地下工程并行优化反演分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国越来越多大型地下工程的建设,地下洞室围岩稳定成为岩土工程领域的一大热点问题。由于岩体介质的复杂性和不确定性,工程施工前难以获得十分准确的地质条件和赋存环境信息,因此利用工程类比和数值分析等传统的围岩稳定分析方法难以完全解决工程实际问题,基于现场监控量测的监测反馈分析就显得很有必要,也更能客观反映工程实际。通过施工开挖期现场量测信息和地质揭示获取更为可靠的工程基础资料,实时反馈围岩稳定状态,反演现场岩体参数并对后续过程进行预测预报,实现动态反馈、信息化施工。
     本文在总结前人研究成果的基础上,主要围绕地下工程监测反馈分析、层状岩体介质迭代计算方法及参数反演、基于围岩松动圈的参数场反演、渗流排水孔数值模拟、渗流场反演、反演的并行优化算法等几个关键问题开展了研究工作,并成功应用于实际工程中。本文研究主要包括如下几个方面的内容:
     (1)综述地下工程的工程特性和围岩稳定反分析方法,提出目前地下工程中反分析及动态优化设计中存在的一些实际问题。
     (2)将粒子群优化算法运用于地下工程参数优化反演中,并对优化反演算法的收敛性和并行性进行了改进,运用改进的并行粒子群优化算法进行反演,极大地提高了优化性能和计算速度,通过算例验证了算法的可行性、可靠性及优越性。
     (3)提出采用隐式复合单元法对渗流排水孔进行数值模拟,很大程度上减少了计算工作量,经济可行,通过数值算例和工程实例得到了验证。针对渗透参数难以准确确定的问题,通过水位和流量等观测信息对渗透参数及渗流场进行反演分析。
     (4)运用信息实时反馈和动态优化技术对大型地下洞室群施工开挖、支护进行快速监测反馈分析。通过现场实测数据预处理和跟踪分析,对施工开挖量测信息进行深度挖掘;基于机群并行计算依据实测数据信息进行参数反演和围岩稳定评价;并采用反演正算预测和灰色理论预测方法对后续施工开挖进行预测预报分析。通过集监测、反馈和预测于一体的快速监测反馈分析技术指导后续施工开挖过程,制定及时有效的变更方案和防范措施,以保证地下洞室群施工期和运行期的安全稳定运行。
     (5)对层状各向异性岩体介质的破坏特性和迭代计算方法进行了研究。采用改进的三维非线性层状各向异性弹塑性损伤有限元法,通过数值分析方法对层状岩体的特殊破坏模式进行了模拟。分析了岩层倾角和岩层走向对围岩稳定的影响,提出层状岩体中地下洞室的合理布置方式。并针对层状岩体的各向异性特性,采用基于MPI的并行粒子群优化算法进行参数反演。
     (6)地下洞室开挖后形成围岩松动圈,其力学特性与开挖前未扰动岩体相比有很大差异。研究了松动圈的形成机制和测试分析方法并通过实例进行分析。在松动圈双重介质或多重介质反演模型的基础上,提出了基于松动圈的围岩“参数场”位移反分析方法。充分考虑受施工开挖爆破影响后围岩的松动“劣化”效应,模拟施工开挖过程中地下洞室群的动态响应特性,更接近工程实际,为地下工程参数反演提供一种新思路。
     最后,总结本文研究成果,并对今后尚待深入研究解决的问题进行了展望。
     本文研究工作从工程实际出发,对地下工程反分析做了比较系统地研究,并对优化算法、主从式并行反演、排水孔数值模拟、层状各向异性岩体介质迭代计算及围岩松动圈数值模拟等诸多方面进行了改进,以解决实际工程问题,为地下洞室的设计和施工提供一定参考。
With the building of more and more large-scale underground engineering, stability assessment of surrounding rock becomes a hot topic in geotecnical engineering. As the complexity and uncertainty of rock mass media, it's very difficult to obtain accurate information such as geological conditions and occurrence of rock mass before constructing of underground engineering. So there are some problems to analyze stability of surrounding rock utilizing empirical analogue methods, numerical analysis mehod or other traditional analysis methods. As a result, feedback analysis of insitu measured information becomes necessary and has been broadly applied in underground engineering. More reliable engineering information can be obtained by insitu monitoring and geological data in excavation, by which we can analyze stability of surrounding rock with real-time feedback. Rock mass parameters are back-analyzed to predict the following excavation, so as to achieve goals of dynamic feedback and information-based construction.
     In this thesis, several back analysis methods are studied based on summarizing the results of previous studies. The contents spread out around issues of feedback analysis of insitu measured information, failure characteristics and computational method of layered rock, displacement back analysis of parameters field in underground engineering based on excavation damaged zone (EDZ) of surrounding rock, numerical simulation of drainage hole, back analysis of seepage field, parallel optimization algorithm and so on. The proposed methods are further illustrated with their application to some underground chambers. The thesis mainly contains following contributions:
     (1) The features and back analysis methods on the stability of surrounding rock in underground engineering are reviewed in detail. Several key practical problems are presented in back analysis and dynamic optimization design.
     (2) Particle Swarm Optimization (PSO) algorithm is used in parameter optimization and back analysis and its convergence is modified to obtain good global search capability. As back analysis of geotechnical engineering involves enormous amounts of computation, the back analysis process is improved by introducing message passing interface (MPI)-based master-slave parallel framework. The parallel computation can be conducted using computer cluster networks, thus considerably reducing the cost and enhancing the efficiency of computation. The modified parallel PSO is used to back-analyze parameters in several projects. The results are favorable and prove that the proposed method is effective and applicable. And the parallel computation has considerably reduced the cost and enhancing the efficiency of computation.
     (3) The implicit composite element method of drainage hole in 3D seepage field in underground engineering is presented. Drainage holes are implicit in model and their data are gained according to pre-process. This method can largely reduce the computational workload and cost. Its feasibility and reliability have been verified through a numerical example and some practical projects. The calculation result shows that the proposed method is feasible to simulate drainage holes. To determine accurate permeability parameters, back analysis of seepage field is conducted by observing water level and flow.
     (4) The real-time feedback analysis and dynamic optimization design are used to back-analyze the process of excavation and support in large underground caverns. The insitu monitoring data is deeply analyzed according to its pre-processing and tracking analysis. Cluster Computing is adopted to back-analyze parameters and evaluate stability of surrounding rock. Synthetical prediction methods with back-analysis and normal computation and grey system theory are used to forecast the following excavation. According to the results of feedback analysis of insitu measured information, back analysis and synthetical prediction, timely and effective change programs and preventive measures are worked out to ensure that underground caverns construction and operation of safe and stable operation.
     (5) The failure characteristics and the calculation method of layered rock are expounded according to its physical and mechanical characteristics. Using 3D nonlinear anisotropic elastic-plastic finite element method, the influence of rock angle on stability of underground houses is analyzed in a hydroelectric power station. After comparison with engineering experiences, the reasonable layout of underground houses in layered rock is proposed. As the anisotropy of layered rock, MPI-based parallel Particle Swarm Optimization algorithm is adopted to back analyze parameters of layered rock.
     (6) Due to excavation blasting, the surrounding rock of underground caverns is loosened and its strength lowers. A continuous three-dimensional data field of surrounding rock parameters is employed to describe the different damage degrees of surrounding rock. According to the formation mechanism of excavation damaged zone (EDZ) of surrounding rock, the method to calculate the EDZ induced by excavation blasting in underground caverns is analyzed. By taking the range of EDZ into consideration, a back analysis method based on incremental displacements is put forward. By employing this method, the fields of surrounding rock parameters can be back analyzed. The back analysis results are favorable and prove the reliability and rationality of the proposed method. Based on the surrounding rock parameters field obtained by back analysis, the current anchor support scheme and the stability of the underground cavern are assessed. Also, the stability condition in subsequent excavation is predicted, and the rational recommendations are made for the engineering design and construction, providing the parameters back analysis of underground engineering with a new method.
     Finally, some researches to be explored in future are put forward after summarizing research achievements of this thesis.
     The research achievements in this thesis work from practical engineering problems. Some back analysis methods are systematically studied in undergrounding engineering. In order to solve practical engineering problems, several simulation methods has been improved in many aspects, such as optimization algorithm, master-slave parallel back analysis method, numerical simulation of drainage hole, failure characteristics and computational method of layered rock, displacement back analysis of parameters field in underground engineering based on excavation damaged zone of surrounding rock and so on. These research achievements provide some technical references for design and construction of underground engineering.
引文
[1]钱七虎.地下空间开发利用的第四次浪潮及中国的现状、前景和发展战略[A].第六次全国岩石力学与工程学会学术大会论文集[C],中国科学技术出版社,2000:84-89.
    [2]官宝树.地下工程[M].北京:高等教育出版社,2007.
    [3]John C, Raymond S. Underground Space Design [M]. New York:Van Nostrand Reinhold,1993.
    [4]张庆贺,朱合华,黄宏伟.地下工程[M].上海:同济大学出版社,2005.
    [5]官宝树,国兆林.隧道及地下工程[M].成都:西南交通大学出版社,2000.
    [6]Nakada K, Chikahisa H, Kobayashi K, et al. Plan and Survey of an Underground Art Museum in Japan, Using a Large-Scale Rock Cavern [J]. DESIGN AND CONSTRUCTION OF CIVIL STRUCTURES,1996,431-443.
    [7]李华晔.地下洞室闻言稳定性分析[M].北京:中国水利水电出版社,1999.
    [8]黄宏伟.城市隧道与地下工程的发展与展望[J].地下空间,2001,21(4):311-317.
    [9]轩辕啸雯,陈唯一.我国21世纪隧道及地下工程展望[J].铁道工程学报,1998(supp.):1-3.
    [10]范文田.我国隧道及地下工程的研究现状和发展[J].土木工程学报,1995,28(6):73-75.
    [11]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.
    [12]Sun J and Wang S J. Rock Mechanics and Rock Engineering in China:Development and Current State-of-Art [J]. International Journal of Rock Mechanics and Mining Sciences, Special Issue:Rock Mechanics in China,2000,37(3):447-465.
    [13]陶振宇.试论岩石力学的最新进展[J].力学进展,1992,22(2):161-172.
    [14]孙钧.岩石力学在我国的若干进展[J].西部探矿工程,1999,11(1):1-5.
    [15]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为的研究进展[J].力学进展,2005,35(1):91-99.
    [16]吕爱钟.试论我国岩石力学的研究状况及其进展[J].力学进展,2004,22(supp.):1-9.
    [17]孙钧.迎接新世纪的岩石力学若干进展[A].上海:第五届全国岩石力学与工程大会[C],1998.
    [18]Zhou W Y. The Development and state of art of rock mechanics in China [A]. Proc. of Int. Symp. on Application of Computer Method in Rock Mechanics and Engineering [C], Zian, China,1993.
    [19]陶振宇.试论岩石力学的最新进展[J].力学进展,1992,22(2):161-172.
    [20]中国岩石力学与工程学会.岩石力学新进展与西部开发中的岩土工程问题[A].中国岩石力学与工程学会第七次学术大会论文集[C].北京:中国科学技术出版社,2002.
    [21]陈宗基.岩石力学的发展方向[J].岩石力学与工程学报,1990,9(3):175-183.
    [22]Bieniawski Z T. Rock mechanics design in mining and tunneling [M]. Boston:A.A. Balkema,1984.
    [23]E.Hoek and Brown E T. Underground Excavations in Rock [M]. London:The Institution of Mining and Metallugy,1984.
    [24]王思敬.中国岩石力学与工程的世纪成就与历史使命[J].岩石力学与工程学报,2003,22(6):867-871.
    [25]谢和平,刘夕才,王金安.关于21世纪岩石力学发展战略的思考[J].岩土工程学报,1996,18(4):98-102.
    [26]杨志法,尚彦军.关于岩土工程类比法的研究[J].工程地质学报,1997,5(4):299-305.
    [27]王积军,齐震明.典型工程类比法在小浪底工程地下厂房设计中的应用[J].人民黄河,1996,18(3):54-58.
    [28]周海清,刘东升,陈正汉.工程类比法及其在滑坡治理工程中的应用[J].地下空间与工程学报,2008,4(6):1056-1060.
    [29]谭海文.用赤平极射投影法分析节理岩体中巷道的破坏形式[J].黄金,1998,19(6):27-29.
    [30]姚环,郑振,简文彬,等.公路岩质高边坡稳定性的综合评价研究[J].岩土工程学报,2006,28(5):558-563.
    [31]薛琳.直墙拱形隧道围岩粘弹性位移解析解[J].岩土工程学报,1996,18(6):96-101.
    [32]朱大勇,钱七虎.复杂形状洞室围岩应力弹性解析分析[J].岩石力学与程学报,1999,18(4):402-404.
    [33]卢廷浩.岩土数值分析[M].北京:中国水利水电出版社,2008.
    [34]廖红建,等.岩土工程数值分析[M].北京:机械工业出版社,2009.
    [35]Bandis S C, Vardakis G, Barton N, et al. Instability and stress transformations around underground excavation in highly stressed anisotropic media [M]. Balkema:Maury & Fourmaintraux (eds), 1989.
    [36]包承纲.关于岩土工程的可靠度问题[J].岩土工程师,1992,4(3):6-14.
    [37]徐军,张利民,郑颖人.基于数值模拟和BP网络的可靠度计算方法[J].岩石力学与程学报,2003,22(3):395-399.
    [38]黄靓,易伟建,汪优.岩土工程可靠度分析的改进响应面法研究[J].岩土力学,2008,29(2):370-374.
    [39]江权,冯夏庭,陈国庆.高地应力条件下大型地下洞室群稳定性综合研究[J].岩石力学与工程学报,2008,27(A02):3768-3777.
    [40]丁秀丽,董志宏,卢波,等.陡倾角沉积岩地层中大型地下厂房开挖围岩变形失稳特征和反馈分析[J].岩石力学与工程学报,2008,27(10):2019-2026.
    [41]陈炳瑞.岩石工程长期稳定性智能反馈分析方法及应用研究[D].东北大学博士论文,2008.
    [42]冯夏庭.岩石力学智能化的研究思路[J].岩石力学与工程学报,1994,13(3):205-208.
    [43]冯夏庭,王泳嘉.关于智能岩石力学发展的几个问题的讨论[J].岩石力学与工程学报,1998,17(6):705-710.
    [44]冯夏庭.智能岩石力学的发展[J].中国科学院院刊,2002,17(4):256-259.
    [45]鄢建华,汤雷.水工地下工程围岩稳定性分析方法研究进展[J].水电站设计,2004,20(4):
    1-5.
    [46]曾晓清,张一弼.系统方法在隧道围岩稳定分析中的应用[J].地下空间,1995,15(2):106-110.
    [47]张军胜,薛烨,陶纪南.巷道和边坡的稳定性与突发失稳时间预测[J].岩土工程学报,1996,(1):39-45.
    [48]许传华,任青文.围岩稳定分析的非线性理论研究[J].岩土工程技术,2003,(3):142-146.
    [49]Reddy J N. An Introduction to the Finite Element Method [M]. New York:McGraw-Hill,1993.
    [50]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [51]陈国荣.有限单元法原理及应用[M].北京:科学出版社,2009.
    [52]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社,2003.
    [53]Diederichs M S and Kaiser P K. Tensile strength and abutment relaxation as failure control Mechanics in underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:69-96.
    [54]康红普.回采巷道锚杆支护影响因素的FLAC分析[J].岩石力学与工程学报,1999,(5):534-537.
    [55]樱井春辅,何薇娜.地下峒实测位移的边界元三维反分析法[J].煤炭科技资料,1989,(1):46-53.
    [56]Brebbia C A. BoundaryElement Techniques in Engineering [M]. London:Springer-Verlay,1984.
    [57]姜弘道,李昭银.三维边界元在地下洞室群围岩变形与稳定分析中的应用[J].岩土工程学报,1992,14(5):12-18.
    [58]王鲁明,赵洪先.地下工程裂隙围岩稳定性的边界元法分析[J].工程力学,2000,3(A03):614-619.
    [59]周维垣,寇晓东.无限单元法及其在岩土工程中的应用[J].岩土工程学报,1998,20(1):5-9.
    [60]周维垣,寇晓东.无限元法及其工程应用[J].力学学报,1998,30(2):193-202.
    [61]Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics (sixth edition) [M]. Toronto:Butterworth-Hei-nemann,2005.
    [62]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [63]陈胜宏.计算岩体力学与工程[M].北京:中国水利水电出版社,2006.
    [64]张奇华,邬爱清,石根华.关键块体理论在百色水利枢纽地下厂房岩体稳定性分析中的应用[J].岩石力学与工程学报,2004,23(15):2609-2614.
    [65]Shi G H. Discontinuous deformation analysis:a new numerical model for the static and dynamics of block systems [D]. University of California, Berkeley,1988.
    [66]石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1987.
    [67]周维垣,杨若琼.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(3):211-218.
    [68]张国新,赵妍,彭校初.考虑岩桥断裂的岩质边坡倾倒破坏的流形元模拟[J].岩石力学与
    工程学报,2007,26(9):1773-1780.
    [69]何德洪.信息化施工和动态设计在基坑工程中的应用[J].土工基础,2009,23(5):33-36.
    [70]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [71]Kavanagh K T and Clough R W. Finite element applications in the characterization of elastic solids [J]. International Journal of Solids and Structures,1971,7(1):11-23.
    [72]Kirsten H A. Determination of rock mass elastic module by back analysis of deformation measurement [J]. Proc. Symp. Exploration in Rock Engineering,1976:1154-1160.
    [73]Gioda G. Direct search solution of an inverse problem in elastic-plastisity, identification of cohesion, friction angle and in-situ stress by presssure tunnel tests [J]. International Journal of Numerical Methods in Engineering,1980, (15):1823-1834.
    [74]Gioda G. Numerical identification of soil structure interaction pressure [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1981, (5):33-56.
    [75]Gioda G. Indirect identification of the average elastic characteristics of rock masses [A]. Proceeding of International Conference on Structural Foundations on Rock [C],1980,1:65-73.
    [76]Gioda G. Some remarks on back analysis and characterization problems [A]. Proceeding of 5th International Conference on on Numerical Methods in Geomechanics [C],1985,1:47-61.
    [77]Maier G and Gioda G. Optimization methods for Parameteric identification of geotechnical system [J]. Numerical Methods in Geomechanics,1980, (5):431-436.
    [78]Gioda G and Sakurai S. Back analysis procedures for the interpretation of field measurements in geomechanics [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005,11(6):555-583.
    [79]Sakurai S and Takeuchi K. Back analysis of measured displacement of tunnel [J]. Rock Mechanics and Rock Engineering,1983,16(3):173-180.
    [80]Sakurai S anb Abe S. A design approach to dimensioning underground opening [A]. Proceeding of 3rd International Conference on Numerical Methods in Geomechanics [C],1979:649-661.
    [81]Sakurai S, Shimizu N, Iriyama T. Back analysis of measured displacements in cut slopes [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics,1993,30(6): 360-361.
    [82]Sakurai S anb Takeuchi K. Back analysis of measured displacement of tunnel [J]. Rock Mechanics and Rock Engineering,1983,16(3):173-180.
    [83]Sakurai S, Akutagawa S, Takeuchi K, et al. Back analysis for tunnel engineering as a modern observational method [J]. Tunnelling and Underground Space Technology,2003,18(2-3):185-196.
    [84]Arai R. An inverse problem approach to the prediction of Multi-dimensional consolidation behavior [J]. Soil and Foundations,1984,24(1):95-108.
    [85]Oreste P. Back-analysis techniques for the improvement of the understanding of rock in underground constructions [J]. Tunnelling and Underground Space Technology,2005,20(1):7-21.
    [86]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996,12.
    [87]孙钧,蒋树屏,袁勇,等.岩土力学反演问题的随机理论与方法[M].汕头:汕头大学出 版社,1995.
    [88]孙钧.岩土力学与地下工程结构分析计算的若干进展[J].力学季刊,2005,26(3):329-338.
    [89]蒋树屏,孙钧.用扩张卡尔曼滤波器有限元法反分析隧道围岩参数的初步研究[J].中国公路学报,1993,6(1):90-98.
    [90]蒋树屏.岩土工程反分析研究的新进展[J].地下空间,1995,15(1):25-33.
    [91]蒋树屏,赵阳.复杂地质条件下公路隧道围岩监控量测与非确定性反分析研究[J].岩石力学与工程学报,2004,23(20):3460-3464.
    [92]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488-498.
    [93]Wang Z Y, and Liu H B. Back analysis of measured rheologic displacements of underground openings [A]. Proceeding of 6th Conference on Numerical Methods in Geomechanics [C],1988,1: 2291-2297.
    [94]Wang Z Y, and Li Y P. Back analysis of viscoparameters and strata stress in underground openings [J]. International Symposium on Underground Engineering,1988,1:181-186.
    [95]杨志法,王思敬,冯紫良,等.岩土工程反分析原理及应用[M].北京:地震出版社,2002.
    [96]Yang Z F, Wang Z Y, Zhang L Q, et al. Back-analysis of viscoelastic displacements in a soft rock road tunnel [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3): 331-341.
    [97]杨林德,等.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1995.
    [98]杨林德,何裕仁.天荒坪抽水蓄能电站试验洞的位移反分析研究[J].岩土工程学报,1992,14(2):37-43.
    [99]Zheng Y R, Wang C, Zhang D H. Back analysis from measured displacement based on elastoplastic theory in strain space [A]. Proceeding of International Symposium on Geomechanics Bridges Structure [C],1987:505-508.
    [100]黄宏伟.岩土工程中位移量测的随机逆反分析法[J].岩土工程学报,1995,17(2):36-41.
    [101]冯紫良,杨林德.初始地应力的反推原理[J].隧道工程,1983,(3):18-25.
    [102]杨林德,黄伟.初始地应力位移反分析计算的有限单元法[J].同济大学学报,1985,(4):15-20.
    [103]郭怀志,马启超,薛玺成,等.岩体初始地应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [104]杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用[J].地下工程,1981,(2):20-24.
    [105]Feng J, Yang Z F. Tupu-Displacement back analysis method and its application [A]. Proceeding of International Congress on Progress and Innovation in Tunneling [C],1989:2123-2126.
    [106]杨志法,等.有限元图谱法[M].北京:科学出版社,1988.
    [107]Gioda G, Pandolfi A, Cividini A. A comparative evaluation of some back analysis algorithms and their application to in-situ load tests [J]. Proceeding of 2nd International Symposium on Field Measurement in Geomechanics,1987,1131-1144.
    [108]Neuman S P. A statistical approach to the inverse problem of aquifer hudrology 3:improved solution method and added perspective [J]. Water Resources,1980,16(2),331-346.
    [109]孙钧,黄伟.岩石力学参数弹塑性反演问题的优化方法[J].岩石力学与工程学报,1992,11(3):221-229.
    [110]Millar D L. Automated Back Analysis of Ground Response in Rocks and Soils via Evolutionary Computing [A]. Proceeding of Eurock'96[C]. Rotterdom:Balkema,1996:975-982.
    [111]Zhao F, Louis S J, Zeng X G. A Genetic Algorithms for Inverse Problem of Flaw Detection [A]. Proceeding of ISC A 4th Goldon West International Conference on Intelligent Systems[C]. Roleigh: 1995:6-10.
    [112]Louis S J, Zhao F, Zeng X G. Flaw Detection and Configuration with Genetic Algorithms [A]. Evolutionary Algorithm in Engineering Applications[C]. Berlin:Springer,1997:103-116.
    [113]邓建辉,丰定祥,葛修润,等.多介质边坡弹性模量位移反分析模型与优化算法[J].岩土工程学报,1997,19(3):22-27.
    [114]邓建辉,丰定祥,葛修润.边坡弹性模量位移反分析及其工程应用[J].水利学报,1998,(1):14-17.
    [115]邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报,2001,20(1):1-5.
    [116]Deng J H, Lee C F. Displacement Back Analysis for a Steep Slope at the Three Gorges Project Site [J]. International Journal of Rock Mechanics and Mining Science,2001,38(2),259-268.
    [117]冯夏庭,张治强.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,1999,18(5):529-533.
    [118]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [119]Feng X T, Zhang Z Q, Sheng Q. Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(3):1039-1054.
    [120]丁德馨.弹塑性位移反分析的智能化方法及其在地下工程中的应用[D].上海:同济大学博士学位论文,2000.
    [121]刘迎曦,王登刚,李守巨,等.识别混凝土重力坝弹性模量的一种新方法[J].大连理工大学学报,2000,40(2):144-147.
    [122]王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000,19(supp.):979-982.
    [123]李守巨.基于计算智能的岩土力学模型参数反演方法及其工程应用[D].大连:大连理工大学博士学位论文,2004.
    [124]李守巨,刘迎曦,孙伟.智能计算与参数反演[M].北京:科学出版社,2008.
    [125]高玮,刘全声.基于仿生计算智能的地下工程反分析—理论与应用[M].北京:科学出版社,2009.
    [126]高玮,冯夏庭.地下工程围岩参数反演的仿生算法及其工程应用研究[J].岩石力学与工程学报,2002,21(A02):2521-2526.
    [127]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009.
    [128]黄友锐.智能优化算法及其应用[M].北京:国防工业出版社,2008.
    [129]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [130]Hwang K. Advanced Computer Architecture:Parallelism, Scalability, Programmability [M]. New York:McGraw-Hill,1993.
    [131]陈国良.并行计算:结构,算法,编程[M].北京:高等教育出版社,2003.
    [132]刘赫男,罗霄,高晓东.并行计算的现状与发展[J].煤,2000,10(1):56-57.
    [133]Grama A. Introduction to Parallel Computing [M]. New York:Addison-Wesley,2003.
    [134]都志辉.高性能计算之并行编程技术-MPI并行程序设计[M].北京:清华大学出版社,2001.
    [135]罗省贤,何大可.基于MPI的网络并行计算环境及应用[M].成都:西南交通大学出版社,2001.
    [136]张汝清.并行计算结构力学的发展和展望[J].力学进展,1994,24(4):511-517.
    [137]周树荃,高科华.解结构动力学问题的半隐式Runge-Kutta型并行直接积分法[J].计算物理,1992,9(2):133-138.
    [138]姜弘道,余天堂.有限元并行分析的进展[J].工程力学,2000, (supp.):96-106.
    [139]冯夏庭,李邵军.岩土力学并行计算方法研究进展[J].岩石力学与工程学报,2001,20(supp.l):875-878.
    [140]Zhang Y L, Feng X T. Parallel computing method in geotechnical engineering [A]. Proceedings of the 2001 IRSM International Symposium-the 2nd Asian Rock Mechanics Symposium [C],2001: 365-368.
    [141]Feng X T, Li S J, Zhang Y L. Visual parallel computing in intelligent rock and soil mechanics [A]. Proceedings of the 2001 IRSM International Symposium-the 2nd Asian Rock Mechanics Symposium [C],2001:487-490.
    [142]刘耀儒,周维垣,陈欣.基于EBE方法的三维有限元并行计算[J].岩土力学,2003,24(supp.):69-72.
    [143]安红刚,冯夏庭,李邵军.大型洞室群稳定性与优化的并行进化神经网络并行有限元方法研究—第一部分:理论模型[J].岩石力学与工程学报,2003,22(5):706-710.
    [144]安红刚,冯夏庭,李邵军.大型洞室群稳定性与优化的并行进化神经网络并行有限元方法研究—第二部分:实例研究[J].岩石力学与工程学报,2003,22(10):1640-1645.
    [145]茹忠亮,冯夏庭,张友良,等.地下工程锚固岩体有限元分析的并行计算[J].岩石力学与工程学报,2005,24(1):13-17.
    [146]刘耀儒,周维垣,杨强,等.三维有限元并行计算及其工程应用[J].岩石力学与工程学报,2005,24(14):2434-1397.
    [147]茹忠亮,冯夏庭,李洪东,等.大型地下工程三维弹塑性并行有限元分析[J].岩石力学与工程学报,2006,25(6):1141-1 146.
    [148]张友良,冯夏庭.岩土工程百万以上自由度有限元并行计算[J].岩土力学,2007,28(4):684-688.
    [149]付朝江,张武.基于粗细网格的有限元并行分析方法[J].岩土力学,2006,27(5):807-810.
    [150]付朝江,张武.结构模态分析的有限元并行模拟[J].力学与实践,2006,28(2):16-20.
    [151]杜晔华,胡云进,姚懿伦,等.二维有自由面渗流分析的有限元并行计算[J].水力发电学报,2006,25(3):116-120.
    [152]付俊峰,金生.用OpenMP实现三维复杂渗流场的并行计算[J].工程力学,2009,26(12):216-221.
    [153]Kennedy J, Eberhart R C. Particle swarm optimization [A]. Conf. on Neural Networks Ⅳ [C], 1995:1942-1948.
    [154]Shi Y H, Eberhat R C. Parameter selection in particle swarm optimization [J]. In Evolutionary Programming Ⅶ:1998,591-600.
    [155]Shi Y H, Eberhat R C. A modified particle swarm optimizer [A]. Proceedings of the IEEE International Conference on Evolutionary Computation [C],1998:591-600.
    [156]Clerc M. Particle Swarm Optimization [M]. USA:ISTE Ltd,2006.
    [157]张可村,李换琴.工程优化方法及其应用[M].北京:西安交通大学出版社,2007.
    [158]Yang X M, Yuan J S, Yuan J Y, Mao H N. A modified particle swarm optimizer with dynamic adaptation [J].Applied Mathematics and Computation,189(2007):1205-1213.
    [159]ROBINSON J, RAHMAT-SAMII Y. Particle swarm optimization in electromagnetics [J]. IEEE Transactions on Antennas and Propagation,2004,52(2):397-407.
    [160]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004.
    [161]Shi Y H, Eberhat R C. Parameter selection in particle swarm optimization [A]. In Evolutionary Programming Ⅶ [C],1998:591-600.
    [162]Shi Y H, Eberhat R C. A modified particle swarm optimizer [A]. Proceedings of the IEEE International Conference on Evolutionary Computation [C],1998:69-73.
    [163]Shi Y H, Eberhat R C. Fuzzy Adaptive Particle Swarm Optimization [A]. Proceedings of the IEEE International Conference on Evolutionary Computation [C],2001:101-106.
    [164]Clerc M. The swarm and queen:towards a deterministic and adaptive particle swarm optimization [A]. Proceeding of the IEEE Congress on Evolutionary Computation [C],1999:1951-1957.
    [165]Clerc M and Kennedy J. The particle swarm-explosion, stability and converdence in a multidimensional complex space [J]. IEEE Transctions on Evolutionary Computation,2002,6(1): 58-73.
    [166]Angeline P J. Using Selection to Improve Particle Swarm Optimization [A]. Anchorage:IEEE International Conference on Evolutionary Computation [C],1998:84-89.
    [167]Lovbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimiser with Breeding and Subpopulations [A]. San Francisco:Proceeding of the Genetic and Evolutionary Computation Conference [C],2001:469-476.
    [168]Suganthan P N. Particle Swarm Optimizer with Neighborhood Operator [A]. Proceeding of Congress on Evolutionary Computation [C],1999:1958-1962.
    [169]Kennedy J. Small worlds and mega-minds-effects of neighborhood topology on particle swarm performance [A]. Proceeding of Congress on Evolutionary Computation [C],1999:1931-1938.
    [170]Parsopoulos K E, Plagianakos V P, Magoulas G D, et al. Improving the Particle Swarm Optimizer by Function'Stretching'[A]. Advances in Convex Analysis and Global Optimization [C], Kluwer Academic Publishers,2001:445-457.
    [171]Parsopoulos K E, Plagianakos V P, Magoulas G D, et al. Stretching Technique for Obtaining Global Minimizers through Particle Swarm Optimization [A]. Proceeding of the Particle Swarm Optimization Group [C], Indianapolis,2001:22-29.
    [172]Parsopoulos K E and Vrahatis M N. Modification of the Particle Swarm Optimizer for Locating All the Global Minima [A]. Artificial Neural Nets and Genetic Algorithms [C], Springer,2001: 324-327.
    [173]F.van den Bergh and Engelbrecht A P. A New Locally Convergent Particle Swarm Optimiser [A]. 2002 IEEE International Conference on Systems [C], Man and Cybernetics,2002,94-99.
    [174]曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展.2004,41(8):1333-1338.
    [175]Trelea I C. The particle swarm optimization algorithm:convergence analysis and parameter selection [J]. Information Processing Letters,2003, (85):317-325.
    [176]F.van den Bergh and Engelbrecht A P. A study of particle swarm optimization particle trajectories [J]. Information Sciences,2006,176(8):937-971.
    [177]雷开友.粒子群算法及其应用研究[D].重庆:西南大学博士学位论文,2006.
    [178]高尚,汤可宗,蒋新姿,等.粒子群优化算法收敛性分析[J].科学技术与工程.2006,6(12):1625-1627.
    [179]吴少刚.机群系统OpenMP研究[D].清华大学博士学位论文,204.
    [180]Hwang K, Xu Z W. Scalable parallel computing:technology, architecture, programming [M]. Boston:WCB/McGraw-Hill,1998.
    [181]陈国良,安虹,陈峻,等.并行计算实践[M].北京:高等教育出版社,2003.
    [182]傅强.异构机群系统负载平衡问题研究[D].北京:清华大学博士学位论文,1998.
    [183]吴荣腾.并行计算系统的负载平衡算法与并行执行时间预测[D].天津:天津大学博士学位论文,2008.
    [184]胡光.机群系统的动态负载平衡方法研究[J].计算机与现代化.2004,103(3):10-15.
    [185]彭旭东,何丕廉.基于局域网的并行计算负载平衡[J].天津理工大学学报.2006,22(3):55-58.
    [186]樊兴,张国平,夏学知.一种实现动态负载均衡的多机情报并行处理方法[J].解放军理工大学学报(自然科学版).2009,10(6):523-527.
    [187]Rajkumar B著,郑纬民,石威,汪东升,等译.高性能集群计算:结构与系统(第一卷)[M].北京:电子工业出版社,2001.
    [188]Rajkumar B著,郑纬民,汪东升,石威,等译.高性能集群计算:编程与应用(第二卷)[M].北京:电子工业出版社,2001.
    [189]张俊,程春田,廖胜利,等.改进粒子群优化算法在水电站群优化调度中的应用研究[J].水利学报.2009,40(4):435-441.
    [190]王伟.改进粒子群优化算法在边坡工程力学参数反演中的应用[D].南京:河海大学硕士学位论文,2007.
    [191]刘杰,王媛,刘宁.岩土工程渗流参数反问题[J].岩土力学.2002,23(2):152-161.
    [192]Tikhonov A N. Solution of ill-posed problems and the regularization method [J]. Soviet Math. Dokl.,1963,(4):1035-1038.
    [193]Tikhonov A N. Numerical Methods for the Solution of Ill-Posed Problems [M]. SKLUWER ACADEMIC PUBLISHERS, DORDRECHT/BOSTON/LONDON,1995.
    [194]吕爱钟,蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [195]Yeh W W G and Yoon Y S. Aquifer Parameter Identification with Optimum Dimension in Parameterization [J]. Water Resources RES,1981,17(3):664-672.
    [196]Dennis M and Towaley L R. A reassessment of the groundwater inverse problem [J]. Water Resources RES,1996,32(5):1131-1161.
    [197]吴祥松,朱合华,叶飞.岩土工程参数反分析的可辨识性研究[J].地下空间与工程学报.2006,2(3):377-401.
    [198]吕爱钟.巷道围岩参数及地应力可辨识性的探讨[J].岩石力学与工程学报.1988,7(2):155-164.
    [199]杜延龄,等.渗流分析的有限单元法和电网络法[M].北京:水利电力出版社,1992.
    [200]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [201]盛金昌,速宝玉,詹美礼.三维天然渗流场反演分析及工程运用[J].岩石力学与工程学报,2003,22(2):203-207.
    [202]朱伯芳.渗流场反分析的一种新的数学解法[J].水利学报,1994,(9):42-46.
    [203]苑莲菊,等.工程渗流力学及应用[M].北京:中国建材出版社,2001.
    [204]王晓冬.渗流力学基础[M].北京:石油工业出版社,2006.
    [205]顾慰慈.渗流计算原理及应用[M].北京:中国建材工业出版社,2000.
    [206]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [207]张巍,肖明.有自由面渗流分析的丢单元法的改进及其在地下工程中的运用[J].水利与建筑工程学报,2005,3(1):32-36.
    [208]黄蔚,刘迎曦,周承芳.三维无压渗流场的有限元算法研究[J].水利学报,2001,(6):33-36.
    [209]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [210]朱岳明,陈振雷,吴愔,等.改进排水子结构法求解地下厂房洞室群区的复杂渗流场[J].水利学报,1996(9):79-85.
    [211]王恩志,王洪涛,王慧明.“以管代孔”—排水孔模拟方法探讨[J].岩石力学与工程学报,2001,20(3):346-349.
    [212]毛昶熙.渗流计算分析与控制[M].北京:中国水利水电出版社,2003.
    [213]许桂生,陈胜宏.模拟排水孔的复合单元法研究[J].水动力学研究与进展,2005,20(2):214-220.
    [214]许模.渗流场反分析及其在多孔介质中的应用[J].地质灾害与环境保护,1996,2(7):56-60.
    [215]李守巨,刘迎曦,周承芳,等.岩土渗流问题反分析的非线性最小二乘法[J].中国有色金属学报,1998,8(supp.2):726-729.
    [216]王桂林,文海冢,汪东云.复合形优化方法在石刻岩体渗流反演分析中的应用[J].重庆建筑大学学报,2002,24(6):25-34.
    [217]王后裕,陈上明,言志信.地下工程动态设计原理[M].北京:化学工业出版社,2008.
    [218]刘招伟,赵运臣.城市地下工程施工监测与信息反馈技术[M].北京:科学出版社,2006.
    [219]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [220]杨志法,齐俊修,刘大安,等.岩土工程监测技术及监测系统问题[M].北京:海洋出版社,2004.
    [221]中华人民共和国行业标准.岩土工程监测规范YS 5229-96[S].
    [222]中华人民共和国行业标准.铁路隧道监控量测技术规程TB 10121-2007[S].
    [223]中华人民共和国国家标准.锚杆喷射混凝土支护技术规范GB 50086-2001[S].
    [224]王立忠.岩土工程现场监测技术及其应用[M].杭州:浙江大学出版社,2000.
    [225]李晓红.隧道新奥法及其量测技术[M].北京:科学出版社,2002.
    [226]梁学章,何甲兴,王新民,等.小波分析[M].北京:国防工业出版社,2005.
    [227]黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2002.
    [228]唐晓初.小波分析及其应用[M].重庆:重庆大学出版社,2006.
    [229]飞思科技产品研发中心.MATLAB6.5辅助小波分析与应用[M].北京:电子工业出版社,2003.
    [230]郑治真,沈萍,杨选辉,等.小波变换及其MATLAB工具的应用[M].北京:地震出版社,2001.
    [231]二滩水电开发有限责任公司.岩土工程安全监测手册[M].北京:中国水利水电出版社,1999.
    [232]杜国文.小浪底工程多点位移计测值突变原因分析[J].东北水利水电,1998,167(6):24-27.
    [233]丁多文,白世伟,罗国辉.预应力锚索加固体的应力损失分析[J].工程地质学报,1995,3(1):65-69.
    [234]方丹.龙滩地下洞室群监测资料反馈分析及监控预测研究[D].河海大学硕士论文,2005.
    [235]孙钧,蒋树屏,袁勇,等.岩土力学反演问题的随机制论与方法[M].汕头:汕头大学出版社,1995.
    [236]Sheorey P R, Prakesh R. Empirical rock failure criteria [M]. Rotterdam Rrookfield, VT:A. A Balkema,1997.
    [237]20世纪岩石强度理论的发展—纪念Mohr-Coulomb强度理论100周年[J].岩石力学与工程学报,2000,19(5),545-550.
    [238]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2),1-10.
    [239]强度理论百年总结[J].力学进展,2004,34(4),529-560.
    [240]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [241]Hoek E and Brown E T. Empirical strength criterion for rock masses[J]. Journal of Geotechnical Engineering Division, ASCE,1980,106(GT9):1013-1035.
    [242]Hoek E and Brown E T. The Hoek-Brown Failure Criterion-a 1988 Update [A]. Toronto: Procceding of 15th Canadian Rock Mechanics Symposium [C],1988:31-38.
    [243]Hoek E, Torres C C and Corkum B. Hoek-Brown Failure Criterion-2002 Edition [A]. Toronto: Procedings of the North American Rock Mechanics Society Meeting [C],2002,1:267-273.
    [244]Zienkiewicz O C, Pande G N. Some useful forms of isotropic yield surface for soil and rock mechanics [A]. In:Gudehus G ed. Finite Element in Geomechanics [C]. London:John Wiley & Sons Lid,1977,179-190.
    [245]Liu Y, Maniatty A M, Antes H. Investigation of a Zienkiewicz-Pande yield surface and an elastic-viscoplastic boundary element formulation [J]. Engineering analysis with boundary elenments,2000, (24):207-211.
    [246]肖明,张志国,陈俊涛,等.不同屈服条件对地下洞室围岩稳定影响研究[J].地下空间与工程学报.2008,(4),635-639.
    [247]陈明祥.弹塑性力学[M].北京:科学出版社,2007.
    [248]薛守义.弹塑性力学[M].北京:中国建材工业出版社,2005.
    [249]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [250]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005.
    [251]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报,1997,16(2):140-147.
    [252]Frantziskonis, G and Desai, C. S. Constitutive model with strain softening [J]. Int. J. Solid Structure,1987,23(6):733-768.
    [253]剡公瑞,周维垣,杨若琼.岩石混凝土类材料细观损伤流变断裂模型及其工程运用[J].水利学报,1997,(10):33-38.
    [254]杨明辉,赵明华,曹文贵.岩石损伤软化统计本构模型参数的确定方法[J].水利学报,2005,36(3):345-349.
    [255]谢和平.岩石混凝土损伤力学[M].北京:中国矿业大学出版社,1990.
    [256]肖明.地下洞室围岩稳定与支护数值分析方法研究[D].武汉大学博士论文,2002.
    [257]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [258]高玮,冯夏庭.基于免疫连续蚁群算法的岩士工程反分析研究[J].岩石力学与工程学报,2005,24(23):4266-4271.
    [259]YANG X M, YUAN J S, YUAN J Y, et al. A modified particle swarm optimizer with dynamic adaptation [J]. Applied Mathematics and Computation,2007,189(2):1205-1213.
    [260]刘世君,徐卫东,王红春.不确定性岩石力学参数的区间反分析[J].岩石力学与工程学报,2004,23(6):885-888.
    [261]章光,朱维申.参数敏感性分析与试验方案优化[J].岩土力学,1993,14(1):51-57.
    [262]黄书岭,冯夏庭,张传庆.岩体力学参数的敏感性综合评价分析方法研究[J].岩石力学与工程学报,2008,27(增1):2624-2630.
    [263]张继勋,姜弘道,任旭华.岩体参数对隧洞围岩稳定性影响的敏感性分析[J].采矿与安全工程学报,2006,23(2):169-172.
    [264]肖明,刘志明.锦屏二级水电站三维地应力场反演回归分析[J].人民长江,2000,31(9):42-44.
    [265]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版杜,1988.
    [266]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用(第三版)[M].北京:科学出版杜,2004.
    [267]王学萌,张继忠,王荣.灰色系统分析及实用计算程序[M].武汉:华中科技大学出版杜,1996.
    [268]罗战友,龚晓南,杨晓军.全过程沉降量的灰色verhulst预测方法[J].水利学报.2003,(3):29-36.
    [269]宋岩辉,聂德新.基础沉降预测的Verhulst模型[J].岩土力学.2003,24(1):123-126.
    [270]常方强,涂帆,贾永刚.Verhulst模型在预测软基路堤沉降中的应用[J].岩石力学与工程学报.2007,26(suup.l):3122-3126.
    [271]张玉萍,唐红梅.危岩变形的灰色预测方法及应用[J].重庆交通大学学报.2003,27(1):85-90.
    [272]关宝树.隧道力学概论[M].成都:西南交通大学出版杜,1993.
    [273]中华人民共和国行业标准.公路隧道施工技术规范JTG F60-2009 [S].
    [274]中华人民共和国行业标准.铁路隧道施工规范TB 10204-2002[S].
    [275]中华人民共和国行业标准.铁路隧道锚喷构筑法技术规范TB 10108-2002[S].
    [276]俞裕泰,肖明.大型地下洞室围岩稳定三维弹塑性有限元分析[J].岩石力学与工程学报,1987,6(1):47-56.
    [277]陈俊涛,肖明.大型地下洞室复杂地质断层数值模拟分析方法[J].岩土力学,2006,27(6):880-884.
    [278]卓家寿.弹性力学中的有限元法[M].北京:高等教育出版社,1987.
    [279]裴觉民.复杂岩体中地下工程的非线性有限元分析[J].水利学报,1988,(9):53-59.
    [280]Fan W, Peng J B and Li T L. Stability assessment method, strength theory and analysis of landslide [A]. Strength Theory:Application, Development & Prospeects for 21st Century [C]. Beijing: Science Press,1998:1091-1096.
    [281]鲜学福,谭学术.层状岩体破坏机理[M].重庆:重庆大学出版社,1989.
    [282]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [283]王启耀.陡倾角层状岩体中大型地下洞室群围岩变形的预报和控制[D].上海:同济大学,2004.
    [284]巫德斌.层状岩体边坡工程力学参数研究[D].南京:河海大学,2004.
    [285]肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报,2000,22(4):421-425.
    [286]张玉军,刘谊平.正交各向异性岩体中地下洞室稳定的黏弹-黏塑性三维有限元分析[J].岩土力学,2002,23(3):278-283.
    [287]Martino J B and Chandler N A. Excavation-induced damage studies at the Underground Research Laboratory [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41: 1413-1426.
    [288]Sheng Q, Yue Z Q, Lee C F, et al. Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China [J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:165-184.
    [289]于永江,张哲,王来贵,等.深部岩体圆形巷道围岩松动圈形成机理数值试验研究[J].力学与实践,2008,30(6):64-67.
    [290]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [291]贾颖绚,宋宏伟.巷道围岩松动圈测试技术与探讨[J].西部探矿工程,2004,101:148-150.
    [292]Wu F Q, Liu T, Zhuang H Z, et al. A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case [J]. ENGINEERING GEOLOGY,2009, 104:254-262.
    [293]Li S J, He Y, Liu Y X, et al. Results from in-situ monitoring of displacement, bolt load, and disturbed zone of a powerhouse cavern during excavation process [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1519-1525.
    [294]郭凌云.地下洞室开挖扰动支护及围岩参数反馈分析研究[D].武汉:武汉大学,2004.
    [295]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [296]邹海,王桂梁,桂和荣,等.岩体力学参数的损伤-反分析优化性研究[J].长春科技大学学报,1999,29(2):167-170.
    [297]黄承贤,宋大卫.在围压下岩石弹性波速的研究[J].岩土工程学报,1991,13(2):32-41.
    [298]王华宁,吕爱钟,曹志远.巷道裂隙岩体的损伤参数辨识[J].岩土工程学报,2001,23(5):593-597.