干旱区盐渍地极化雷达土壤水分反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表土壤水分的时空分布信息在水文学、气候学、植物生态学等学科中有十分重要的地位,常常作为水文模型、气候模型、生态模型的重要输入参数,同时,也在预报旱情、估算农作物产量等方面起到重要作用。因此,监测地表土壤水分时空分布信息成为一个迫切需要解决的问题。传统测量方法、光学遥感和被动微波遥感获取土壤水分都表现出一定的不足。研究表明,主动微波遥感能够弥补光学遥感、被动微波遥感在土壤水分监测应用中的不足,为土壤水分监测提供新的方法和手段。
     在微波波段,土壤电磁波的地表散射特性直接与地表粗糙度、介电常数、水分含量相关。而介电常数的大小与水分含量有很大的关系,因此,地表的微波散射特性的主要影响因素就是地表粗糙度和土壤水分。获取这两个重要参数对于地表散射特性的研究至关重要。
     目前星载SAR系统多极化、多角度方向的快速发展,使采用不同极化方式及不同入射角条件下的后向散射系数组合研究雷达后向散射系数与地表参数之间的关系成为可能。本研究在比较三种典型的地表微波散射模型(Oh模型、Dubois模型、AIEM模型)的基础上,用理论模型AIEM模型对地表的微波散射特征进行了模拟和分析,提出了用多极化SAR后向散射系数数据来反演地表粗糙度和土壤水分的经验模型。本研究的主要研究成果包括以下几方面:
     (1)比较Dubois模型、Oh模型和AIEM模型,结果表明,Dubois模型对入射角变化、介电常数的响应与实际情况有所不同。因此不推荐选择Dubois模型对雷达数据进行土壤水分反演。Oh模型能够模拟交叉极化的后向散射特征,对同极化的后向散射数据模拟值误差较大,因此,也不推荐使用。而AIEM模型模拟不论是模拟同极化微波后向散射特征,还是模拟交叉极化微波后向散射特征,都能够比较好地刻画地表微波散射特征,因此在进行模拟时选择AIEM模型。
     (2)根据雷达图像原理,应用NEST DAT4A-1.5软件对研究区的RADARSAT-2数据进行定标,并对不同地物和不同程度盐渍地的HH、VV、VH、VH/VV的后向散射系数特征进行统计和对比,并结合这些特征,从雷达图像成像原理及物理机制的角度出发,初步探讨了不同地物类型的极化特征与成因。
     (3)利用AIEM模型模拟盐渍地地表C波段雷达信号的后向散射特征,分析了均方根高度、相关长度、土壤含水量等地表参数以及入射角、极化方式等系统参数对雷达微波后向散射特征的影响。揭示了雷达后向散射系数随这些参数的变化而变化的规律,对雷达反演地表土壤水分的理想系统参数设置进行了探讨。
     (4)详细分析了C波段同极化后向散射系数差、交叉极化后向散射系数差同土壤含水量、组合粗糙度参数之间的关系,考虑了雷达入射角的效应,并在此基础上建立了经验的盐渍地地表散射模型,最后针对RADARSAT-2观测数据组合方式的不同,提出了具体的土壤水分、地表粗糙度反演方案。
     (5)将建立的反演算法应用到新疆渭库三角洲绿洲外围盐渍化土壤试验区,应用HH/VV、HH/HV、VV/VH三种极化组合方式的RADARSAT-2数据,得到了新疆渭库绿洲盐渍地地表粗糙度空间分布图和土壤水分空间分布图,将反演数据与实测数据进行对比,并比较三种组合极化方式下的精度,其中VV-VH极化方式取得了较高的精度,土壤水分实测值与反演值的相关性达到0.9148。
Spatial and temporal distribution of soil moisture information play a very significantposition in the disciplines of hydrology, climatology and plant ecology, it often beused as the input parameters in hydrologic models, climate models and ecologicalmodels and as the important indicators in prediction of drought, crop yield estimatesand other. Therefore, get the information of the wide range of soil moisture spatialand temporal distribution is an urgent problem. There are some restrictions in thetraditional measurement methods, optical remote sensing and passive microwaveremote sensing to get soil moisture. Studies have shown that active microwave remotesensing can compensate the shortcoming in the optical remote sensing and passivemicrowave remote sensing in the soil moisture monitoring applications and provide anew method and means for soil moisture monitoring.
     In the microwave band, the soil surface scattering of the soil electromagneticproperties is related to the surface roughness, dielectric constant and the moisturecontent. The dielectric constant and the moisture content have a great relationship, sothe surface roughness and the soil moisture surface microwave scattering propertiesare the main factors, so obtain these two important parameters is essential to researchin the surface scattering properties.
     The current SAR system is developing to the multi-polar, multi-angle direction, so it’spossible to research the relationship in the radar backscattering coefficient and the soilsurface parameters under the conditions of different polarization and incidence angles.This study based on comparing the three typical surface microwave scattering model(Oh model, Dubois model, the AIEM model) and used the AIEM model as atheoretical model to simulate and analysis the characteristics of soil surfacemicrowave scattering and proposed an empirical model to inversion surface roughnessparameters and soil moisture with multi-polarization SAR backscattering coefficientdata. The results of the study indicate that:
     (1) Comparing the Dubois model, Oh model and AIEM model, the results show thatDubois model has a different response with the actual situation to incidence angle and the dielectric constant. So we don’t recommend selecting this Dubois model for soilmoisture inversion of radar data. The Oh model can simulate the scatteringcharacteristics of cross-polarization but it has the large errors in the analog value ofsame polarizationscattering data, so we don’t recommend, too. The AIEM model cancharacterize the surface microwave scattering characteristics better both in simulatingthe same polarization scattering characteristics and the cross-polarization microwavescattering characteristics. Therefore,we should choose the AIEM model to simulate.
     (2) According to the principle of radar images, we used the NEST the DAT4A-1.5software to do the calibration of the study area RADARSAT2data and compareddemographic characteristics of different objects’ backscattering coefficient featureswith different saline degrees in HH, VV, HV and VH, On this basis, exploring thecharacteristics and the reason of different objects polarization from the perspective ofthe imaging principle of radar images and the physical mechanism.
     (3)Using the AIEM model to simulate the C-band radar signal’s backscatteringcharacteristics of the exposed salinization surface,analyzing the affection of the soilsurface parameters include the rms height, length, soil moisture and the radar systemparameters include the angle of incidence, polarization to radar microwave’s backscattering characteristics.Revealing the variation of the radar backscatteringcoefficient changes with these parameters and discussed the set of the ideal systemparameters in inversion of surface soil moisture.
     (4) Analyzing the relationship of the C-band same polarization and the cross-polarizer’s backscattering coefficient to the soil moisture and the combined roughnessparameters, considering the effects of radar incidence angle and established theexperience bare salinized surface scattering model. Finally,proposed a inversionprogram of soil moisture and surface roughness for the combinations of differentRADARSAT-2observational data.
     (5) Appling the inversion algorithm to Wei-Ku strangle oasis peripheral salinizedsoil test area and obtain the soil moisture spatial distribution figure and surfaceroughness space figure with the HH/VV,HH/HV,VV/VH three polarizationcombinations of RADARSAT-2data. The inversion results have a good correlation with the measured data of soil moisture, and compareing the precision of threepolarization mode,VV-VH polarization achieved high accuracy, and the corelationbetween the measured value and inversion value reached0.9148.
引文
[1]刘兴土.松嫩平原退化土地整治与农业发展[M].北京:科学出版社,2001.23-36.
    [2]李凤全,吴樟荣.半干旱地区土地盐碱化预警研究—以吉林省西部土地盐碱化预警为例[J].水土保持通报,2002,22(1):57-59.
    [3]G.I. Metternichta, J.A. Zinck. Remote sensing of soil salinity: potentials and constraints [J].Remote Sensing of Environment,2003,(85):1–20.
    [4]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-846.
    [5]田长彦,周宏飞,刘国庆.21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J].干旱区地理,2000,23(3):178-181.
    [6]吐尔逊·艾山,塔西甫拉提·特依拜,丁建丽.基于TM图像的塔里木盆地北缘盐渍地亮度值分析[J].土壤,2008,40(4):667-671.
    [7]熊文成.含水含盐土壤介电特性及反演研究[D].中国科学院遥感应用研究所,2005.
    [8]关元秀.区域土壤盐渍化遥感监测研究综述[J].遥感技术与应用,2001(1):201-206.
    [9]邵芸,吕远.含水含盐土壤的微波介电特性分析研究[J].遥感学报,2002,(6):416-423.
    [10]郭华东,等.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [11]胡庆荣.含水含盐土壤介电特性试验研究及对雷达图像的相应分析[D].中国科学院遥感应用研究所,2003.
    [12]韩念龙,陈圣波,汪自军等.被动微波反演裸露区土壤水分综述[J].吉林大学学报(地球科学版),2007,13(11):76-77.
    [13]田国良.土壤水分的遥感监测方法[J].环境遥感,1991,6(2):89-98.
    [14]Engman, E. T. Application of microwave remote sensing of soil moisture for water resourcesand agriculture[J]. Remote Sensing of Environment,1991,35(2-3):213–226.
    [15]Kasischke, E. S, Melack, J. M, and Dobson, M. C. The use of imaging radars for ecologicalapplications-A Review[J].Remote Sensing of Environment,1997,59(2):141-156.
    [16]Jiancheng Shi, Chen K S, Li Q, et al. A Parameterized Surface Reflectivity Model andEstmiation of Bare Surface Soil Moisture with L-band Radiometer[J]. IEEE TransactionsonGeoscience and Remote Sensing,2003,40(12)2674-2686.
    [17]王军战,张友静,鲍艳松等.基于ASAR双极化雷达数据的半经验模型反演土壤湿度[J].地理与地理信息科学,2009(2):5-9.
    [18]姜淼.利用ERS—2SAR数据监测辽宁地区土壤湿度研究[D].沈阳农业大学,2006.
    [19]刘维平.基于雷达遥感的土壤湿度反演研究—以广州地区为例[D].中山大学,2006.
    [20]路京选.国内外干旱遥感监测技术发展动态综述[J].中国水利水电科学研究院学报,2009(2):45-52.
    [21]高峰,王介民,孙成权等.微波遥感土壤湿度研究进展[J].遥感技术与应用,2001,16(2):97-102.
    [22]鹿琳琳,郭华东,韩春明.微波遥感农业应用研究进展[J].安徽农业科学,2008,36(4):1289-1291,1294.
    [23]刘志明,张柏,晏明等.土壤水分与干旱遥感研究的进展与趋势[J].地球科学进展2003,18(4):576-583.
    [24]Ulaby F T, Batlivala P P.Optimum radar parameters for mapping soil moisture[J].IEEETransactions on Geoscience and Remote Sensing,1976,CE-14(2):81-93.
    [25]Bernard, R., Martin, P. H., Thony, J. L., Vauclin, M., and Vidal-Madjar, D.. Cband radar fordetermining surface soil moisture.[J]. Remote Sensing of Environment,1982,12,189-200
    [26]Geng, H., Hugh, Q., Gwyn, J., Brisco, B., Boisvert, J., and Brown, R.. Mapping of SoilMoisture from C-Band Radar Images[J]. Canadian Journal of Remote Sensing,1996,22(1),117-126.
    [27]Glenn, N. F., and Carr, J. R."The use of geo-statistics in relating soil moisture toRADARSAT-1SAR data obtained over the Great Basin, Nevada, USA." Computers andGeosciences,29,577-586.
    [28]Kasischke, E, Smith, K, Bourgeau-Chavez, L, et al. Effects of seasonal hydrologic patterns insouth Florida wetlands on radar backscatter measured from ERS-2SAR imagery[J]. RemoteSensing of Environment.2003,88(4):423-441.
    [29]Meade, N.G, Hinzman, L.D, Kane, D.L. Spatial estimation of soil moisture using syntheticaperture radar in Alaska[J]. Advanced Space Research,1999,24(7),935-940.
    [30]Moeremans, B, and Dautrebande, S. Soil moisture evaluation by means of multi-temporal ERSSAR PRI images and interferometric coherence[J].Journal of Hydrology,2000,234(3-4):162-169.
    [31]Patel,P, Manchanda, M. L, Adiga, S. Use of multiincidence angle RADARSAT-1SAR data toincorporate the effect of surface roughness in soil moisture estimation[J]. IEEE Transactionson Geoscience and Remote Sensing.2003,41(7):1638-1640.
    [32]Sahebi M R, Bonn F, Gwyn Q H J. Estimation of the Moisture Content of Bare Soil fromRADARSAT1SAR Using Simple Empirical Models[J]. International Journal of RemoteSensing,2003,24(12):2575-2582.
    [33]aconet, O, Vidal-Madjar, D., Emblanch, C. Taking into account vegetation effects to estimatesoil moisture from C-band radar measurements[J].Remote Sensing of Environment,1996,56(1):52–56.
    [34]Shoshany, M, Svoray, T, Curran, P. J. The relationship between ERS-2SAR backscatter andsoil moisture: Generalization from a humid to semi-arid transect[J]. International Journal ofRemote Sensing,2000,21(11):2337-2343.
    [35]Svoray, T, Shoshany, M. Multi-scale analysis of intrinsic soil factors from SAR-basedmapping of drying rates[J].Remote Sensing of Environment,2004,92(2):233-246.
    [36]Oh. Y, K. Sarabandi, F. T. Ulaby. An empirical model and an inversion technique for radarscattering from bare soil surfaces[J]. IEEE Transactions on Geoseience and Remote Sensing,1992,30(2):370-381.
    [37]Oh. Y, K Sarabandi, F. T. Ulaby. An inversion algorithm for retrieving soil moisture andsurface roughness from polarimetric radar observation. Proceeding of IEEE internationalGeoscience and Remote Sensing Symposium,1994,3(1):1582-1584
    [38]Oh, Yisok. Quantitative retrieval of soil moisture content and surface roughness frommultipolarized radar observations of bare soil surfaces. IEEE Transactions on Geoscience andRemote Sensing,2004,42(4):596-601.
    [39]Dobson. M. C, Ulaby. F.T. Active Microwave soil moisture research[J]. IEEE Transactions onGeoseience and Remote Sensing,1986,24(1):23-36.
    [40]Dobson. M. C,Ulaby. F.T, Hallikainen. M.T, El-rayes. M. A. Microwave dielectric behaviorof wet soil part II: Dielectric mixing models[J]. IEEE Transactions on Geoseience andRemote Sensing,1985,23(1):35-46.
    [41]Dubois P. C., Zyl, Engman T. Measuring soil moisture with imaging radars. IEEE Transactionson Geoscience and Remote Sensing,1995,33(4):915-926.
    [42]Zribi M, Baghdadi N. Analysis of Surface Roughness Heterogeneity and Scattering Behaviorfor Radar Measurements [J].IEEE Trans. on Geoscience and Remote Sensing,2006,44(9):2438-2444.
    [43]Zribi, M, Dechambre, M. A new empirical model to retrieve soil moisture and roughness fromC-band radar data[J]. Remote Sensing of Environment,2003,84(1):42-52.
    [44]Zribi, M, He′garat-Mascle, S. L, Ottl'e. Surface soil moisture estimation from the synergisticuse of the (multi-incidence and multi-resolution) active microwave ERS Wind Scatterometerand SAR data[J]. Remote Sensing of Environment,2003,86(1):30–41.
    [45]Shi J C, Li Z, Li X W.Evaluate usage of decomposition technique in estimation of soil moisturewith vegetated surface by multi-temporal measurements data[J].Journal of Remote Sensing,2002,6(6):412-416.
    [46]Shi, J, Wang, J, Hsu, A. Estimation of bare surface soil moisture and surface roughnessparameters using L-band SAR image data[J]. IEEE Transactions on Geoscience and RemoteSensing,1997,35(5):1254-1266.
    [47]Rao K S, Raju S, Wang J R. Est imat ion of S oil Moisture and Surf ace RoughnessParameters f rom Backscatterin g Coefficients[J]. IEEE Trans.on Geoscience and Remot eSensing,1993,31(31):1094-1099.
    [48]Bagh dadi N, Gault ier S, King C. Retrieving Surface Roughness an d Soil Moisture from SARData Using Neural Network[J].Canadian Journal of Remot e Sensing,2002,28:701-711.
    [49]R. Bindlish and A.P. Barros. Multifrequency Soil Moisture Inversion from SAR Measurementswith the Use of IEM[J]. Remote Sensing of Environment,2000,71(1):67-88.
    [50]Bindlish R,Barros A P.Parameterization of vegetation backscatter in radar-based,soil moistureestimation.Remote Sensing of Environment,2001,76(1):130-137.
    [51]Loew A, Mauser W. A Semiempirical Surface Backscatterring Model for Bare Soil Surf aceBased on a Generaliz ed Power Law Spectrum Approach[J]. IEEE T rans. on Geoscienceand Remote Sensing,2006,44(4):1022-1035.
    [52]Bag hdadi N, Holah N, Zribi M. Soil Moisture Estimation Us ing Multiincidence andMultipolarization ASAR Data[J].International Journal of Remote Sensing,2006,27(10):1907-1920.
    [53]Zribi. M, Baghdadi. N, Holah. N, Fafin. O. New methodology for soil surface moistureestimation and its application to ENVISAT-ASAR multi-incidence data inversion[J]. RemoteSensing of Environment,2005(96):485-496.
    [54]Tarendra Lakhankar, Hosni Ghedira, Reza Khanbilvardi. Combine Neural Network and FuzzyLogic for an Improved Soil Moisture Estimation[C]. In proc. Prospecting for GeospatialInformation Integration, ASPRS Annual Conference, Reno, Nevada, USA,2006,5.
    [55]Hosni Ghedira, Tarendra Lakhankar. Capabilities and Limitation of Satellite Microwave Datain Soil Moisture Retrieval in Semi-Arid Regions[C]. In. proc. Kuwait First InternationalRemote Sensing Conference,2005,9.
    [56]Tarendra Lakhankar, Hosni Ghedira Ami Azar and Reza Khanbilvardi.Effect of Sub-pixelVariability of NDVI and Land-cover on Soil Moisture Retrieval from RADARSAT-1Data[C], In proc. Microrad’06(9th Specialist Meeting on Microwave Radiometry andRemote Sensing Applications), San Juan, Puerto Rico,2006.
    [57]刘伟.植被覆盖地表极化雷达土壤水分反演与应用研究,中国科学院遥感应用研究所2005
    [58]汤明.裸地散射特性分析[J].电波科学学报,1994,9(4):69-75.
    [59]施建成,李震,李新武等.目标分解技术在植被覆盖条件下土壤水分计算中的应用[J].遥感学报,2002,6(6):412-415.
    [60]王树果,李新,韩旭军等.利用多时相ASAR数据反演黑河流域中游地表土壤水分[J].遥感技术与应用,2009,24(5):582-587.
    [61]鲍艳松,刘良云,王纪华,等.利用ASAR图像监测土壤含水量和小麦覆盖度[J].遥感学报,2006,10(2):263-271.
    [62]李宗谦,冯孔豫.从雷达后向散射系数反演土壤湿度与复介电常数.中国科学(E辑)。1997,27(3):243-248.
    [63]陈述彭,童庆喜,郭华东等.遥感信息机理研究[M].北京:科学出版社,1998.
    [64]曾琪明,焦健.合成孔径雷达遥感原理及应用简介(一)[J].遥感信息,1997,(4):41—45.
    [65]曾琪明,焦健.合成孔径雷达遥感原理及应用简介(二)[J].遥感信息,1998,(1):4l一45.
    [66]曾琪明,焦健.合成孔径雷达遥感原理及应用简介(三)[J].遥感信息,1998,(2):43—47.
    [67]曾琪明,焦健.合成孔径雷达遥感原理及应用简介(四)[J].遥感信息,1998,(4):42-46.
    [68]舒宁等.微波遥感遥感原理[M],武汉:武汉大学出版社.2003.
    [69]金亚秋.电磁散射和热辐射的遥感理论[J].北京:科学出版社,1993.7
    [70]J.A Kong等,地磁波理论,北京:电子工业出版社,2003.
    [71]F.T.乌拉比,R.K.穆尔,冯建超,微波遥感1卷[M]:雷达和面目标的散射和辐射理论,科学出版社,1987.
    [72]F.T.乌拉比,R.K.穆尔,冯建超,微波遥感2卷[M]:雷达和面目标的散射和辐射理论,科学出版社,1987.
    [73]李森.基于IEM的多波段、多极化SAR土壤水分反演算法研究[D].中国农业科学院,2007.
    [74]黄芳,徐红松,齐青青.土壤水分测试技术进展[J].安徽农学通报,2007,13(11):76-77.
    [75]吴涛,张荣标,冯友兵.土壤水分含量测定方法研究[J].农机化研究,2007(12):213-217.
    [76]龚元石,曹巧红,黄满湘.土壤容重和温度对时域反射仪测定土壤水分的影响[J].土壤学报,1999,36(2):145-153.
    [77]高国治,张斌,张桃林,等.时域反射法(TDR)测定红壤含水量的精度[J].土壤,1998(1):48-50.
    [78]Dobson. M. C, Ulaby. F.T. Active Microwave soil moisture research[J]. IEEE Transactionson Geoseience and Remote Sensing,1986,24(1):23-36.
    [79]Evans D.L,Farr T G,Van Zyl J J.Estimates of Surface Roughness Derived from SyntheticAperture Radar(SAR)Data[J].IEEE Trans Geosci and Remote Sensing,1992,30(2):382-389.
    [80]Holah. N, Baghdadi. N, Zribi. M, Bruand. A, King. C. Potential of ASAR/ENVISAT for thecharacterization of soil surface parameters over bare agricultural fields[J]. Remote Sensing ofEnvironment,2005(96):78-86.
    [81]Zribi. M, Baghdadi. N, Holah. N, Fafin. O. New methodology for soil surface moistureestimation and its application to ENVISAT-ASAR multi-incidence data inversion[J]. RemoteSensing of Environment,2005(96):485-496.
    [82]Rajat. Baindlish, Ana. P. Barros. Multifrequency soil moisture inversion from SARmeasurements with the use of IEM[J].Remote Sensing of Environment,2000(71):67-88.
    [83]数据来源于中国科学院寒区旱区环境与工程研究所遥感与地理信息科学研究室.
    [84]Ulaby. F. T, Richard K. Moore Adrian K. Fung. Microwave Remote Sensing value II:235.
    [85]M. Callens,Niko E.C. Verhoest. Analys is of soil roughness measurements using a25m laserProfiler and a4m wide meshboard[C]. Geoscience and Remote Sensing SymPosium,2004.IGARSS,04. Proeeedings. IEEE Intemational,2004:1653-1656.
    [86]N. Baghdadi, I. Gherboudj, et al.. Semi-empirical calibration of the IEM backscattering modelusing radar images and moisture and roughness field measurements. International Journal ofRemote Sensing,2004,25(18):3593-3623.
    [87]R. Bryant, M.5.Moran, D. P. Thoma et al.. Measuring surface roughness to Parameterize radarbackscatter models for retrieval of surface soil moisture. IEEE Geoscience and RemoteSensing Letters,2007,4(1):137-141.
    [88]D’Haese, N. Verhoest, et al.. Comparison and evaluation of two soil surface roughnessmeasuring techniques: the meshboard method and the ESA-CESBIO laser profiler. Intemalreport. LHWM, Faculty of agricultural and applied biological sciences, Ghent University,Belgium.2000.
    [89]F.MaTTia,M.W.J.Davidson,etal..A Comparison between soil roughness statistics used insurface scattering models derived from mechanical and laser profilers.IEEE Transactions OilGeoscience and Remote Sensing,2003.41(7):1659—1672
    [90]M. Zribi, Ciarletti, M. Dechambre. A new empirical model to inverse soil moisture androughness using two radar configurations[J]. Geoscience and Remote Sensing Symposium,2002,4(4):2223-2225.
    [91]N. Baghdadi, I. Gherboudj, et al.. Semi-empirical calibration of the IEM backscattering modelusing radar images and moisture and roughness field measurements. International Journal ofRemote Sensing,2004,25(18):3593-3623.
    [92]Tania Neusch et al. Application of the Dubois model using experimental synthetic apertureradar data for the determination of soil moisture and surface roughness[J]. Remote SensingEnvironment,1999,54(4):273-278.
    [93]T. D. WU. Reappraisal of the Validity of the IEM Model for Backscattering from RoughSurfaces. IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):743-753.
    [94]A. K. Fung, K. S. Chen.An update on the IEM surface backscattering model. IEEETransactions on Geoscience and Remote Sening,2004,11(2):75-77.
    [95]毛克彪,王建明,张孟阳,等.基于AIEM和实地观测数据对GNSS-R反演土壤水分的研究[J].高技术通讯,2009,19(3):295-301.
    [96]陈思伟,代大海,李盾等.Radarsat-2的系统组成及技术革新分析[J].航天电子对抗.2008,24(1):33-36.
    [97]RADARSAT-2卫星介绍[J].中国科学院对地观测与数字地球科学中心用户简讯,2008,(73).
    [98]杜培军.Radarsat图像滤波的研究[J].中国矿业大学学报,2002,31(2):132-137.
    [99]刘立诚.塔里木盆地北部土壤盐渍化特征的初步研究[J].土壤通报,1994,6(12):196-200.
    [100]徐丹.基于Envisat数据的地物后向散射特征研究[J].佛山科学技术学院学报(自然科学版),2008,26(4):24-27,45.
    [101]任鑫.多极化、多角度SAR土壤水分反演算法研究[D].中国科学院研究生院硕士学位论文,2004.
    [102]钟若飞.神舟四号飞船微波辐射计数据处理与地表参数反演研究[D].中国科学院遥感应用研究,2005.
    [103]满苏尔,阿布拉江,艾尼瓦尔.新疆库车县耕地人口承载能力研究[J].干旱区资源与环境,2002,16(3):28-32.
    [104]库车县水利志编纂委员会编.库车县水利志[M].乌鲁木齐:新疆科技卫生出版社1993,22-23.
    [105]库车县志编纂委员会编.库车县志[Z].乌鲁木齐:新疆人民出版社,2005.
    [106]刘增灿,陈彦,童玲等.多波段多极化SAR散射测量的影响因素[C].高分辨率卫星SAR技术与应用专题研讨会论文集.2008,55-64.
    [107]刘增灿.微波散射测量及土壤水分反演研究[D].电子科技大学,2009.
    [108]刘维平.基于雷达遥感的土壤湿度反演研究——以广州地区为例[D].中山大学,2006.
    [109]杜今阳.多极化雷达反演植被覆盖地表土壤水分研究[D].中国科学院遥感应用研究,2006.
    [110]余凡,赵英时.合成孔径雷达反演裸露地表土壤水分的新方法[J].武汉大学学报信息科学版,2010年,35(3):317-321.