考虑水土治理影响的黄土高原分布式降水径流模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原丘陵沟壑区是一个干旱缺水且水土流失严重的地区,生态环境极为脆弱,人类活动会引起本地区水分转化与循环的强烈响应,研究本地区各种人类活动的水文效应已成为改善本地区生态环境的前提,尤其是对近年来大规模进行的各类水土治理活动所引发的降水径流过程的变化研究更是指导流域科学治理,缓解地区水资源危机,防治洪涝、水土流失灾害,实现地区水资源可持续发展的理论依据。 
    由于水土治理活动所引起的流域面地理因子或水文要素的变化具有高度空间变异性,而分布式水文模型可以对研究域进行离散,对各要素的空间变异性进行定量分析,所以本论文用建立分布式水文模型的方法为水土治理影响下的流域水文过程研究提供了一种工具。 
    本文所建模型对流域进行二级离散,即按自然水系将流域离散为若干个子流域,然后将每一子流域栅格化,在栅格单元范围内如坡长、糙率、植被类型、覆盖度等因子无剧烈变化认为其是均一不变的,利用集总式水文模型方式模拟栅格内大气降水的植被层截留、地表入渗等水分转化与循环过程。然后,在栅格单元之间和子流域之间模拟径流汇流过程。随水土治理活动的开展与时间持续,模型可以根据下垫面变化状况通过更新栅格单元内坡度、坡长、糙率、植被类型、覆盖度等因素,考虑水土治理对流域水分转化和循环的影响作用。 
    论文在总结以往分布式水文模型模拟降水分布所用的空间插值方法的基础上,认为空间插值法不能模拟降水中心及降水中心降水量,而且空间插值法在模拟降水分布时会形成人为间断,不符合降水连续分布的物理现实。因此,本文建立了一种能模拟降水分布中心和中心降水量的降水分布数学模型。模型符合降水量在流域面上连续分布的特点,勿需进行繁琐的距离计算,与其它已有降水分布模型相比更简单,更易于实际操作与应用。 
    在栅格单元范围内的植被截留和入渗模拟中,论文采用的模型参数均具有明确的物理意义,使模型参数易于确定。模型研究域经二级离散后,具有较高分辨率,因而对降水的植被截留和入渗模拟具有较高精度。模拟过程中如果植被类型、覆盖度、坡度等对植被截留和入渗有显著影响的因子在栅格单元内具有明显空间变异时,本论文首次提出对这种情况明确的处理方法。 
    栅格范围内净雨形成后在向下游栅格单元汇集过程中,径流将在栅格单元之间分配,以往分布式水文模型对栅格单元之间的径流分配采用单流向或多流向等多种方法进
The Loess Plateau is a place where water is deficient, but soil and water loss is severe. The human activities can change the hydrological conditions and ecological systems easily in this area. Specially, the soil and water conservation activities that take place almost on every hill slope of the Loess Plateau nowadays can lead to the responses of the water conversion and hydrological cycle strongly. For many years hydrologists have attempted to relate the hydrologic response of watersheds to human actives and soil and water conservation measures. In this case, studying the hydrological effects of the soil and water conservation activities will premise the improving of the ecological environment in this area. For example, studying on the changes of the precipitation-runoff process owing to the soil and water conservation activities in recently years can guidance the basin soil and water management, relaxed the crisis of the water resource, prevention to the heavy flood and soil erosion. Moreover, it shows the theory on which the water resource sustainable development can be realized in the Loess Plateau.
    The hydrological and geological elements changes owing to the soil and water conservation have the characters of high spatial variation in the basin. The distributed hydrological model can disperse the basin, and quantitative analysis the spatial variation of the elements. On this theory, this dissertation established a distributed hydrological model and studied the basin hydrological process impacted by the soil and water conservation using the model.
    The model dispersed the basin two times. The basin is dispersed into subbranch basins according to the natural water systems in the model, and the subbranch basins are dispersed into grid cells. In the grid cells scale, the hydrological processes such as the vegetation interception, the soil water infiltration and so on are simulated by the lumped hydrological model. Moreover, the flow concentration process is simulated in the subbranch basins scale.
    The soil and water conservation activities changed the elements of the grid cells such as the gradient, the length of slope, the Manning roughness coefficient, the types of vegetation, the ratio of vegetation coverage and so on. The effects of soil and water conservation on
    hydrological cycle and water conversion can be thought of through renewed the factors value in the grid cells scale. The paper analyses space plane interpolation method that is used by the former distributed hydrological models when simulated the distributing of the precipitation. And the paper present that this interpolation method cannot indicate the position of the precipitation center either the precipitation amount of the center. To make the matter worse, this method make man-made intercepted of the basin precipitation distribution. On the base of the analysis, a new mathematical model that able to indicate the precipitation center and the precipitation amount of the center is presented in the dissertation. Moreover, the model can simulate the continuous distributing character of natural precipitation. The model needn’t the cockamamie distance calculation at all. Therefore, it is not only simpler but can be used more easily as well. On the simulating the vegetation interception and infiltration in the grid cells, the model parameters in the model have definite physical properties. This make the value of model parameters can be estimated. Additionally, the model has high resolution through discreteness. Because of all of these, the distributed hydrological model can simulate the hydrological process accurately. At the same time, this dissertation presented a way to dealing with the problems in detail when the geological factors such as the vegetation types, the vegetation coverage ratio, the gradient and so on have high spatial variation in one grid cell. The surface runoff formed in one cell will flow into the lower cells around it. The problem of water quantity distribution among the lower cells comes into being. The former distributed hydrological models used to deal with this problem by the single direction method or multi-direction method. Both methods determine the flow direction(s) by the slope factor alone. They neglected the effect of the Manning roughness coefficient on the water quantity distribution among the cells. However, there have different values of Manning roughness coefficient in the different directions of a grid cell or in different grid cells. The different Manning roughness values affect the surface runoff confluence. On this theory, the concept of vector roughness was first introduced in the paper. And a new multi-directions water quantity distribution model, which think of the Manning roughness effects, is deduced from one-dimension Saint-Venant equation and Manning equation. This new model improves the runoff confluence pattern of the distributed hydrological models in the grid cells. When the isochrone of the surface runoff is calculated, the paper presumes that the concentration time of a grid cell is the sum of the surface runoff flowing across the grid cell time and the lower cell concentration time. Accordingly, a physical based grid cell
    concentration time equation developed in this paper. Because there are a few of lower grid cells around a grid cell, the lower cell concentration time of the grid cell can be regarded as the average concentration time of all of the lower grid cells. Therefore, after the precipitation begins, the surface runoff of a cell will reach the basin outlet in its concentration time later. And a cell’s runoff hydrograph is formed. The runoff hydrograph of the whole basin will be obtained by linear adding the all grid cells’runoff hydrograph according to the concentration time order. After the distributed hydrological model constructed, the author program turbo C++ computer programs. The programs can carry out the distributed hydrological model simulation about the basin precipitation-runoff. The grid cells’data about the geography position, the gradient, the Manning roughness, the vegetation types, the vegetation coverage and so on are stored in data files. The main program read those data when there have precipitation process input. And a runoff process at the basin outlet, which responds the precipitation process input, will be outputted at high speed by computer. Meanwhile, the data can be refreshed on the conditions of the soil and water conservation. Therefore, the hydrological effects of the soil and water conservation in the basin can be real-time simulated. Finally, the distributed hydrological model is tested in the Nanyaogou small experimentation watershed of the Wudinghe middle reaches. Despite the limitations in the data availability, the results of river discharges predictions seem to be reasonable in the scale concerned. The result indicated that this distributed model can simulate the effects of the soil and water conservation activities on the hydrological cycle in the Loess Plateau, and has higher precision than the Shanbei lumped hydrological model. Moreover, the model not only has a sensitivity response to the increase the area of afforestation and terrace, but also to the precipitation process as well.
引文
[1]左其亭,王中根,现代水文学,郑州:黄河水利出版社,2002,2-3 
    [2]黄锡荃,水文学,北京:高等教育出版社,1993,264-289 
    [3]徐建华,人类活动对自然环境演变的影响及其定量评估模型,兰州大学学报(社会科学版),1999,(3):144-150 
    [4]王少丽,N.Randin,一种简单的年降雨—径流概念模型,水文,2001,21(5):20-22 
    [5]穆兴民,王文龙,徐学选,黄土高原沟壑区水土保持对小流域地表径流的影响,水利学报,1999,(2):71-75 
    [6]廊俊以,论系统科学理论体系的创建,系统工程,1987,5(3):12-15 
    [7]周华锋,马克明等,人类活动对北京东灵山地景观格局影响分析,自然资源学报,1999,14(2):117-122 
    [8]何念鹏,周道玮等,人为干扰强度对村级景观破碎度的影响,应用生态学报,  2001,12(6):897-899 
    [9]石生新,整地造林措施对强化降雨入渗和减沙的影响,土壤侵蚀与水土保持学报, 1996,2(4):54-59  
    [10]李洪建,王孟本等,不同利用方式下土壤水分循环规律的比较研究,水土保持通报, 1996,10(2):24-28 
    [11]阮伏水,周伏建,花岗岩不同土地利用类型坡地产流和入渗特征,土壤侵蚀与水土保持学报,1996,2(3):1-7  
    [12]彭文英,张科利,不同土地利用产流产沙与降雨特征的关系,水土保持通报,2001,21(4):25-29 
    [13]汤立群,陈国祥,流域尺度与治理对产流模式的分析研究,土壤侵蚀与水土保持学报,1996,2(3):22-28  
    [14]袁建平,雷廷武等,黄土丘陵区小流域土壤入渗速率空间变异性,水利学报,2001, (10):88-92 
    [15]王秀英,曹文洪等,分布式流域产流数学模型的研究,水土保持学报,2001,15 (3):38-40   
    [16]陈仁升,康尔泗,杨建平,水文模型研究综述,中国沙漠,2003,23(3):221-229 
    [17]袁作新,流域水文模型,北京:水利水电出版社,1990,171-198 
    [18]文康,金管生等,地表径流过程的数学模拟,北京:水利电力出版社,1991,1-24 
    [19]郭生练, 熊立华等,基于DEM 的分布式流域水文物理模型,武汉水利电力大学学报,2000,33(6):1-5 
    [20]李兰等,流域水文数学物理耦合模型,朱尔明编,中国水利学会优秀论文集,北京:中国三峡出版社,2000,322-329 
    [21]杨井,郭生练,王金星等,基于GIS 的分布式月水量平衡模型及其应用,武汉大学学报(工学版),2002,35(4):22-26 
    [22] 孔凡哲, 芮孝芳,TOPMODEL 中地形指数计算方法的探讨, 水科学进展2003,14(1):41-45 
    [23]熊立华,郭生练等,TOPMODEL 在流域径流模拟中的应用研究,水文,2002,22(5):5-8 
    [24]刘青娥,左其亭,TOPMODEL 模型探讨,郑州大学学报(工学版),2002,23(4):82-86 
    [25]芮孝芳,朱庆平,分布式流域水文模型研究中的几个问题,水利水电科技进展, 2002,22(3):56-58 
    [26] 吴险峰, 刘昌明, 流域水文模型研究的若干进展, 地理科学进展,2002,21(4):341-348 
    [27]朱雪芹,潘世兵,流域水文模型和GIS 集成技术现状与展望,地理与地理信息科学,2003,19(3):10-13 
    [28]布赫,关于检查《中华人民共和国水土保持法》实施情况的报告,第九届全国人民代表大会常务委员会第六次会议,1998.12.26 
    [29]李清河, 孙保平, 黄土区小流域土壤侵蚀系统模拟的研究,水土保持学报,2002,16(3):1-4 
    [30]王中根,穆宏强等,分布式流域水文模型一般结构,水文水资源,2001,22(1):12-15 
    [31]徐胜,刘小虎,一种分析降水资料的图像化客观插值方法,水文,1999,19(2):43-45 
    [32]王国安,可能最大暴雨和洪水计算原理与方法,北京:中国水利水电出版社,郑州:黄河水利出版社,1999,26-28 
    [33][美]梅德门特编,张建云,李纪生等译,水文手册,北京:科学出版社,2002,82-87 
    [34]刘曙光,林冠截留模型,林业科学,1992,28(5):445-449 
    [35]穆宏强,夏军,复合生态系统的降雨截留过程模拟,人民长江,2002,33(7):25-26 
    [36]孔繁智,宋波,裴铁潘,林冠截留与大气降水关系的数学模型,应用生态学报,1990,1(3):201-208 
    [37]郭立群,王庆华,周洪昌,滇中高原区主要森林类型森林植物的降雨截留功能, 云南林业科技,1999,(1):12-21 
    [38]谢春华,关文彬,吴建安,贡嘎山暗针叶林生态系统林冠截留特征研究,北京林业大学学报,2002,24(4):68-71 
    [39]樊后保,杉木人工林对降水的截留作用,福建林学院学报,1998,18(1):92-95 
    [40]范世香,裴铁潘,蒋德明,两种不同林分截留能力的比较研究,应用生态学报, 2000,11(5):671-674 
    [41]黄志霖,李建新,王玉,太行山侧柏人工林林冠降雨截留及地表径流的研究,河南林业科技,2000,20(2):1-5 
    [42]张建军,贺康宁,朱金兆,晋西黄土区水土保持林林冠截留的研究,北京林业大学学 报,1995,17(2):27-31 
    [43]刘玉学,李红君,李光森,李喜运,辽东山区不同林型降雨截留的研究,沈阳农业大学学报,1993,24(4):293-301 
    [44] 余新晓,程根伟,森林流域分布式水文模型研究,中国水土保持科学, 2003,1(1):35-40 
    [45]赵鸿雁,吴钦孝,黄土高原人工油松林林冠截留动态过程研究,生态学杂志,2002,21(6):21-23 
    [46]刘向东,吴钦孝,赵鸿雁,黄土丘陵区人工油松和山杨林林冠截留作用的研究,水土保持通报,1991,11(2):4-7 
    [47]高人,周广柱,辽宁东部山区几种主要森林植被类型林冠层对降雨的再分配作用,辽宁农业科学,2002,(1):5-9 
    [48]欧阳惠,森林林冠截留效益计算的研究,科技通报,2001,17(4):25-31 
    [49]吴险峰,刘昌明,王中根,栅格DEM的水平分辨率对流域特征的影响分析,自然资源学报,2003,18(2):148-154 
    [50] 张光辉, 梁一民, 黄土丘陵区沙打旺草地截留试验研究, 水土保持通报,1995,15(3):28-32 
    [51]高人,周广柱,辽东山区不同森林植被类型枯落物层截留降雨行为研究,辽宁林业科技,2002,(5):12-17 
    [52]赵鸿雁,吴钦孝,从怀军,黄土高原人工油松林枯枝落叶截留动态研究,自然资源学报,2001,16(4):381-385 
    [53]魏天兴,余新晓,朱金兆,山西西南部黄土区林地枯落物截持降水的研究,北京林业大学学报,1998,20(6):1-6 
    [55]张新献,贺庆棠,用Gash 模型估算单场降雨的林冠截留量(简报),安徽农业大学学报,1997,24(1):21-23 
    [56] 杨立文,李昌哲,张理宏,林冠对降雨截留过程的研究, 河北林学院学报,1995,10(1):7-12 
    [57] 张学培,郭冬青,王本楠,林冠截留理论模型的应用,北京林业大学学报,1997,19(2):30-34 
    [58]王佑民,我国林冠降水再分配研究综述,西北林学院学报,2000,15(3):1-7 
    [59]王彦辉,于澎涛等,林冠截留降雨模型转化和参数规律的初步研究,北京林业大学学报,1998,20(6):25-30 
    [60]张光灿,刘霞,赵玫,树冠截留降雨模型研究进展及其述评,南京林业大学学报,2000,24(1):64-68 
    [61]仪垂祥,刘开瑜,周涛,植被截留降水量公式的建立,土壤侵蚀与水土保持学报,1996,2(2):47-49 
    [62]王文焰,汪志荣等,黄土中Green-Ampt 入渗模型的改进与验证,水利学报,2003,(5):30-34 
    [63]成岩,周露等,C++语言与应用基础,北京:科学出版社,2002,76-200 
    [64]郝振纯,黄土地区降雨入渗模型初探,水科学进展,1994,5(3):186-192 
    [65]王全九,来剑斌,李毅,Green-Ampt 模型与Philip 入渗模型的对比分析,农业工程学报,2002,18(2):3-16 
    [66]王千,许一飞,雷廷武,降水入渗过程的模型研究,北京农业工程大学学报,1993,13 (4):39-46 
    [67]袁建平,蒋定生,黄土丘陵沟壑区小流域降雨入渗产流点面转化,地理科学,2001,21 (3):262-266 
    [68]袁建平,张素丽,张春燕,黄土丘陵区小流域土壤稳定入渗速率空间变异,土壤学报,2001,38(4):579-583 
    [69]魏忠义,王治国,段喜明等,河沟流域水分入渗的数学模型,水土保持研究,2000,7(4):32-35 
    [70]李裕元,邵明安,土壤翻耕对坡地水分转化与产流产沙特征的影响,农业工程学报, 2003,19(1):46-50 
    [71]周星魁,王忠科,蔡强国,植被和坡度影响入渗过程的试验研究,山西水土保持科技, 1996,(4):10-13 
    [72]周国逸,潘淮俦,林地土壤的降雨入渗规律,水土保持学报,1990,4(2):79-84 
    [73]郭忠升,吴钦孝,森林植被对土壤入渗速率的影响,陕西林业科技,1996,(3):27-31 
    [74]郑子成,何淑勤,吴发启,水土保持耕作措施强化入渗速率模型的探讨,水土保持研究,2003,10(2):103-105 
    [75]张光辉,梁一民,黄土丘陵区人工草地径流起始时间研究,水土保持学报,1995,9(3):78-83 
    [76]王治国,胡振华,段喜明等,黄土残塬区沟坝地淤积土壤特征比较研究,土壤侵蚀与水土保持学报,1999,5(4):22-27  
    [77] 王建群, 卢志华, 土地利用变化对水文系统的影响研究, 地球科学进展,2003,18(2):292-298 
    [78]赵人俊,流域水文模拟,北京:水利电力出版社,1984,1-197 
    [79] 蒋定生, 黄国俊, 地面坡度对降雨入渗影响的模拟试验, 水土保持通报,1984,4(4):10-13 
    [80]黄明斌,李玉山,康绍忠,坡地单元降雨产流分析及平均入渗速率计算,土壤侵蚀与水土保持学报,1999,5(1):63-68 
    [81]王书功,康尔泗,李新,分布式水文模型的进展及展望,冰川冻土,2004,26(1):61-65 
    [82]D.希勒尔著,蔚庆丰译,土壤物理学概论, 西安:陕西人民出版社,1988,12-47 
    [83]李清河,李昌哲,流域降雨径流的数字模拟技术,地理研究,2000,19(2):209-216 
    [84]李硕,曾志远,张运生,数字地形分析技术在分布式水文建模中的应用,地球科学进展,2002,21(5):769-775 
    [85]芮孝芳,流域水文模型研究中的若干问题,水科学进展,1997,8(1):94-98, 
    [86]张培文,刘德富,多孔介质上浅水流动的数学模型,长江科学院院报,2003,20(3):13-16 
    [87]陈力,刘青泉,李家春,坡面降雨入渗产流规律的数值模拟研究,泥沙研究,2001,(4):61-67 
    [88]万洪涛,周成虎,万庆,流域水文模型计算域离散方法,地理科学进展,2001,20(4):347-353 
    [89]熊立华,彭定志,基于数字高程模型的等流时线推求与应用,武汉大学学报,2003,36(3):1-3 
    [90](苏)A.A.索科洛夫,水量平衡计算方法—用于研究和实践的国际指南,北京:科学出版社,1988,24-57 
    [91]康绍忠,刘晓明,熊运章,土壤—植物—大气连续体水分传输理论及其应用, 北京:水利水电出版社,1994,1-9 
    [92]詹道江,叶守泽,工程水文学,北京:中国水利水电出版社,2000,180-189 
    [93]苏敏,卢宗凡等,陕北丘陵沟壑区坡地不同耕作法综合效益研究,水土保持通报, 2000,20(5):19-24 
    [94]张胜利,雷瑞德等,秦岭火地塘林区森林生态系统水量平衡研究,水土保持通报,2000,20(6):18-22 
    [95]黄明斌,邵明安等,一个改进的随机动力学水量平衡模型及其应用研究I 模型,水利学报,2000,(6):20-26  
    [96]蒋定生等,黄土高原水土流失与治理模式,北京:中国水利水电出版社,1997,29-46 
    [97]陈军锋等,河流两侧坡面非对称采伐森林对流域暴雨-径流过程的影响,应用生态学报,2000,11(2):210-214 
    [98]刘贤赵,康绍忠,黄土区坡地降雨入渗产流过程中的滞后效应,水科学进展,2001,12(1):56-60 
    [99]王兴中,低效防护林改造的水文效益,水土保持通报,1997,17(4):1-7 
    [100]王万忠,焦菊英,黄土高原沟道降雨产流产沙过程变化的统计分析,水土保持通报,1996,16(6):12-18  
    [101]Brian J 等,除草、耕作和施N 肥对土壤入渗速率的影响,水土保持科技情报,2001,(4):5-6 
    [102]焦菊英,王万忠,李靖,黄土丘陵区不同降雨条件下水平梯田的减水减沙效益分析,土壤侵蚀与水土保持学报,1999,5(3):59-63 
    [103]M.C.库兹勒佐夫,姜永清等,坡面水流速度研究及其在土壤流失模型中的应用,水土保持研究,1999,6(2):167-173 
    [104]黄明斌,郑世清等,流域尺度不同水保措施减水效益分割,水土保持通报,2001,21(2):4-7 
    [105]李发东,芝野博文等,太行山小流域降雨—径流关系及其过程的研究,水土保持学报,2001,15(3):120-122  
    [106]柳丽英,张静,乌兰木伦河流域产流产沙模型研究,土壤侵蚀与水土保持学报, 1997,3(2):75-83 
    [107]孙三祥,黄土坡地降雨溅蚀量与下渗量关系研究,土壤侵蚀与水土保持学报,1997,3(4):92-94 
    [108]沈振荣,水资源科学实验与研究,北京:中国科学技术出版社,1992,54-78  
    [109]袁作新,流域水文模型,北京:水利电力出版社,1990,178-213  
    [110] 黄平,赵吉国, 流域分布型水文数学模型的研究及应用前景展望, 水文,1997,17(5):5-10  
    [111]魏文秋,于建营,地理信息系统在水文学和水资源管理中的应用,水科学进展,1997,8(3):296-300  
    [112]李志林,朱庆著,数字高程模型,武汉:武汉测绘大学出版社,2000,24-40   
    [113]郭方,刘新仁,任立良,以地形为基础的流域水文模型——TOPMODE 及其拓宽应用,水科学进展,2000,11(3):296-301 
    [114]张升堂,黄土高原水土保持强化降雨入渗分析及灰色预测,水土保持通报,2004,24(2):29-33 
    [115] S.K.Jalota, Romesh Khera, et al. Straw management and tillage effects on soil water storage under field conditions, Soil Use and Management, 2001,17(4):282-287
    [116] F.Basic, I.Kisic, Runoff and soil loss under different tillage methods on Stagnic Luvisols in central Croatia, Soil & Tillage Research, 2000,52(3-4):145-151
    [117] Shaozhong Kang, Lu Zhang et al, Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the Loess Plateau of China, Hydrological Processes, 2001,15(6):977-988
    [118] M.J.Shipitalo, W.A.Dick, Conservation tillage and macropore factors that affect water movement and the fate of chemicals, Soil & Tillage Research , 2000,53:167-183
    [119] Weidong Li, Baoguo Li, et al. Effect of variation of textural layers on regional field water balance, Water Resources Research, 2001,37(5):1209-1219.
    [120] P.I.A. Kinnell, Slope length factor for applying the USLE-M to erosion in grid cells, Soil & Tillage Research, 2001,58(1-2):11-17
    [121] Ingrid Takken, Gerard Govers, Effects of tillage on runoff and erosion patterns, Soil & Tillage Research, 2001,61(1-2):55-60
    [122] Wood E T. Sivalapan M, Beven K, et al, Effects of spatial variability and scale with implications to hydrologic modeling, Journal of Hydrology, 1998,212(1-4):29~47
    [123] Fan Y, Bras R I, On the concept of a representative elementary area in catchment’s runoff, Hydrological Processes, 1995,9(5):821-932
    [124] Bruneau P, Gascuel-Odoux C, Robin P, et al. The sensitivity to space and time resolution of a hydrological model using digital elevation data, Hydrological Processes, 1995,9(1):69-81
    [125] Dimitris Tsintikidis, Konstantine D.Georgakakos, et al. Precipitation uncertainty and raingauge network design with Folsom lake watershed, Journal of Hydrologic Engineering, 2002,7(2):175-184
    [126]Ray K.Linsley, Joseph B.Franzini, Water Resources Engineering, New York: McGraw-Hill, 1979, 11-22
    [127]Green W H, Ampt G A.Studies on soil physics: 1, Flow of air and water though soil, Journal of Agric Sci, 1911, 4(1):1-24
    [128] Horton R E, An approach toward a physical interpretation of infiltration capacity, Soil Sci, Soc Am Proc, 1940. (3): 399-417
    [129]Charles W. Downer, Fred L.Ogden, Appropriate vertical discretization of Richards' equation for two-dimensional watershed-scale modeling, Hydrological Processes, 2004, 18(1): 1-22
    [130]R. F. Vázquez, L. Feyen, Effect of grid size on effective parameters and model performance of the MIKE-SHE code, Hydrological Processes, 2002,16(2):355-372
    [131]C. Valeo, S. M. A. Moin, Grid-resolution effects on a model for integrating urban and rural areas, Hydrological Processes, 2000, 14(14):2505-2525
    [132]A.Sarangi, C.A.Madramootoo, A decision support system for soil and water onservation measures on agricultural watersheds, Land Degradation & Development, 2004,15(1):49-63
    [133] P.G.Grebenyukov, Interaction between surface and subsurface waters: case study of a region in Kazakhstan, Water Resources, 2001,28(1):22-28
    [134]L.K.Heng, R.E.White, et al. seasonal differences in the soil water balance under perennial and annual pastures on an acid Sodosol in southeastern Astralia, European Journal of Soil Science, 2001, 52(6):227-236
    [135]Dunn S M, Mc Alister E, Ferrier R C, Development and application of a distributed catchment scale hydrological model for the River Ythan, NE Scotland. Hydrological Processes, 1998, 12 (3):401-416
    [136]Michael B. Abbott, Jens Christian Refsgaard, Distributed hydrological modeling,London Kluwer Academic Publishers, 1996,24-30
    [137]Kwan T L, Generating design hydrographs by DEM assisted geomorphic runoff simulation: a case study, Journal of the American Water Resources Association, 1998, 34(2):375-384
    [138]Band.L.E, Topographic partition of watersheds with digital elevation models, Water Resources Research, 1996,22(1):15-24
    [139]Qian Yadong, Lu Guonian, Chen Zhongming, Study for networks of runoff and sediment transport from grid digital elevation data, Journal of Sediment Research, 1997,(3):24-31
    [140]Dawen Yang, Srikantha Herath, Katumi Musiake, Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation, Hydrological Processes, 2001,15(11):2085-2099
    [141] R.E.Azooz, M.A.Arshad, Soil water drying and recharge rates as affected by tillage under continuous barley and barley-canola cropping systems in northwestern Canada, Canadian Journal of Soil Science, 2000,(10):45-52
    [142] E.T.Engman, Roughness coefficients for routing surface runoff, ASCE, Journal of Irrigation and Drainage Engeering, 1986,112(1):43-49
    [143] L.F.Huggins, E.J.Monke, The mathematical simulation of hydrology of small watersheds, Thechnical Report, No.1, Purdue University Water Resource Research Center: West Lafayette, 1996,104-112
    [144] Liding Chen, Jun Wang, Land-use change in a small catchment of northern Loess Plateau, China. Agriculture, Ecosystems and Environment, 2001,86 (1):163-172
    [145] Rafeal Angulo-Jaramillo, Jean-Pierre Vandervaere, Field measurement of soil surface hydraulic properties by disc and ring infiltrometers a review and recent developments, Soil & Tillage Research, 2000,55(1-2):1-29
    [146] W.Genxu, C.Guodeng, The ecological features and signficance of hydrology within arid inland river basins of China, Environmental Geology, 1999,37(3):212-223
    [147] Qihao Weng, Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS, Environmental Management, 2001,28(6):737-748
    [148] L.Guenni, Abardossy, A two steps disaggregation method for highly seasonal monthLy rainfall, Stochastic Environmental Research and Risk Assessment , 2002,16(3):188-206
    [149] P.G.Grebenyyukov, The choice of optimal model for calculating seepage losses from channels and rivers, Water Resources, 2002,29(5):510-517
    [150] A.V.Babkin, Modeling water and heat regimes of arid areas at varying atmospheric precipitation, Water Resources, 2002,29(6):698-704
    [151]N.I.Sentsova, Spatial and temporal variations in the formation of the Kamennaya Steppe water regime, Water Resources, 2002,29(6):622-625
    [152] V.V.Beelikov, A.A.Zaitsev, Mathematical modeling of complex reaches of large river channels, Water Resources, 2002,29(6):634-650
    [153] Kazumasa Mizumura, Drought flow from hillslope, Journal of Hydrologic Engineering, 2002,7(2):109-115
    [154]Eric.c.Tate, David R.Maidment, Creating a terrain model for floodplain mapping, Journal of Hydrologic Engineering, 2002,7(2):100-108
    [155]Chuan-Yao Lin, Ching –Sen Chen, A study of crograplic effects on mountion –generated prceipitation systems under weak synoptic footing, Metclogy and Atmospheric Physics 2002,81(1):1-25
    [156]A.W.Jayawardena, M.ASCE, Mesco-scale hydrological modeling: application to Makong and Chao Phraya basins, Journal of Hydrologic Engineering, 2002, 7(1):12-25
    [157] R.Edward Beighley, Glenn E.Moglen, Trend Assessment in rainfall-runoff, Journal of Hydrologic Engineering, 2002,7(1):27-34
    [158] Aly I.EI-Kadi, Jill D.Torikai, Identifying variably saturated water-flow patterns in a steep hillslope under intermittent heavy rainfall, Hydrogeology Journal, 2001,9 (3):231-242
    [159] Yu.M.Nesterenke, Formation of the runoff of small rivers in the Southern Ural region, Water Resources, 2002,29(1):12-20
    [160] H.T.Mengelkamp, K.Warrach, Simulation of runoff and streamflow on local and regional scales, Meteorology and Atmospheric Physics, 2002, 76(10):7~117
    [161] A.Burton, J.C.Bathurst, Physically based modeling of shallow landslide sedimnt yield at a catchment scale, Environment Geology, 1998,35(2-3):88~99
    [162] C.S.Tan, C.F.Drury, et al, Effect of tillage and water table control on evapotranspiration, surface runoff, tile drainage and soil water content under maize on a clay loam soil, Agricultural Water Management, 2002,54(3):173-188
    [163] Maciej Zalewaski, Ecohydrology-the use of ecological and hydrological processes for sustainable management of water resources, Hydrological Sciences Journal, 2002,47(5):823-832
    [164] Jones, N.L.Wright, et al, Watershed delineation with triangle-based terrain models, Journal of Hydraulic Engineering, 1990,16(10):1232-1251
    [165] Tucker, G.Gasparini, et al, An object-orientated framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks, Computers and Geosciences, 2001,27(8):959-973
    [166] Freeman, Calculating catchment area with divergent flow based on a regular grid, Computers and Geosciences, 1991,17(3):413-422
    [167] Lohmann D, Raschke E, Nijssen B, Lettenmaier DP, Regional scale hydrology:Ⅱapplication of the VIC-2L model to the Weser River, Germany, Hydrological Science Journal, 1998,43(1):143-158
    [168] Jenson.S.K., Extracting topographic structure from digital elevation data for geographical information system analysis, Photogrammetric Engineering and Remote Sensing, 1988,54(11):1593-1600