 2002, 30(2):145-152
    19 H. S. Park, B. H. Kim, H. S. Kim, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe. 2001, 7(6):297-306
    20 C. A. Pham, S. J. Jung, N. T. Phung, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. Fems Microbiology Letters. 2003, 223(1):129-134
    21 S. K. Chaudhuri, D. R. Lovley. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology. 2003, 21(10):1229-1232
    22 L. X. Zhang, S. G. Zhou, L. Zhuang, et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochemistry Communications. 2008, 10(10):1641-1643
    23 Y. Zuo, D. F. Xing, J. M. Regan, et al. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology. 2008, 74(10):3130-3137
    24 R. Karthikeyan, K. S. Kumar, M. Murugesan, et al. Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environmental Science & Technology. 2009, 43(22):8684-8689
    25 D. F. Xing, Y. Zuo, S. A. Cheng, et al. Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology. 2008, 42(11):4146-4151
    26张锦涛,周顺桂,张礼霞等.产气肠杆菌燃料电池产电机制研究.环境科学. 2009, 30(4):1215-1220
    27 J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnology. 2002, 20(11):1118-1123
    28 B. A. Methe, K. E. Nelson, J. A. Eisen, et al. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science. 2003, 302(5652):1967-1969
    29 D. J. Richardson. Bacterial respiration: a flexible process for a changing environment. Microbiology-Sgm. 2000, 146:551-571
    30 T. S. Magnuson, N. Isoyama, A. L. Hodges-Myerson, et al. Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochemical Journal. 2001, 359:147-152
    31 G. Reguera, K. D. McCarthy, T. Mehta, et al. Extracellular electron transfer via microbial nanowires. Nature. 2005, 435(7045):1098-1101
    32 Y. A. Gorby, S. Yanina, J. S. McLean, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(30):11358-11363
    33 K. Rabaey, N. Boon, M. Hofte, et al. Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science & Technology. 2005, 39(9):3401-3408
    34 E. Marsili, D. B. Baron, I. D. Shikhare, et al. Shewanella Secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(10):3968-3973
    35 P. Westermann, P. Haberbauer, M. Lens. Biofuels for fuel cells: Biomass fermentation towards usage in fuel. IWA Publishing, 2006
    36 M. C. Potter. Electrical effects accompanying the decomposition of organic compounds. Proc. Roy. Soc. London Ser. B. 1911, 84:260-276
    37 J. B. Davis, H. F. Yarbrough Jr. Preliminary experiments on a microbial fuelcell. Science. 1962, 137(3530):615-616
    38 R. M. Allen, H. P. Bennetto. Microbial fuel-cells - Electricity production from carbohydrates. Applied Biochemistry and Biotechnology. 1993, 39(2):27-40
    39 H. J. Kim, M. S. Hyun, I. S. Chang, et al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology. 1999, 9(3):365-367
    40 B. E. Logan. Exoelectrogenic bacteria that power microbial fuel cells. Nature Review Microbiology. 2009, 7:375-381
    41 K. Rabaey, G. Lissens, S. D. Siciliano, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters. 2003, 25(18):1531-1535
    42 Z. J. Li, X. W. Zhang, L. C. Lei. Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochemistry. 2008, 43(12):1352-1358
    43 G. Wang, L. P. Huang, Y. F. Zhang. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnology Letters. 2008, 30(11):1959-1966
    44 P. Clauwaert, K. Rabaey, P. Aelterman, et al. Biological denitrification in microbial fuel cells. Environmental Science and Technology. 2007, 41(9):3354-3360
    45 B. Virdis, K. Rabaey, Z. Yuan, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research. 2008, 42(12):3013-3024
    46 S. Oh, B. Min, B. E. Logan. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology. 2004, 38(18):4900-4904
    47 S. E. Oh, B. E. Logan. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology. 2006, 70(2):162-169
    48 Z. D. Liu, H. R. Li. Effects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical Engineering Journal. 2007, 36(3):209-214
    49 B. K. Min, S. A. Cheng, B. E. Logan. Electricity generation using membrane and salt bridge microbial fuel cells. Water Research. 2005, 39(9):1675-1686
    50 G. C. Gil, I. S. Chang, B. H. Kim, et al. Operational parameters affecting theperformance of a mediator-less microbial fuel cell. Biosensors & Bioelectronics. 2003, 18(4):327-334
    51 P. Aelterman, K. Rabaey, H. T. Pham, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology. 2006, 40(10):3388-3394
    52 K. Rabaey, N. Boon, S. D. Siciliano, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology. 2004, 70(9):5373-5382
    53 K. Rabaey, P. Clauwaert, P. Aelterman, et al. Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technology. 2005, 39(20):8077-8082
    54 Z. H. Wang, C. Y. Wang, K. S. Chen. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources. 2001, 94(1):40-50
    55 D. H. Park, J. G. Zeikus. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering. 2003, 81(3):348-355
    56 H. Liu, R. Ramnarayanan, B. E. Logan. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology. 2004, 38(7):2281-2285
    57 B. Min, B. E. Logan. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology. 2004, 38(21):5809-5814
    58 H. Liu, B. E. Logan. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology. 2004, 38(14):4040-4046
    59 H. Liu, S. A. Cheng, B. E. Logan. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology. 2005, 39(14):5488-5493
    60 S. Cheng, H. Liu, B. E. Logan. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology. 2006, 40(7):2426-2432
    61 Y. Zuo, S. Cheng, D. Call, et al. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environmental Science & Technology.2007, 41(9):3347-3353
    62 Y. Zuo, S. Cheng, B. E. Logan. Ion exchange membrane cathodes for scalable microbial fuel cells. Environmental Science & Technology. 2008, 42(18):6967-6972
    63 J. K. Jang, T. H. Pham, I. S. Chang, et al. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry. 2004, 39(8):1007-1012
    64 H. Moon, I. S. Chang, B. H. Kim. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology. 2006, 97(4):621-627
    65 Z. He, S. D. Minteer, L. T. Angenent. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology. 2005, 39(14):5262-5267
    66 Z. He, N. Wagner, S. D. Minteer, et al. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy. Environmental Science & Technology. 2006, 40(17):5212-5217
    67 S. J. You, Q. L. Zhao, J. Zhang, et al. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosensors & Bioelectronics. 2008, 23(7):1157-1160
    68 J. R. Kim, G. C. Premier, F. R. Hawkes, et al. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources. 2009, 187(2):393-399
    69 K. Rabaey, W. Ossieur, M. Verhaege, et al. Continuous microbial fuel cells convert carbohydrates to electricity. Water Science and Technology. 2005, 52(1-2):515-523
    70 Z. L. Li, L. Yao, L. C. Kong, et al. Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresource Technology. 2008, 99(6):1650-1655
    71 Z. Q. Hu. Electricity generation by a baffle-chamber membraneless microbial fuel cell. Journal of Power Sources. 2008, 179(1):27-33
    72 Y. J. Feng, H. Lee, X. Wang, et al. Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell. Bioresource Technology. 2010, 101(2):632-638
    73孔令才,周顺桂,赵华章等.厌氧折流板式微生物燃料电池堆影响因素研究.环境工程学报. 2010, 4(1):21-26
    74 C. E. Reimers, L. M. Tender, S. Fertig, et al. Harvesting energy from the marine sediment-water interface. Environmental Science & Technology. 2001, 35(1):192-195
    75 L. M. Tender, C. E. Reimers, H. A. Stecher, et al. Harnessing microbially generated power on the seafloor. Nature Biotechnology. 2002, 20(8):821-825
    76 N. Ryckelynck, H. A. Stecher, C. E. Reimers. Understanding the anodic mechanism of a seafloor fuel cell: Interactions between geochemistry and microbial activity. Biogeochemistry. 2005, 76(1):113-139
    77 C. E. Reimers, P. Girguis, H. A. Stecher, et al. Microbial fuel cell energy from an ocean cold seep. Geobiology. 2006, 4(2):123-136
    78 M. E. Nielsen, C. E. Reimers, H. A. Stecher. Enhanced power from chambered benthic microbial fuel cells. Environmental Science & Technology. 2007, 41(22):7895-7900
    79 B. E. Logan, B. Hamelers, R. A. Rozendal, et al. Microbial fuel cells: Methodology and technology. Environmental Science & Technology. 2006, 40(17):5181-5192
    80 P. Clauwaert, D. Van der Ha, N. Boon, et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science & Technology. 2007, 41(21):7564-7569
    81 H. Liu, S. A. Cheng, B. E. Logan. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology. 2005, 39(2):658-662
    82 S. E. Oh, B. E. Logan. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research. 2005, 39(19):4673-4682
    83 J. R. Kim, S. H. Jung, J. M. Regan, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology. 2007, 98(13):2568-2577
    84 C. I. Torres, A. Kato Marcus, B. E. Rittmann. Kinetics of consumption of fermentation products by anode-respiring bacteria. Applied Microbiology and Biotechnology. 2007, 77(3):689-697
    85 T. Catal, S. T. Xu, K. C. Li, et al. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosensors & Bioelectronics. 2008, 24(4):849-854
    86冯雅丽,李浩然,祝学远.单室直接微生物燃料电池性能影响因素分析.北京科技大学学报. 2007, 29(2):162-165
    87孙寓姣,左剑恶,崔龙涛等.不同废水基质条件下微生物燃料电池中细菌群落解析.中国环境科学. 2008, 28(12):1068-1073
    88 T. Catal, K. Li, H. Bermek, et al. Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources. 2008, 175(1):196-200
    89 H. Rismani-Yazdi, A. D. Christy, B. A. Dehority, et al. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnology and Bioengineering. 2007, 97(6):1398-1407
    90 Z. Y. Ren, T. E. Ward, J. M. Regan. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environmental Science & Technology. 2007, 41(13):4781-4786
    91 F. Rezaei, T. L. Richard, R. A. Brennan, et al. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental Science & Technology. 2007, 41(11):4053-4058
    92 B. E. Logan, C. Murano, K. Scott, et al. Electricity generation from cysteine in a microbial fuel cell. Water Research. 2005, 39(5):942-952
    93 J. Heilmann, B. E. Logan. Production of electricity from proteins using a microbial fuel cell. Water Environment Research. 2006, 78(5):531-537
    94温青,孙茜,赵立新等.微生物燃料电池对废水中对硝基苯酚的去除.现代化工. 2009, 4:40-42
    95 H. P. Luo, G. L. Liu, R. D. Zhang, et al. Phenol degradation in microbial fuel cells. Chemical Engineering Journal. 2009, 147(2-3):259-264
    96 C. P. Zhang, M. C. Li, G. L. Liu, et al. Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials. 2009, 172(1):465-471
    97 C. P. Zhang, G. L. Liu, R. D. Zhang, et al. Electricity production from and biodegradation of quinoline in the microbial fuel cell. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering. 2010, 45(2):250-256
    98 Y. Luo, R. Zhang, G. Liu, et al. Electricity generation from indole and microbial community analysis in the microbial fuel cell. Journal of Hazardous Materials. 2010, 176(1-3):759-764
    99 J. Sun, Y. Y. Hu, Z. Bi, et al. Simultaneous decolorization of azo dye andbioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technology. 2009, 100(13):3185-3192
    100 K. Rabaey, W. Verstraete. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology. 2005, 23(6):291-298
    101 B. Min, J. R. Kim, S. E. Oh, et al. Electricity generation from swine wastewater using microbial fuel cells. Water Research. 2005, 39(20):4961-4968
    102 Y. Zuo, P. C. Maness, B. E. Logan. Electricity production from steam-exploded corn stover biomass. Energy & Fuels. 2006, 20(4):1716-1721
    103 S. J. You, Q. L. Zhao, J. Q. Jiang, et al. Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering. 2006, 41(12):2721-2734
    104 L. P. Huang, B. E. Logan. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology. 2008, 80(2):349-355
    105 S. B. Velasquez-Orta, T. P. Curtis, B. E. Logan. Energy from algae using microbial fuel cells. Biotechnology and Bioengineering. 2009, 103(6):1068-1076
    106 F. Zhao, N. Rahunen, J. R. Varcoe, et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science & Technology. 2008, 42(13):4971-4976
    107 D. F. Xing, S. A. Cheng, B. E. Logan, et al. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Applied Microbiology and Biotechnology. 2010, 85(5):1575-1587
    108 A. E. Franks, K. P. Nevin, H. F. Jia, et al. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy & Environmental Science. 2009, 2(1):113-119
    109 F. X. Li, Y. Sharma, Y. Lei, et al. Microbial Fuel Cells: The Effects of Configurations, Electrolyte Solutions, and Electrode Materials on Power Generation. Applied Biochemistry and Biotechnology. 2010, 160(1):168-181
    110 L. Peng, S. J. You, J. Y. Wang. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosensors & Bioelectronics. 2010, 25(5):1248-1251
    111 Y. J. Zou, C. L. Xiang, L. N. Yang, et al. A mediatorless microbial fuel cellusing polypyrrole coated carbon nanotubes composite as anode material. International Journal of Hydrogen Energy. 2008, 33(18):4856-4862
    112 Y. Qiao, C. M. Li, S. J. Bao, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources. 2007, 170(1):79-84
    113 B. Logan, S. Cheng, V. Watson, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology. 2007, 41(9):3341-3346
    114周良,刘志丹,连静等.利用微生物燃料电池研究Geobacter metallireducens异化还原铁氧化物.化工学报. 2005, 56(12):2398-2403
    115 D. H. Park, J. G. Zeikus. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Applied Microbiology and Biotechnology. 2002, 59(1):58-61
    116 D. A. Lowy, L. M. Tender, J. G. Zeikus, et al. Harvesting energy from the marine sediment-water interface II - Kinetic activity of anode materials. Biosensors & Bioelectronics. 2006, 21(11):2058-2063
    117 S. A. Cheng, B. E. Logan. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications. 2007, 9(3):492-496
    118 A. ter Heijne, H. V. M. Hamelers, M. Saakes, et al. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta. 2008, 53(18):5697-5703
    119 F. Kargi, S. Eker. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu-Au electrodes. Journal of Chemical Technology and Biotechnology. 2007, 82(7):658-662
    120 F. Kargi, S. Eker. High power generation with simultaneous COD removal using a circulating column microbial fuel cell. Journal of Chemical Technology and Biotechnology. 2009, 84(7):961-965
    121 S. Cheng, H. Liu, B. E. Logan. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications. 2006, 8(3):489-494
    122 F. Zhang, T. Saito, S. A. Cheng, et al. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors. Environmental Science & Technology. 2010, 44(4):1490-1495
    123 S. Cheng, H. Liu, B. E. Logan. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Technology. 2006, 40(1):364-369
    124 T. Saito, M. D. Merrill, V. J. Watson, et al. Investigation of ionic polymer cathode binders for microbial fuel cells. Electrochimica Acta. 2010, 55(9):3398-3403
    125 E. H. Yu, S. Cheng, K. Scott, et al. Microbial fuel cell performance with non-Pt cathode catalysts. Journal of Power Sources. 2007, 171(2):275-281
    126 J. M. Morris, S. Jin, J. Q. Wang, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochemistry Communications. 2007, 9(7):1730-1734
    127 H. Rismani-Yazdi, S. M. Carver, A. D. Christy, et al. Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources. 2008, 180(2):683-694
    128 X. A. Li, B. X. Hu, S. Suib, et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells. Journal of Power Sources. 2010, 195(9):2586-2591
    129 L. X. Zhang, C. S. Liu, L. Zhuang, et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors & Bioelectronics. 2009, 24(9):2825-2829
    130 B. Erable, N. Duteanu, S. M. S. Kumar, et al. Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications. Electrochemistry Communications. 2009, 11(7):1547-1549
    131 F. Zhang, S. A. Cheng, D. Pant, et al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications. 2009, 11(11):2177-2179
    132 Q. Deng, X. Y. Li, J. E. Zuo, et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources. 2010, 195(4):1130-1135
    133 R. S. Berk, J. H. Canfield. Bioelectrochemical energy conversion. Applied Microbiology. 1961, 12(1):10-12
    134 A. Rhoads, H. Beyenal, Z. Lewandowski. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science & Technology. 2005, 39(12):4666-4671
    135 A. Ter Heijne, H. V. M. Hamelers, V. De Wilde, et al. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environmental Science & Technology. 2006, 40(17):5200-5205
    136 P. Clauwaert, K. Rabaey, P. Aelterman, et al. Biological denitrification in microbial fuel cells. Environmental Science & Technology. 2007, 41(9):3354-3360
    137 X. X. Cao, X. Huang, P. Liang, et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy & Environmental Science. 2009, 2(5):498-501
    138 J. R. Kim, S. Cheng, S. E. Oh, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology. 2007, 41(3):1004-1009
    139曹效鑫,粱鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报. 2006, 26(8):1252-1257
    140 Y. Z. Fan, H. Q. Hu, H. Liu. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources. 2007, 171(2):348-354
    141 X. Y. Zhang, S. A. Cheng, X. Wang, et al. Separator characteristics for increasing performance of microbial fuel cells. Environmental Science & Technology. 2009, 43(21):8456-8461
    142 M. Sun, G. P. Sheng, L. Zhang, et al. An MEC-MR-Coupled System for Biohydrogen Production from Acetate. Environmental Science & Technology. 2008, 42(21):8095-8100
    143洪义国,郭俊,孙国萍.产电微生物及微生物燃料电池最新研究进展.微生物学报. 2007, 47(1):173-177
    144付宁,黄丽萍,葛林科等.微生物燃料电池在污水处理中的研究进展.环境污染治理技术与设备. 2006, 7(12):10-14
    145 S. Freguia, K. Rabaey, Z. G. Yuan, et al. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environmental Science & Technology. 2007, 41(8):2915-2921
    146 Y. J. Feng, Q. Yang, X. Wang, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. Journal of Power Sources. 2010, 195(7):1841-1844
    147曹楚南,张鉴清.电化学阻抗谱导论.科学出版社, 2002
    148 A. J. Bard, L. R. Faulkner. Electrochemical Methods: Fundamentals andApplication. John Wiley & Sons, 1982
    149 H. Matsuda, Y. Ayabe. The classify of the reversibility for the voltammetric experiments. Z. Electrochem. 1955, 59:494-499
    150 T. Yamamoto, Y. Honda, T. Sata, et al. Electrochemical behavior of poly(3-hexylthiophene). Controlling factors of electric current in electrochemical oxidation of poly (3-hexylthiophene)s in a solution. Polymer. 2004, 45(6):1735-1738
    151 American Water Works Association American Public Health Association, Water Pollution Control Federation. Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, 1998
    152王成武.混合菌群PCS-S和H-C特性研究.哈尔滨工业大学. 2007:1-20
    153 D. R. Lovley, E. J. P. Phillips. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied & Environmental Microbiology. 1988, 54(6):1472-1480
    154 S. Freguia, K. Rabaey, Z. G. Yuan, et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environmental Science & Technology. 2008, 42(21):7937-7943
    155韩洪军,徐春艳.升流式厌氧污泥床处理啤酒废水的试验研究.哈尔滨工业大学学报. 2004, 36(4):440-442
    156 W. Parawira, I. Kudita, M. G. Nyandoroh, et al. A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochemistry. 2005, 40(2):593-599
    157 S. G. Wang, X. W. Liu, W. X. Gong, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technology. 2007, 98(11):2142-2147
    158张立秋,封莉,吕炳南等.淹没式MBR处理啤酒废水的净化效能.环境科学. 2004, 25(6):117-122
    159 F. Zhao, F. Harnisch, U. Schroder, et al. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications. 2005, 7(12):1405-1410
    160 D. A. Glassner, J. R. Hettenhaus, T. M. Schechinger. Corn stover potential: Recasting the corn sweetener industry. ASHS Press, 1999
    161 L. R. Lynd. Overview and evaluation of fuel ethanol from cellulosic biomass. Annual Review of Energy and the Environment. 1996, 21:403-465
    162 R. Datar, J. Huang, P. C. Maness, et al. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. International Journal of Hydrogen Energy. 2007, 32(8):932-939
    163陈洪章,刘健,李佐虎.半纤维素蒸汽爆破水解物抽提及其发酵生产单细胞蛋白工艺.化工冶金. 1999, 22(4):428-431
    164 D. R. Lovley. Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology. 2006, 17(3):327-332
    165 Atwm Hendriks, G. Zeeman. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology. 2009, 100(1):10-18
    166 F. Rezaei, T. L. Richard, B. E. Logan. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnology and Bioengineering. 2008, 101(6):1163-1169
    167 B. Lin, C. Hyacinthe, S. Bonneville, et al. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environmental Microbiology. 2007, 9(8):1956-1968
    168 H. Zhao, D. Yang, C. R. Woese, et al. Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. International Journal of Systematic Bacteriology. 1990, 40(1):40-44
    169 N. Q. Ren, B. F. Liu, J. Ding, et al. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresource Technology. 2009, 100(1):484-487
    170 U. Friedrich, K. Prior, K. Altendorf, et al. High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environmental Microbiology. 2002, 4(11):721-734
    171 Y. G. Zhao, N. Q. Ren, A. J. Wang. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Chemosphere. 2008, 72(2):233-242
    172 M. A. Cotta, T. R. Whitehead, R. L. Zeltwanger. Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environmental Microbiology. 2003, 5(9):737-745
    173 A. S. Gossner, K. Kusel, D. Schulz, et al. Trophic interaction of the aerotolerant anaerobe Clostridium intestinale and the acetogen Sporomusa rhizae sp nov isolated from roots of the black needlerush Juncus roemerianus. Microbiology-Sgm. 2006, 152:1209-1219
    174 D. O. Krause, W. J. M. Smith, C. S. McSweeney. Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology. Microbiology-Sgm. 2004, 150:2899-2909
    175 G. W. Chen, S. J. Choi, T. H. Lee, et al. Application of biocathode in microbial fuel cells: cell performance and microbial community. Applied Microbiology and Biotechnology. 2008, 79(3):379-388
    176 J. Przepiorski, M. Skrodzewicz, A. W. Morawski. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science. 2004, 225(1-4):235-242
    177 B. St?hr, H. P. Boehm, R. Schl?gl. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon. 1991, 29(6):707-720
    178 K. P. Gong, F. Du, Z. H. Xia, et al. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science. 2009, 323(5915):760-764
    179 T. Matrab, M. N. Nguyen, S. Mahouche, et al. Aryl diazonium salts for carbon fiber surface-initiated atom transfer radical polymerization. Journal of Adhesion. 2008, 84(8):684-701
    180 T. Matrab, J. Chancolon, M. M. L'Hermite, et al. Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts: a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2006, 287(1-3):217-221
    181 M. Toupin, D. Belanger. Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations. Langmuir. 2008, 24(5):1910-1917
    182 C. A. Dyke, J. M. Tour. Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Letters. 2003, 3(9):1215-1218
    183 J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, et al. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. Journal of the American Chemical Society. 2008, 130(48):16201-16206
    184黄霞,范明志,粱鹏等.微生物燃料电池阳极特性对产电性能的影响.中国给水排水. 2007, 23(3):8-13
    185 A. Hernandez, E. Martro, L. Matas, et al. Mycobactericidal andtuberculocidal activity of Korsolex (R) AF, an amine detergent/disinfectant product. Journal of Hospital Infection. 2005, 59(1):62-66
    186 E. Bore, S. Langsrud. Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid. Journal of Applied Microbiology. 2005, 98(1):96-105
    187 M. Uchida, Y. Aoyama, N. Eda, et al. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society. 1995, 142(12):4143-4149
    188 X. Zhang, P. Shi. Nafion effect on dual-bonded structure cathode of PEMFC. Electrochemistry Communications. 2006, 8:1615-1620
    189 L. G. Lage, P. G. Delgado, Y. Kawano. Thermal stability and decomposition of Nafion? membranes with different cations using high-resolution thermogravimetry. Journal of Thermal Analysis and Calorimetry. 2004, 75:521-530
    190 H. Liu, S. Grot, B. E. Logan. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology. 2005, 39(11):4317-4320
    191 S. A. Cheng, D. F. Xing, D. F. Call, et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology. 2009, 43(10):3953-3958
    192 K. J. J. Steinbusch, H. V. M. Hamelers, J. D. Schaap, et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology. 2010, 44(1):513-517
    193 R. A. Rozendal, E. Leone, J. Keller, et al. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications. 2009, 11(9):1752-1755
    194 S. J. You, J. Y. Wang, N. Q. Ren, et al. Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell. Chemsuschem. 2010, 3(3):334-338
    195 X. X. Cao, X. Huang, P. Liang, et al. A new method for water desalination using microbial desalination cells. Environmental Science & Technology. 2009, 43(18):7148-7152
    196尤世界.微生物燃料电池处理有机废水过程中的产电特性研究.哈尔滨工业大学博士学位论文. 2008:46
    197 S. Freguia, K. Rabaey, Z. G. Yuan, et al. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Research. 2008, 42(6-7):1387-1396
    198 J. Y. Lee, N. T. Phung, I. S. Chang, et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. Fems Microbiology Letters. 2003, 223(2):185-191
    199 K. Rabaey, J. Rodriguez, L. L. Blackall, et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. Isme Journal. 2007, 1(1):9-18
    200 U. Schroder. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics. 2007, 9(21):2619-2629
    201 B. H. Kim, H. J. Kim, M. S. Hyun, et al. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology. 1999, 9(2):127-131
    202 D. A. Finkelstein, L. M. Tender, J. G. Zeikus. Effect of electrode potential on electrode-reducing microbiota. Environmental Science & Technology. 2006, 40(22):6990-6995
    203范明志,粱鹏,曹效鑫等.阳极初始电势对微生物燃料电池产电的影响.环境科学. 2008, 29(1):263-267
    204 J. P. Busalmen, A. Esteve-Nunez, J. M. Feliu. Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environmental Science & Technology. 2008, 42(7):2445-2450
    205 P. Aelterman, S. Freguia, J. Keller, et al. The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology. 2008, 78(3):409-418
    206 J. N. Barisci, G. G. Wallace, D. Chattopadhyay, et al. Electrochemical properties of single-wall carbon nanotube electrodes. Journal of the Electrochemical Society. 2003, 150(9)
    207 C. W. Marshall, H. D. May. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy & Environmental Science. 2009, 2(6):699-705
    208 T. H. Pham, N. Boon, P. Aelterman, et al. Metabolites produced byPseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer. Applied Microbiology and Biotechnology. 2008, 77(5):1119-1129
    209崔康平,金松.微生物燃料电池阳极室内电子受体竞争研究.环境科学研究. 2010, 23(1):90-93
    210 D. R. Bond, D. R. Lovley. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environmental Microbiology. 2002, 4(2):115-124
    211 C. I. Torres, R. Krajmalnik-Brown, P. Parameswaran, et al. Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization. Environmental Science & Technology. 2009, 43(24):9519-9524
    212 Z. He, L. T. Angenent. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis. 2006, 18(19-20):2009-2015
    213 E. E. Powell, M. L. Mapiour, R. W. Evitts, et al. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technology. 2009, 100(1):269-274
    214 Z. Y. Liu, G. C. Wang, B. C. Zhou. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology. 2008, 99:4717-4722
    215 L. Gouveia, A. C. Oliveira. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology. 2009, 36(2):269-274
    216 Y. Liang, N. Sarkany, Y. Cui. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters. 2009, 31(7):1043-1049
    217 M. Villano, F. Aulenta, C. Ciucci, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresource Technology. 2010, 101(9):3085-3090
    218 Z. He, J. Kan, F. Mansfeld, et al. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environmental Science & Technology. 2009, 43(5):1648-1654
    219 L. De Schamphelaire, W. Verstraete. Revival of the Biological Sunlight-to-Biogas Energy Conversion System. Biotechnology and Bioengineering. 2009, 103(2):296-304