西咪替丁对日本血吸虫DNA疫苗免疫保护作用的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本血吸虫病是一种广泛流行并严重影响人畜健康的寄生虫病。我国目前对血吸虫病的防治重点在于灭螺及人畜同步化疗。但是由于吡喹酮仅对侵入皮肤3 h的童虫和成虫有效,且目前在很多国家已经出现对吡喹酮敏感性降低的报道。因此,安全有效的疫苗对血吸虫病的防治具有重要的作用。
     日本血吸虫疫苗的研究经历了死疫苗、减毒活疫苗、基因工程疫苗和核酸疫苗等过程。其中核酸疫苗中最常用的是DNA疫苗,因其具有制备简单、保存及运输方便和能诱导广泛和持久的体液免疫和细胞免疫的优点而备受研究者青睐。目前血吸虫DNA疫苗在血吸虫研究中占据着主导地位。但是截至目前为止,单价DNA疫苗的免疫保护效果并不令人满意,WHO推荐的40%或以上的保护力仍然没有达到。究其原因在于,血吸虫作为一种多细胞生物,基因组非常复杂,且在与宿主长期进化的过程中产生了多种免疫逃避机制。
     新近证实,调节性T细胞(Tregs)与寄生虫逃避宿主免疫攻击关系非常密切。在很多感染性疾病中,尤其是寄生虫感染时Tregs的水平显著升高,从而成为了寄生虫一个逃生的“窗口”帮助其逃避宿主的免疫攻击。在疟疾感染的小鼠模型中,消耗Tregs有利于机体清除病原体并降低小鼠出现致死性感染的可能。因此探究血吸虫感染中Tregs的变化,并针对该变化采取相应的治疗方案必将有助于血吸虫疫苗的研究。
     西咪替丁(CIM)作为H2受体阻滞剂在临床上一直用于治疗胃酸引起的胃肠功能紊乱并有确定的疗效。除此之外,CIM在临床上还广泛的用于治疗疱疹病毒,HIV病毒等感染性疾病引起的免疫功能下降,以及阻抑肿瘤的发生及生长。研究表明,其作用机制主要在于抑制抑制性T细胞的功能从而发挥免疫增强作用。有报道称,直接将CIM和毗喹酮合用可显著提高吡喹酮的杀虫效果。同时也有很多将CIM作为一种免疫调节剂来增强疫苗的免疫原性的报道。
     因此,本研究选用CIM和日本血吸虫26KD谷胱甘肽S-转移酶(Sj26)DNA疫苗合用,一方面观察CIM和日本血吸虫pEGFP-Sj26GST DNA疫苗联合使用的免疫保护作用;另一方面观察CIM和日本血吸虫pEGFP-Sj26GST DNA疫苗联合使用后宿主体内Tregs的变化,并探讨其免疫机制。
     本课题分为以下三个部分:
     一、西咪替丁对日本血吸虫感染小鼠免疫应答的影响研究
     目的:探讨不同剂量的C1M对血吸虫感染小鼠免疫应答的影响。
     方法:32只6-8周龄的BALB/c雌性小鼠随机分成3组,即50 mg/kg CIM组(CIM50)、25 mg/kg CIM组(CIM25)及感染对照组(Control)。CIM50组采用50mg/kg的CIM皮下注射三次,每次间隔两周;CIM25组采用25 mg/kg的CIM皮下注射三次,每次间隔两周,即第1、14、28天分别用药一次;Control为单纯感染组。第42天时各组小鼠攻击感染日本血吸虫尾蚴40条/鼠。感染后第6周杀鼠取脾淋巴细胞计数,检测脾淋巴细胞中CD4+CD25+FoxP3+Tregs百分比及IL-2、IFN-γ、IL-4和IL-5水平。
     结果:和感染对照组相比,使用25mg/kg CIM组调节性T细胞的比例显著降低(P<0.01)且小鼠脾细胞培养上清中IL-2、IFN-γ的水平均较对照组升高(P<0.05),而IL-4、IL-5的水平虽较对照组升高,但无显著性差异(P>0.05)。而和感染对照组相比,使用50mg/kg CIM组在调节性T细胞的比例及小鼠脾细胞培养上清中细胞因子的水平上均与对照组无显著性差异(P>0.05)。
     结论:CIM可作为免疫调节剂,增强小鼠的免疫功能,从而提高小鼠对血吸虫感染的免疫保护作用,但是该作用与剂量有关。
     二、西咪替丁和日本血吸虫pEGFP-Sj26GST DNA疫苗联合使用的免疫保护作用研究
     目的:观察CIM对pEGFP-Sj26GST DNA疫苗免疫保护作用的影响。
     方法:从本室保存的DH5a大肠杆菌体内提取已构建好的pEGFP-Sj26GST重组质粒,进行鉴定。50只BALB/c小鼠随机分为5组,即感染对照组、CIM单用组、pEGFP-N3空载体对照组、pEGFP-Sj26GST DNA疫苗组及CIM和pEGFP-Sj26GST DNA疫苗合用组。其中疫苗组每只小鼠在第1、14及28天时分别经股四头肌注射100μgpEGFP-Sj26GST DNA疫苗或pEGFP-N3空载体,CIM组每只小鼠从首次免疫前两天开始每天皮下注射25 mg/kg的CIM直至感染前。末次免疫后2周,各组小鼠均经腹部皮肤感染日本血吸虫尾蚴40条/鼠。感染后第6周杀鼠冲虫,计数每只小鼠的虫荷及肝内虫卵数。计算减虫率和肝组织中每条雌虫的减卵率。取出小鼠肝组织用福尔马林固定,脱水、石蜡切片、HE染色,检测各组小鼠肝组织内虫卵肉芽肿的变化。
     结果:将大量提取出的pEGFP-Sj26GST重组质粒及pEGFP-N3空载体质粒在核酸分析仪上检测发现浓度达到3mg/ml且纯度较高。动物保护性试验结果显示,CIM和pEGFP-Sj26GST DNA疫苗联合使用后减虫率高达79%,显著高于pEGFP-Sj26GST疫苗单独使用组(27%)及其他各组。肝脏内虫卵计数发现其肝减卵率与pEGFP-Sj26GSTDNA疫苗单用组相比,联合使用CIM和pEGFP-Sj26GST DNA疫苗也有显著的降低(22.48%vs 68.35%)。小鼠肝组织HE染色显示,和感染对照组相比,CIM和PEGFP-Sj26GST DNA疫苗合用组的虫卵肉芽肿数目(16.25±2.87 vs 4.5±1.76)显著减少。显微镜下可见,感染对照组的肝肉芽肿体积较大,而pEGFP-Sj26GST疫苗组及与CIM合用组的肝肉芽肿体积则明显缩小。
     结论:CIM可作为佐剂增强血吸虫pEGFP-Sj26GST DNA疫苗的免疫保护效果。且CIM和疫苗合用可以显著减少血吸虫感染宿主肝内虫卵肉芽肿的数目。
     三、西咪替丁增强日本血吸虫pEGFP-Sj26GST DNA疫苗的免疫保护作用的机制研究
     目的:观察CIM对宿主体内CD4+CD25+Tregs及相关细胞因子的影响,探讨CIM增强pEGFP-Sj26GST DNA疫苗免疫保护作用的机制。
     方法:80只雌性BALB/c小鼠随机分成五组,即感染对照组、CIM组、pEGFP-N3空载体对照组、pEGFP-Sj26GST DNA疫苗组及CIM和pEGFP-Sj26GST DNA疫苗合用组。其中疫苗组每只小鼠在第1、14及28天时分别经股四头肌注射100μgpEGFP-Sj26GST DNA疫苗或pEGFP-N3空载体,即每只小鼠免疫三次,每次间隔2周。CIM组每只小鼠从首次免疫前两天开始每天皮下注射25mg/kg的CIM直至感染前。各组取6只小鼠在末次免疫后一周剖杀,取眼眶血,静置后离心取上清,检测其血清中特异性GST抗体的含量。将剩余的50只小鼠在末次免疫后2周均经腹部皮肤感染日本血吸虫尾蚴40条/鼠。感染后第6周,剖杀小鼠,无菌取脾,制备单个脾细胞悬液,流式细胞仪检测脾淋巴细胞中CD4+CD25+Tregs百分比。将无菌取出的脾细胞悬液在体外用丝裂原ConA刺激后培养48小时,MTT法检测在体外各组脾细胞对丝裂原的增值比率。体外培养72小时离心收集各组脾细胞上清,夹心ELISA法分别检测脾细胞上清中Th1细胞因子γ-干扰素(IFN-γ)、白细胞介素-2(IL-2)和Th2细胞因子白细胞介素-4(IL-4)、白细胞介素-5(IL-5)和白细胞介素-10(IL-10)等细胞因子含量。
     结果:
     1)使用pEGFP-Sj26GST DNA疫苗后小鼠血清中特异性的抗Sj26GST抗体的水平明显高于空载体组及单用CIM组(p<0.05),且将pEGFP-Sj26GST DNA疫苗和CIM合用后小鼠血清中特异性的抗Sj26GST抗体的水平亦显著高于单独使用pEGFP-Sj26GST DNA疫苗组(p<0.05)。
     2)和感染对照组相比,单用pEGFP-Sj26GST DNA疫苗可以降低其脾淋巴细胞中CD4+CD25+Foxp3+T细胞的比例(p<0.05),而将CIM和pEGFP-Sj26GST DNA疫苗合用则可以显著降低其脾淋巴细胞中CD4+CD25+Foxp3+ T细胞的比例(p<0.01)。
     3)和感染对照组相比,单用CIM后脾淋巴细胞对ConA的增殖反应明显提高,而合用CIM及pEGFP-Sj26GST DNA疫苗后,脾淋巴细胞对ConA的增殖反应则较单独使用pEGFP-Sj26GST DNA疫苗组亦有显著提高(p<0.05)。
     4)CIM和pEGFP-Sj26GST DNA疫苗合用组小鼠脾细胞培养上清中IL-12、IFN-γ的水平均较感染对照组高(P<0.05),IL-10的含量较对照组降低(P<0.05),而IL-4、IL-5的水平虽较对照组升高,但无显著性差异(P>0.05)。
     结论:
     1)提取出的pEGFP-Sj26GST DNA疫苗具有较强的免疫原性,将CIM与疫苗合用后能诱导机体产生更高水平的特异性抗体。
     2)CIM和疫苗合用可以降低血吸虫感染宿主脾淋巴细胞中CD4+CD25+ Tregs的百分比。
     3)CIM可以辅助DNA疫苗在体外增强T淋巴细胞对丝裂原的反应,增强T细胞的功能。
     4)CIM和疫苗合用可以增强机体的Thl型免疫反应,提高疫苗的保护性免疫效果。
     课题的特色和创新点:
     1)证明了CIM可作为一种免疫调节剂增强机体的Thl型免疫应答。
     2)首次将CIM与日本血吸虫的DNA疫苗合用,并证实能有效提高抗日本血吸虫感染的免疫保护作用。
     3)证明CIM增强疫苗保护作用的机制与其下调宿主CD4+CD25+Tregs的水平有关。
Schistosoma japonicum (S. japonicum) is an amphixenosis that could result in severe morbidity and mortality. Current schistosomiasis control in Asia is based primarily on snail eradication and large scale chemotherapy using the effective drug praziquantel. Although active drug praziquantel is available, evidence is now accumulating that if it can reduce the overall incidence of severe forms of the disease. Moreover, the parasite resistance to the drug has appeared. Thus, safe and efficacious vaccine development is an important measure for long-term integrated control of schistosomiasis.
     The vaccines against S. japonicum, including dead vaccine, attenuated live vaccine, genetically engineering and nucleic acid vaccine. The advantages of DNA vaccines over the traditional vaccine are the low cost of production, thermal stability and their ability to induce a wide variety of cellular and humoral immune response. Currently, DNA vaccine has become the highest priority of vaccine against schistosome. But to this day, there is still not yet a commercial DNA vaccine to the world. These results are perhaps explained by the fact that the schistosome parasite is such an antigenically complex organism with very complicated genome. Furthermore, they have achieved many mechanisms of immunized escape generated during long-term evolutional process together with host.
     More recently, there is convincing evidence that CD4+CD25+ Tregs are a variety of T cell subsets with suppressive properties, which play an important role in the progress of parasites escaping from the host immune assault. Evidence suggests that regulatory T cells help to protect the host from the hepatocyte damage induced by S. mansoni eggs and to prevent death from the infection through immune-mediated pathology. Thus, there is a need to explore the level of regulatory T cells in the host infected of S. japonicum, and to adopt related method for immunization of S. japonicum vaccine.
     Cimetidine (CIM) is a histamine-2-receptor antagonist that with highly successful use in gastric acid-mediated gastrointestinal disorders. Its use in clinical medicine is reported not only reduces or inhibits some infectious diseases induced impairment of the immune response such as chronic Herpes virus infection and HIV, but suppresses angiogenesis and tumor growth with few adverse biologic effects. Evidence suggests that CIM enhances a variety of immunologic functions because of its inhibitory effects on suppressor T cell function. There was convincing evidence that simultaneous administration of praziquantel and CIM could improve further the efficacy of the single therapy with praziquantel for cysticercosis and other arasitic diseases, such as schistosomiasis. Moreover, they had also achieved successful results to simultaneous administration cimetidine and variable vaccine.
     So in the present study, we evaluated the feasibility of using CIM to co-immunization with a S. japonicum DNA vaccine, the gene encoding 26 kDa glutathione S-transferase of S. japonicum (Sj26), which is one of promising vaccine candidated selected by WHO. Explore the adjuvant effect and mechanism of CIM in the protective efficacy against S. japonicum generated by pEGFP-Sj26GST DNA vaccine.
     The main contents and results of this thesis include three parts:
     Part 1:Studies on the effect of CIM on the immune responds of mice infected with S. japonicum
     Objective:Explore the effect of different schedule of CIM treatment on the S. japonicum infected mice.
     Methods:BALB/c mice were randomly divided into three groups.50 mg/kg CIM group (CIM50)、25 mg/kg CIM group (CIM25) and infected control group (control).Animals in CIM50 treated with 50 mg/kg CIM subcutaneously (s.c) injection three times; Animals in CIM25 treated with 25 mg/kg CIM subcutaneously (s.c) injection three times; Six weeks of the treatment, mice in each group were challenged percutaneously with cercariae for 20 min. After 6 weeks post infection, all mice were succumbed. The percent of CD4+CD25+ Tregs in spleen was measured with flow cytometer. The expression of gamma interferon (IFN-γ), interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-5 (IL-5) in cultural suspension of splenic cells was detected by sandwich-ELISA after stimulation with ConA.
     Results:Compare with the Control group, the percentage of CD4+CD25+ regulatory T cells was significiantly decreased in the spleens of CIM25 Group mice (P<0.01), the cytokine production of splenocytes showed that animals in CIM25 group promoted an elevated level of IFN-γand IL-2 (P<0.05). But compare with the Control group, neither the percentage of CD4+CD25+ regulatory T cells nor the cytokine production of splenocytes in the spleens of CIM50 Group mice showed significiantly different (P>0.05).
     Conclusion:CIM can be used as an immunomodulator drug and could be useful in protective immunity against schistosome infection of mice in a dose-response manner.
     Part 2:Studies on the effcet of co-immunization with CIM and pEGFP-Sj26GST DNA vaccine on the protective efficacy in mice
     Objective:To study the protective efficacy of co-immunization with pEGFP-Sj26GST DNA vaccine and CIM against S.japonicum in mice.
     Methods:The plasmid pEGFP-Sj26GST and pEGFP vector were amplified as DNA vaccine to immunize BALB/c mice.50 female BALB/c mice were randomly divided into five groups, each with 10 animals. CIM with pEGFP-Sj26GST DNA vaccine immunization was used as co-treated group. The pEGFP or pEGFP-Sj26GST alone was used as the immune challenge group. CIM alone was used as adjuvant groups. Sixteen non-treated mice were used as infected control group. Animals treated with CIM received a daily subcutaneously (s.c) injection of 25 mg/kg from day-2 through the entire 6-week. After 1, 14 and 28 days of treatment mice were immunized intramuscularly with 100μg pEGFP-Sj26GST DNA vaccine or pEGFP vector. Control animals received an equivalent volume of Sodium Chloride via the same route. After two weeks of the final boost, mice were challenged percutaneously with 40 of cercariae for 20 min by the cover glass method. On day 42 following the challenge, adult worms were perfused from hepatic portal system and also manually removed from mesenteric veins after mice were sacrificed. Percent of worm reduction and percent reduction in liver eggs in co-immunization group were compared with that in pEGFP-Sj26GST alone group and infected control group. Liver tissue sections were stained by histopathological examination to detect S. japonicum egg granuloma. The histopathological examination showed a significantly (P<0.01) greater number of egg granulomas in the control group (16.25±2.87) than in the CIM plus pEGFP-Sj26GST group (4.5±1.76). Sections of groups of mice immunized with pEGFP-Sj26GST DNA vaccine plus CIM showed fewer and smaller egg granuloma. In contrast, sections of the control groups showed a greater number of portal egg granulomas.
     Results:The recombinant plasmid pEGFP-Sj26GST was successfully abstracted, and could be used as DNA vaccine. Compared with the infected control group, mice inoculated intramuscularly with pEGFP-Sj26GST showed worm reduction of 27%(P<0.05), and co-injection of CIM and pEGFP-Sj26GST dramatically enhanced worm reduction to 79% (P<0.01), there was significant difference between the two groups. In addition, there was substantial reduction in the number of eggs present in the livers and feces of the pEGFP-Sj26GST alone and plus CIM immunized groups (P<0.05) when compared to the control groups.
     Conclusion:Compared with the pEGFP-Sj26GST DNA vaccine alone group, the mice co-immunization with pEGFP-Sj26GST and CIM could significiant enhance the protective efficacy against S. japonicum. The immunization with pEGFP-Sj26GST plus CIM could impair the development of schistosome egg granulomas.
     Part 3:Studies on the mechanism of CIM to enhance the protective efficacy induced by pEGFP-Sj26GST DNA vaccine
     Objective:To explore the effect of pEGFP-Sj26GST DNA vaccine and cimetidie on the percentages of CD4+CD25+ Tregs; To explore the mechanism of CIM in the protective efficacy against S. japonicum generated by pEGFP-Sj26GST DNA vaccine.
     Methods:80 female BALB/c mice were randomly divided into five groups, each with 16 animals. CIM with pEGFP-Sj26GST DNA vaccine immunization was used as co-treated group. The pEGFP or pEGFP-Sj26GST alone was used as the immune challenge group. CIM alone was used as adjuvant groups. Sixteen non-treated mice were used as infected control group. Animals treated with CIM received a daily subcutaneously (s.c) injection of 25 mg/kg from day-2 through the entire 6-week. After 1,14 and 28 days of treatment mice were immunized intramuscularly with 100μg pEGFP-Sj26GST DNA vaccine or pEGFP vector. That means the animals were inoculated three times with two weeks interval. Control animals received an equivalent volume of Sodium Chloride via the same route. One week after last immunization,6 mice from each group were sacrificed to determine the anti-Sj26GST antibodies in the individual serum samples (diluted in PBS) by GST-ELISA. Two weeks after the last immunization, mice were challenged percutaneously with 40 of cercariae for 20 min by the cover glass method. On day 42 following the challenge, spleens were obtained sterile, preparation single cell suspension. Flow cytometry was performed to detect the percentage of CD4+CD25+ Tregs. Single suspensions of splenocyte were harvested as describe previously and 2×105 cells/well were cultured in 96-well plates, in triplicate, in RPMI-1640 medium containing 5% FCS at 37℃in a 5% CO2 incubator for 48 h. Then we used MTT to express the splenocyte proliferation responses to ConA in vitro. The concentrations of IFN-γ, IL-12, IL-4, IL-5 and IL-10 in cell culture supernatants were determined as described by the manufacturer of the ELISA Kits.
     Results:
     1) The mean optical density values (mean±standard deviation) of anti-Sj26GST antibody in the mice immunized with pEGFP-Sj26GST was higher than that in the control group injected with CIM or saline alone (P<0.05). And at the same time, co-injection of CIM and pEGFP-Sj26GST did produce a significantly higher level of anti-Sj26GST antibody (P<0.05), compared with vaccination with pEGFP-Sj26GST alone.
     2) The percentage of CD4+CD25+Foxp3+ T cells in spleens of mice treated with pEGFP-Sj26GST was significantly decreased from infected control mice (P<0.05). Meanwhile the percentage of CD4+CD25+Foxp3+ T cells in groups with pEGFP-Sj26GST plus CIM was dramatically dropped down and was significantly lower than those in the infected control groups (P<0.01).
     3) Mice immunized with CIM and pEGFP-Sj26GST was seen to produce vigorous lymphocyte responses, compared with the control group (P<0.05).
     4) Co-injection of CIM and pEGFP-Sj26GST significantly increased the production of IFN-y and IL-12 compared with pEGFP-Sj26GST alone (P<0.05). However, spleen cells showed no difference in IL-4 and IL-5 production among all five of the groups tested and the expression of the anti-inflammatory cytokine (IL-10) were significantly decreased (P<0.05).
     Conclusion:
     1) The recombinant plasmid pEGFP-Sj26GST can be used as DNA vaccine. The co-immunization CIM with pEGFP-Sj26GST DNA vaccine could produce a significantly higher level of anti-Sj26GST antibody in BALB/c mice.
     2) The percentage of CD4+CD25+Foxp3- T cells in groups with pEGFP-Sj26GST plus CIM was dramatically dropped down and was significantly lower than those in the pEGFP-Sj26GST alone group.
     3) Mice immunized with CIM and pEGFP-Sj26GST could produce an enhanced cell-mediated response in vivo.
     4) CIM could alter the Th1-Th2 balance in murine hosts even during a Th2-promoting S. japonicum infection. The immunization with pEGFP-Sj26GST plus CIM could significantly enhance the protection of DNA vaccine through enhancing Th1 type immune responses. hi conclusion, these data demonstrated:
     1. In our study we confirmed the finding that CIM could exerts immunomodulating properties through enhancing Thl type immune responses during S. japonicum infection.
     2. It was firstly reported that the co-immunization CIM with pEGFP-Sj26GST DNA vaccine could significantly enhanced the protection of DNA vaccine.
     3. Our data showed for the first time that vaccination of mice with pEGFP-Sj26GST DNA vaccine plus CIM could significantly impair the suppressive function of CD4+CD25+ Treg cells.
引文
1. Steinmann P, Keiser J, Bos R, et al. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis, 2006,6 (7):411-425.
    2.卫生部疾病控制司。全国血吸虫病监测方案。卫生部公报,2005,(6):53-66。
    3. Ross AGP, Sleigh AC, Li Y, Davis GM, Williams GM, Jiang Z, et al. Schistosomiasis in the People's Republic of China:prospects and challenges for the 21st century. Clin Microbiol Rev 2001; 14 (2):270-95.
    4. Harder A. Chemotherapeutic approaches to Schistosomes:current knowledge and outlook. Parasitol Res 2002; 88 (5):395-7.
    5. Chitsulo L, Engels D, Montresor A, Savioli L.The global status of schistosomiasis and its control. Acta Trop 2000; 77 (1):41-51.
    6. McManus DP. Prospects for development of a transmission blocking vaccine against Schistosoma japonicum. Parasite Immunol 2005; 27 (7-8):297-308.
    7. Boulanger D, Trottein F, Mauny F, et al. Vaccination of goats against the trematode Schistosoma bovis with a recombinant homologouse Schistosoma derived glutathione S-transferase[J]. Parasite Immunol 1994,16 (8):399-406.
    8. Capron A, Capron M, Dombrowicz D, et al. Vaccine strategies against schistosomiasis:from concepts to clinical trials [J]. Int Arch Allergy Immunol 2001,124 (123):9-15.
    9.张莉,陈建平。日本血吸虫疫苗候选分子的研究进展.寄生虫病与感染疾病,2005,3(1):31-34。
    10. World Health Organization. Tropical diseases research. World Health Organization, Geneva, Switzerland.1996; 50.
    11. Todd C & Colley D. Practical and ethical issues in the development of a vaccine against schistosomiasis mansoni. Am J Trop Med Hyg 2002; 66 (4):348-358.
    12. Bergquist NR, Leonardo LR & Mitchell GF. Vaccine-linked chemotherapy:can schistosomiasis control benefit from an integrated approach? Trends Parasitol 2005; 21 (3):112-117.
    13. Garba ML, Pilcher CD, Bingham AL, Eron J, Frelinger JA. HIV antigens can induce TGF-β1-producing immunoregulatory CD8+ T cells. J. Immunol 2002; 168 (5): 2247-2254.
    14. Haynes LM, Vanderlugt CL, Dal Canto MC, Melvold RW, Miller SD. CD8+ T cells from Theiler's virus-resistant BALB/cByJ mice downregulate pathogenic virus-specific CD4+ T cells. J. Neuroimmunol.2000; 106 (1-2):4-52.
    15. Mills K H. Regulatory T Cells:friend or foe in immunity to infection? Nature Rev. Immunol.2004; 4 (11):841-855.
    16. MacDonald TT. Suppressor T cells, rebranded as regulatory T cells, emerge from the wilderness bearing surface markers. Gut 2002; 51 (3):311-312.
    17. Hesse M, Piccirillo CA, Belkaid Y, Prufer J, Mentink-Kane M, Leusink M, Cheever AW, Shevach EM, Wynn TA. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol.2004; 172 (5):3157-3166.
    18. Yurchenko E, Tritt M, Hay V, Shevach EM, et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med.2006 Oct 30; 203 (11):2451-60.
    19. Freston JW, et al. Cimetidine I. Developments, pharmacology, and efficacy, Ann. Int.Med.1982; 97(4):573-580.
    20. Kurzrock R, Auber M, Mavligit GM. Cimetidine therapy for herpes simplex virus infections in immunocompromised patients.Clin. Exp. Dermatol.1987; 12 (5): 326-331.
    21.Drabick JJ, Birx-Raybuck D, Odavia R, Redfield RR, Oster CN. Cimetidine as an immunoaugmenting agent in advanced HIV infection [Abstract]. Clin. Res.1992; 40.
    22. Slotwinski R, Wlodarska-Friszke B, Muszynski J. Early results of the studies of the effect of cimetidine on selected parameters of humoral and cellular immunity in patients with peptic ulcer. Pol. Tyg. Lek.1990; 45 (34-35):695-699.
    23. Natori T, Sata M, Nagai R, Makuuchi M. Cimetidine inhibits angiogenesis and suppresses tumor growth. Biomed. Pharmacother.2005; 59 (1-2):56-60.
    24. Nishiguchi S, Tamori A, Shiomi S, Enomoto M, Tatsumi N, Koh N, Habu D, Sakaguchi H, Takeda T, Seki S, Nakamura K, Kubo S, Kinoshita H. Cimetidine reduces impairment of cellular immunity after transcatheter arterial embolization in patients with hepatocellular carcinoma. Hepatogastroenterology.2003; 50 (50):460-462.
    25. Sahasrabudhe DM, McCune CS, O'Donnell RW, Henshaw EC. Inhibition of suppressor T lymphocytes (Ts) by cimetidine. J. Immunol.1987; 138 (9):2760-2763.
    26. Ershler WB, Hacker MP, Burroughs BJ, Moore L, Myers CF. Cimetidine and the immune response:I. In vivo augmentation of nonspecific and specific immune response. Clin. Immunol. Immunopathol.1983; 26 (1):10-17.
    27. Brockmeyer NH, Kreuzfelder E, Guttmann W, Mertins L, Goos M, Ohnhaus EE. Cimetidine and the immuno-response in healthy volunteers. J.Invest. Dermatol.1989; 93(6):757-761.
    28. Osband M, Gallison D, Miller B, Agarwal RP, and McCaffrey RP, Clin.Res.28,356a,1980.
    29. Avella J, Binder HJ, Madsen JE, and Askenase PW, Lancet 1,624,1978.
    30. Rocklin RE, Breard J, Gupta S, Good RA, Melmon KL. Cell.Immunol.51,226,1980.
    1. Freston JW, et al. Cimetidine I. Developments, pharmacology, and efficacy, Ann. Int. Med.1982;97(4):573-580.
    2. Kurzrock R, Auber M, Mavligit GM. Cimetidine therapy for herpes simplex virus infections in immunocompromised patients.Clin. Exp. Dermatol.1987; 12 (5): 326-331.
    3. Drabick JJ, Birx-Raybuck D, Odavia R, Redfield RR, Oster CN. Cimetidine as an immunoaugmenting agent in advanced HIV infection [Abstract]. Clin. Res.1992; 40.
    4. Slotwinski R, Wlodarska-Friszke B, Muszynski J.Early results of the studies of the effect of cimetidine on selected parameters of humoral and cellular immunity in patients with peptic ulcer.Pol. Tyg. Lek.1990; 45 (34-35):695-699.
    5. Natori T, Sata M, Nagai R, Makuuchi M. Cimetidine inhibits angiogenesis and suppresses tumor growth. Biomed. Pharmacother.2005; 59 (1-2):56-60.
    6. Nishiguchi S, Tamori A, Shiomi S, Enomoto M, Tatsumi N, Koh N, Habu D, Sakaguchi H, Takeda T, Seki S, Nakamura K, Kubo S, Kinoshita H. Cimetidine reduces impairment of cellular immunity after transcatheter arterial embolization in patients with hepatocellular carcinoma. Hepatogastroenterology.2003; 50 (50):460-462.
    7. Sahasrabudhe DM, McCune CS, O'Donnell RW, Henshaw EC. Inhibition of suppressor T lymphocytes (Ts) by cimetidine. J. Immunol.1987; 138 (9):2760-2763.
    8. Ershler WB, Hacker MP, Burroughs BJ, Moore L, Myers CF. Cimetidine and the immune response:I. In vivo augmentation of nonspecific and specific immune response. Clin. Immunol. Immunopathol.1983; 26 (1):10-17.
    9. Brockmeyer NH, Kreuzfelder E, Guttmann W, Mertins L, Goos M, Ohnhaus EE. Cimetidine and the immuno-response in healthy volunteers. J.Invest. Dermatol.1989; 93(6):757-761.
    10. Kumar A. Cimetidine:an immunomodulator. DICP Ann Pharmacother.1990; 24 (3) 289-95.
    11. Drew J. The experimental and clinical use of immune-modulating drugs in the prophylaxis and treatment of Infections. Infection.1985; 13 Suppl 2:241-250.
    12. Rocklin RE. Modulation of cellular immune responses in vivo and in vitro by histamine receptor-bearing lymphocytes. J. Clin. Invest.1976; 57:1051.
    13. Rocklin RE. Histamine-induced suppressor factor HSF. Effect on migration inhibitory factor (MIF) production and proliferation. J. Immunol.1977; 118 (5):1734-1738.
    14. Melmon K, et al.Histamine and its lymphocyte selective derivatives as immune modulators. Trends Pharmacol Sci,1987,8:437.
    15. Shibata M, Hoon D, et al.Modulation of histamine type Ⅱ receptors on CD8+ T cells by interleukin-2 and cimetidine. Int Arch Allergy Immunol,1992,97 (1):8-16.
    16. Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nat Immunol.2002 Nov;3(11):1041-7.
    17. Jonuleit H, Schmitt E. The regulatory T cell family:distinct subsets and their interrelations. J. Immunol.2003 Dec 15; 171 (12):6323-7.
    18. MacDonald TT. Suppressor T cells, rebranded as regulatory T cells, emerge from the wilderness bearing surface markers.Gut.2002; 51 (3):311-312.
    19. Belkaid Y. Regulatory T cells and infection:a dangerous necessity. Nat Rev Immunol. 2007 Nov;7(11):875-88.
    20. Taylor MD, LeGoff L, Harris A, et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol.2005; 174(8):4924-33.
    21. Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, et al. Escape of malaria parasites from host immunity requires CD4+CD25+ regulatory T cells. Nat Med.2004; 10(1):29-30.
    22. Badger AM, Brown AE and Poste G. The effect of cimetidine on antibody synthesis in vitro and in vivo Immunol.1983,48:151.
    23. Hesse M, Piccirillo CA, Belkaid Y, Prufer J, Mentink-Kane M, Leusink M, Cheever AW, Shevach EM, Wynn TA. The pathogenesis of schistosomiasis is controlled by cooperating IL-10 producing innate effector and regulatory T cells. J. Immunol.2004; 172 (5):3157-3166.
    24. Pearce E J, Caspar P, Crzych JM, et al. Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth Schistosoma mansoni [J]. J. Ex p Med,1991,173:159-166.
    25. Wynn TA, Oswald IP, Eltoum IA, et al. Elevated expression of Thl cytokines and nitric oxide synthase in the lungs of vaccinated mice after challenge infection with Schistosoma mansoni [J]. J Immunol,1994,153:5200-5209.
    26.吕芳丽,石佑恩,李雍龙等。紫外线减毒日本血吸虫尾蚴免疫小鼠的细胞免疫应答和细胞因子的动态变化[J]。中国寄生虫学与寄生虫病杂志,1997,15(4):238—241.
    27. Wynn TA, Jankovic D, Hieny S, Cheever AW, Sher A. IL-12 enhances vaccine-induced immunity to Schistosoma mansoni in mice and decreases T helper 2 cytokine expression, IgE production, and tissue eosinophilia. J Immunol 1995; 154 (9):4701-9.
    28. Hahm KB, Kim WH, Lee SI, Kang JK, et al. Comparison of immunomodulative effects of the histamine-2 receptor antagonists cimetidine, ranitidine, and famotidine on peripheral blood mononuclear cells in gastric cancer patients. Gastroenterol, March 1, 1995; 30 (3):265-71.
    29. Descotes R, Tedone, and Evreux JC. Effects of cimetidine and ranitidine on delayed-type hypersensitivity. [J] Immunopharmacology, June 1,1983; 6(1):31-5.
    30. Gifford RR, Hatfield AM, Schmidtke JA. Cimetidine-induced augmentation of human lymphocyte blastogensis by mitogen, bacterial antigen and alloantigen [J] Transplantation,1980,29:143.
    31.Elizondo G, Ostrosky-Wegman P. Effects of metronidazole and its metabolites on histamine immunosuppression activity [J]. Life Science,1996.59:285-297.
    1. Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Seienee,1990,247:1465-1468.
    2. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral Protein. Seienee,1993,259:1745-1749.
    3. Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol, 2002,2:499-511.
    4. Wilson RA, Coulson PS. Strategies for a schistosome vaccine:can we manipulate the immune response effectively? Microbes Infect,1999,1:535-543.
    5. Waine GJ, Mazzer DR, Mcmanus DP, et al. DNA immunization by intramuscular injection or gene gun induces specific IgG antibodies against a Schistosoma japonicum 22 kDa antigen, Sj22, when fused to the murine Ig K-chain secretory leader sequence. Parasite Immunol,1999,21:53-56.
    6.谢来平,石佑恩。日本血吸虫DNA疫苗pCD-Sj32不同免疫次数及末次免疫后不同攻击时间对小鼠保护性免疫力的观察。中国人兽共患病杂志,2000,16(4):6-8.
    7. Da'dara AA, Skelly PJ, Wang MM, et al. Immunization with plasmid DNA encoding the integral membrane protein, Sm23, elicits a protective immune response against schistosome infection in mice. Vaccine,2001,20:359-369.
    8. Singh M, O'Hagan D. Advances in vaccine adjuvants. Nat Biotechnol,1999,17: 1075-1081.
    9.甘燕,石佑恩,卜玲毅等。重组核酸疫苗诱导小鼠抗血吸虫感染的免疫学研究。中华医学杂志,2005,85(3):193-197.
    10. Zhang Y, Tayloy MCP Johansen MV, et al. Vaccination of mice with a cocktail DNA vaccine induces a Thl-type immune response and partial protection against Schistosoma japonicum infection. Vaccine,2001,20:724-730.
    11.朱荫昌,司进,Ham DA等。日本血吸虫SjCTPI和SjC23 DNA疫苗联合免疫保护作用研究。中国血吸虫病防治杂志,2002,14(2):84-87.
    12.李柳哲,石佑恩,宁长修等。日本血吸虫混合DNA疫苗免疫效果观察。中国血 吸虫病防治杂志,2001,13(4):201-203.
    13.任建功,朱荫昌,Ham DA等。日本血吸虫中国大陆株23 kDa膜蛋白DNA疫苗和蛋白疫苗联合应用免疫保护性作用的研。中国血吸虫病防治杂志,2002,14:89-101.
    14. Hartikka J, Sawdey M, Cornefert-Jenen F, et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther,1996,7: 1205-1217.
    15. Zhang J, Campbell RE, Ting AY, et crl. Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol,2002,3:906-918.
    16. Kumar A, et al. Cimetidine:an immunomodulator. DICP.1990,24 (3):289-95. Review.
    17. Melmon K, et al. Histamine and its lymphocyte selective derivatives as immune modulators. Trends Pharmacol Sci,1987,8:437.
    18. Shibata M, Hoon D, et al.Modulation of histamine type Ⅱ receptors on CD8+ T cells by interleukin-2 and cimetidine. Int Arch Allergy Immunol,1992,97 (1):8-16.
    19. Deepak M, Sahasrabudhe, et al. Inhibition of suppressor T lymphocytes (Ts) by cimetidine. J Immunol.1987,138 (9):2760-2763.
    20. Zaiwang Jin, Ashir Kumar, et al. Inhibition of suppressor cell function by cimetidine in a murine model. Clin Immunol Immunopathol.1986,38 (3):350-356.
    21. Kurzrock R, Auber M, Mavligit GM. Cimetidine therapy for herpes simplex virus infections in immunocompromised patients.Clin. Exp. Dermatol.1987; 12 (5): 326-331.
    22. Drabick JJ, Birx-Raybuck D, Odavia R, Redfield RR, Oster CN. Cimetidine as an immunoaugmenting agent in advanced HIV infection [Abstract]. Clin. Res.1992; 40.
    23. Slotwinski R, Wlodarska-Friszke B, Muszynski J. Early results of the studies of the effect of cimetidine on selected parameters of humoral and cellular immunity in patients with peptic ulcer. Pol. Tyg. Lek.1990; 45 (34-35):695-699.
    24. Natori T, Sata M, Nagai R, Makuuchi M. Cimetidine inhibits angiogenesis and suppresses tumor growth. Biomed. Pharmacother.2005; 59 (1-2):56-60.
    25. Nishiguchi S, Tamori A, Shiomi S, Enomoto M, Tatsumi N, Koh N, Habu D, Sakaguchi H, Takeda T, Seki S, Nakamura K, Kubo S, Kinoshita H. Cimetidine reduces impairment of cellular immunity after transcatheter arterial embolization in patients with hepatocellular carcinoma. Hepatogastroenterology.2003; 50 (50): 460-462.
    26. Sahasrabudhe DM, McCune CS, O'Donnell RW, Henshaw EC. Inhibition of suppressor T lymphocytes (Ts) by cimetidine. J. Immunol.1987; 138 (9):2760-2763.
    27. Ershler WB, Hacker MP, Burroughs BJ, Moore L, Myers CF. Cimetidine and the immune response:I. In vivo augmentation of nonspecific and specific immune response. Clin. Immunol. Immunopathol.1983; 26 (1):10-17.
    28. Brockmeyer NH, Kreuzfelder E, Guttmann W, Mertins L, Goos M, Ohnhaus EE. Cimetidine and the immuno-response in healthy volunteers. J.Invest. Dermatol.1989; 93 (6):757-761.
    29. Elizabeth A, Kelly-Daniel G, Colley. Effects of immunomanipulations on resistance induced by irradiated Schistosoma mansoni cercarial sensitization of C57BL/6 and CBA/J mice.Am J Trop Med Hyg.1986,35 (4):803-811.
    30. Ebeid FA, Metwally AA, Botros SS, Bennet JL.Treatment of Experimental Schistosomiasis mansoni with Praziquantel Alone and Combined with Cimetidine. Arzneim-Forsch. Drug Res.1994,44 (11):1268-1270.
    31. Wang JP, Su BW, Ding Z, et al. Cimetidine enhances immune response of HBV DNA vaccination via impairment of the regulatory function of regulatory T cells. China Biochemical and Biophysical Research Communications.2008,372:491-496.
    32. Drabick JJ. Tang DB. Moran EE, et al. A randomized placebo-controlled study of oral cimetidine as an immunopotentiator of parenteral immunization with a group B meningococcal vaccine. Vaccine.1997,15:1144-1148.
    33. Waine GJ, Yang W, Scott JC, et al. DNA-based vaccination using Schistosome japonicum (Asian blood-fluke) genes. Vaccine,1997, Jun; 15 (8):846-848.
    34. Shoemaker C, Gross A, Gebremichael A, et al. cDNA cloning and functional expression of the Schistosoma mansoni protective antigen triose-phosphate isomerase. Proc Natl Acad Sci USA,1992,89 (5):1842-1846.
    35. Ramsay AJ, Kent SJ, Strugnell RA, et al. Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity. Immunol Rev,1999,171:27-44.
    36. Donnelly JJ, Ulmer JB, Liu MA, et al. Protective efficacy of intramuscular immunization with naked DNA. Ann New York Acad Sci,1996,772:40-46.
    37. Skaletsky E, Sharon C, Excobar C. Cimetidine enhancement of immune responses: application to monoclonal antibody development. Biomed. Prod.1994, June,44-46.
    1. Butterworth AE. Vaccines against schistosomiasis:where do we stand? Trans R Soc Trop Med Hyg.1992 Jan-Feb; 86 (1):1-2.
    2. Hagan P, Sharaf O. Schistosomiasis vaccines. Expert Opin Biol Ther.2003 Dec; 3 (8):1271-8.
    3. Bergquist R, Al-Sherbiny M, Barakat R, et al. Blueprint for schistosomiasis vaccine development. Acta Trop.2002 May; 82 (2):183-92.
    4. Chatila TA. Role of regulatory T cells in human disease. J Allergy Clin Immunol, 2005,116:949-959.
    5. Fehervari Z, Sakaguchi S, Development and function of CD4+CD25+ regulatory T cells. Curr Opin Immunol,2004,16:203-208.
    6. Camara NO,Sebille F,Lechler RI,et al.Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation Eur J Immunol.2003,33 (12):3473-3483.
    7. Cobbold SP, Nolan KF, Graca L, et al. regulatory T cells and dendritic cells in transplantation tolerance:molecular markers and mechanisms.Immunol Rev,2003, 196:109-124.
    8. Mills K H. Regulatory T Cells:friend or foe in immunity to infection? Nature Rev. Immunol.2004; 4 (11):841-855.
    9. MacDonald TT. Suppressor T cells, rebranded as regulatory T cells, emerge from the wilderness bearing surface markers. Gut.2002; 51 (3):311-312.
    10. Hesse M, Piccirillo CA, Belkaid Y, Prufer J, Mentink-Kane M, Leusink M, Cheever AW, Shevach EM, Wynn TA. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol.2004; 172(5):3157-3166.
    11.Yurchenko E, Tritt M, Hay V, Shevach EM, et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med.2006 Oct 30; 203 (11):2451-60.
    12. Hasenkrug KJ. CD4+ regulatory T cells in chronic viral infection. Novartis Found Symp.2003,252:194-9; Discussion 199-210.
    13. Freston JW, et al.Cimetidine I. Developments, pharmacology, and efficacy, Ann. Int.Med.1982; 97 (4):573-580.
    14. Osband M, Gallison D, Miller B, Agarwal RP, and McCaffrey RP, Clin.Res.28, 356a,1980.
    15. Avella J, Binder HJ, Madsen JE, and Askenase PW, Lancet 1,624,1978.
    16. Rocklin RE, Breard J, Gupta S, Good RA, Melmon KL. Cell.Immunol.51,226,1980.
    17. Kurzrock R, Auber M, Mavligit GM. Cimetidine therapy for herpes simplex virus infections in immunocompromised patients.Clin. Exp. Dermatol.1987; 12 (5): 326-331.
    18. Drabick JJ, Birx-Raybuck D, Odavia R, Redfield RR, Oster CN. Cimetidine as an immunoaugmenting agent in advanced HIV infection [Abstract]. Clin. Res.1992; 40.
    19. Slotwinski R, Wlodarska-Friszke B, Muszynski J. Early results of the studies of the effect of cimetidine on selected parameters of humoral and cellular immunity in patients with peptic ulcer.Pol. Tyg. Lek.1990; 45 (34-35):695-699.
    20. Natori T, Sata M, Nagai R, Makuuchi M. Cimetidine inhibits angiogenesis and suppresses tumor growth. Biomed. Pharmacother.2005; 59 (1-2):56-60.
    21. Nishiguchi S, Tamori A, Shiomi S, Enomoto M, Tatsumi N, Koh N, Habu D, Sakaguchi H, Takeda T, Seki S, Nakamura K, Kubo S, Kinoshita H. Cimetidine reduces impairment of cellular immunity after transcatheter arterial embolization in patients with hepatocellular carcinoma. Hepatogastroenterology.2003; 50 (50): 460-462.
    22. Sahasrabudhe DM, McCune CS, O'Donnell RW, Henshaw EC. Inhibition of suppressor T lymphocytes (Ts) by cimetidine. J. Immunol.1987; 138 (9):2760-2763.
    23. Ershler WB, Hacker MP, Burroughs BJ, Moore L, Myers CF. Cimetidine and the immune response:I. In vivo augmentation of nonspecific and specific immune response. Clin. Immunol. Immunopathol.1983; 26 (1):10-17.
    24. Brockmeyer NH, Kreuzfelder E, Guttmann W, Mertins L, Goos M, Ohnhaus EE. Cimetidine and the immuno-response in healthy volunteers. J.Invest. Dermatol.1989; 93(6):757-761.
    25. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995 Aug 1; 155 (3):1151-64.
    26. Mariano FS, Gutierrez FR, Pavanelli WR, et al. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect,2008,10 (7):825-33.
    27. Banham AH, Powrie FM, Suri-Payer E. FOXP3+ regulatory T cells:Current controversies and future perspectives. Eur J Immunol,2006,36 (11):2832-6.
    28. Nakamura K, Kitani A, Strober W.Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001 Sep 3; 194 (5):629-44.
    29. Bartholeyns J, et al. Role of histamine in tumor development. Trends Pharmacol Sci, 1985,6:123.
    30. Melmon K, et al.Histamine and its lymphocyte selective derivatives as immune modulators. Trends Pharmacol Sci,1987,8:437.
    31. Kumar A. Cimetidine:an immunomodulator. DICP Ann Pharmacother.1990; 24 (3): 289-295.
    32. Drew J.The experimental and clinical use of immune-modulating drugs in the prophylaxis and treatment of Infections. Infection.1985; 13 Suppl 2:241-250.
    33. Wynn TA, Jankovic D, Hieny S, Cheever AW, Sher A. IL-12 enhances vaccine-induced immunity to Schistosoma mansoni in mice and decreases T helper 2 cytokine expression, IgE production, and tissue eosinophilia. J Immunol 1995; 154 (9):4701-9.
    34. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.2001; 19:683-765.
    35. Grundstrom S, Cederbom L, Sundstedt A, Scheipers P, Ivars F. Superantigen-induced regulatory T cells display different suppressive functions in the presence or absence of natural CD4+CD25+ regulatory T cells in vivo. J. Immunol.2003; 170 (10):5008-5017.
    1. Rocklin RE. Modulation of cellular immune responses in vivo and in vitro by histamine receptor-bearing lymphocytes. J. Clin. Invest.1976; 57:1051.
    2. Rocklin RE. Histamine-induced suppressor factor HSF. Effect on migration inhibitory factor (MIF) production and proliferation. J. Immunol.1977; 118 (5):1734-1738.
    3. Melmon K, et al.Histamine and its lymphocyte selective derivatives as immune modulators. Trends Pharmacol Sci,1987,8:437.
    4. Shibata M, Hoon D, et al.Modulation of histamine type Ⅱ receptors on CD8+ T cells by interleukin-2 and cimetidine. Int Arch Allergy Immunol,1992,97 (1):8-16.
    5. Deepak M, Sahasrabudhe, et al. Inhibition of suppressor T lymphocytes (Ts) by cimetidine.J Immunol.1987,138 (9):2760-2763.
    6. Jin Z, Kumar A, Cleveland R, Murray D, Kaufman D. Inhibition of suppressor cell function by cimetidine in a murine model. Clin Immunol Immunopathol 1986; 38: 350-6.
    7. Mekori Y, Bender E, Zapata-Sirvent R, Hansbrough J, Claman H. The effect of histamine receptor antagonists on specific and nonspecific suppression of experimental contact sensitivity. J. Allergy Clin Immunol 1985; 76:90-6.
    8. Griswold D, Alessi S, Badger A, Poste G, Hanna N. Inhibition of T suppressor cell expression by histamine type 2 (H2) receptor antagonists.J Immunol 1984; 132:3054-7.
    9. Kumar A, Cleveland RP. Immunoregulatory effects of cimetidine:inhibition of suppressor effector cell function in viv. Immunopharmacol Immunotoxicol 1988; 10:327-32.
    10.乔彦良,付兴伦,杨汉春等。西咪替丁对鸡细胞和体液免疫功能的作用。中国兽医科技。1999,29(11):13-17.
    11. Brockmeyer NH, Krenzfelder E, Bluhm C, et al. Immunomodulation of cimetidine in healthy volunteers [J]. Clin Pharmacol Ther Toxi,1989,27 (9):458-462.
    12. Ershler WB, Hacker MP, Burroughs BJ, Moore AL and Meyers CF. Cimetidine and the immune response. I. In vivo augmentation of nonspecific and specific immune response. Clin. Immunol. Immunopathol.1983,26:10.
    13. Badger AM, Brown AE and Poste GThe effect of cimetidine on antibody synthesis in vitro and in vivo Immunol.1983,48:151.
    14. Cleveland RP, Kumnar A. Enhencement of anti-sheep erythrocyte plaque-forming cell levels by cimetidine in vivo. [J] Immunopharmacol.1987,14:145-150.
    15. Serrou B, Rey A, Cupissol D, Thierry C, Esteve C, Rosenfeld C. Modulation of the immune response by cimetidine. Amstefdam:Elsvier Biomedical Press.1982:155-61.
    16.刘瑞生,等。西咪替丁对常见胃病患者体外淋巴细胞活性影响的研究。上海免疫学杂志1990,10(6):351.
    17. Eisenthal A, Monselise J, Zinger R, Adler A. Cancer Immunol Immunotherapy 1986; 21:141-7.
    18. Kikuchiy et al. Augmented natural killer activity in ovarial Cancer patients treated with cimetidine. Eur T Cancer Clin Oncol 1986,22:1037.
    19. Beer DJ, Rockin RE. J Allergy clin Immunol 1984; 73:439-52.
    20.闻勤生,等。甲氰咪胍对肝硬化患者白细胞介素-2活性影响的研究。临床肝胆病杂志1993,9(3):150.
    21. Hahm KB, Kim WH, Lee SI, Kang JK, et al. Comparison of immunomodulative effects of the histamine-2 receptor antagonists cimetidine, ranitidine, and famotidine on peripheral blood mononuclear cells in gastric cancer patients. Gastroenterol, March 1, 1995; 30 (3):265-71.
    22. Descotes R, Tedone, and Evreux JC.Effects of cimetidine and ranitidine on delayed-type hypersensitivity. [J] Immunopharmacology, June 1,1983; 6 (1):31-5.
    23. Gifford RR, Hatfield AM, Schmidtke JA. Cimetidine-induced augmentation of human lymphocyte blastogensis by mitogen, bacterial antigen and alloantigen[J] Transplantation,1980,29:143.
    24. Elizondo G, Ostrosky-Wegman P. Effects of metronidazole and its metabolites on histamine immunosuppression activity [J]. Life Sci,1996.59:285-297.
    25. Freston JW, et al.Cimetidine I. Developments, pharmacology, and efficacy, Ann. Int.Med.1982; 97 (4):573-580.
    26. Kurzrock R, Auber M, Mavligit GM. Cimetidine therapy for herpes simplex virus infections in immunocompromised patients.Clin. Exp. Dermatol.1987; 12 (5): 326-331.
    27. Drabick JJ, Birx-Raybuck D, Odavia R, Redfield RR, Oster CN. Cimetidine as an immunoaugmenting agent in advanced HIV infection [Abstract]. Clin. Res.1992; 40.
    28. Slotwinski R, Wlodarska-Friszke B, Muszynski J. Early results of the studies of the effect of cimetidine on selected parameters of humoral and cellular immunity in patients with peptic ulcer.Pol. Tyg. Lek.1990; 45 (34-35):695-699.
    29. Natori T, Sata M, Nagai R, Makuuchi M. Cimetidine inhibits angiogenesis and suppresses tumor growth. Biomed. Pharmacother.2005; 59 (1-2):56-60.
    30. Nishiguchi S, Tamori A, Shiomi S, Enomoto M, Tatsumi N, Koh N, Habu D, Sakaguchi H, Takeda T, Seki S, Nakamura K, Kubo S, Kinoshita H. Cimetidine reduces impairment of cellular immunity after transcatheter arterial embolization in patients with hepatocellular carcinoma. Hepatogastroenterology.2003; 50 (50):460-462.
    31. Burtin C, Scheinmann P, Salomon JC, et al. Br J Cancer 1981; 43:684-8.
    32. Dvorak AM, Galli SJ, Galli AS, et al. J Immunol.1979; 122:2447-57.
    33. Brown AE, Badger AM, Poste G. The effect of cimetidine on immune cell function and host response to tumors.1 sted, Amstefdam:Elsvier Biomedical Press.1982:513-9.
    34.黄红山。西咪替丁治疗晚期癌症[J]。中国肿瘤临床,1992,19(3):86.
    35.郭治生,刘月梅。山莨菪碱、地塞米松、西咪替丁治疗银屑病50例[J]。新医学1998,29(2):84.
    36.丁德真,梁斌。西咪替丁治疗带状带状疱疹26例[J]。医药导报,1999,18(3):160.
    37.吴绍熙,郭宁如。替硝唑加甲氰咪胍治疗寻常痤疮的开放研究[J]。临床皮肤科杂志,1999,28(1):39。
    38.邹淑萍。几种老药的临床新用途[J]。山东医药工业,1998,17(1):20。
    39.曾明辉。西咪替丁临床应用新进展。临床荟萃1996,11(12):533。
    40.陈晓燕。西咪替丁与维生素K联合治疗喘憋性肺炎临床观察[J]。临床荟萃1996,8(11):369。
    41.薛得联。西咪替丁治疗哮喘持续状态23例疗效观察[J]。临床荟萃1992,7(6):263。
    42.杨新荣。甲氰咪胍临床应用新进展。临床荟萃,1993,8(13):593。
    43.张绪鹏,黎定华。西咪替丁治疗肾、输尿管绞痛106例临床疗效分析[J]。中国综 合临床,2002,18(1):40。
    44.方福民,郑印权。西咪替丁治疗前列腺增生48例[J]。综合临床医学,1996,12(6):292。
    45. Kumar A. Cimetidine:an immunomodulator. DICP Ann Pharmacother.1990;24 (3) 289-95.
    46. Drew J. The experimental and clinical use of immune-modulating drugs in the prophylaxis and treatment of Infections. Infection.1985; 13 Suppl 2:241-250.