ZnO、ZnO:In一维纳米结构材料的制备及其光伏器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO一维纳米材料因其优异的光电性质成为当前ZnO材料研究中的热点之一。本论文利用水相合成和sol-gel方法制备出高质量ZnO、ZnO:In纳米棒及其阵列结构,并对ZnO和ZnO:In纳米棒的结构和光电性质进行了研究。对ZnO基异质结型光伏器件做了初步的探索,具体研究内容如下:
     (1)利用水相合成方法,无催化低温生长ZnO和铟掺杂ZnO一维纳米结构。通过多种表征手段研究样品的结构和光学性质。ZnO和ZnO:In样品具有六角纤锌矿结构,In的掺入使ZnO晶格常数增大,晶格对称性降低。ZnO纳米棒具有强紫外发射带,而深能级缺陷发光较弱。适量的铟掺杂引起ZnO晶体光学吸收带隙展宽,紫外发光蓝移而且强度显著降低。这种现象更有利于其光电流的产生。在变温PL光谱中,ZnO和ZnO:In晶体的紫外发射积分强度出现反常的负热淬灭现象,研究了这种非单调的温度依赖现象产生机理。
     (2)制备了ZnO:In纳米棒/SiO_2/n-Si异质结构光伏器件,对其光电转换性能和光伏响应能力进行了研究。In掺杂ZnO样品具有强而宽的紫外表面光电压响应带,根据吸收光谱确定了其谱带来源。ZnO:In纳米棒/SiO_2/n-Si异质结构具有来自于异质结的良好整流特性,低的开关电压和高反向截止电压。光伏器件在紫外及可见区光谱范围内有强光电流响应,由光伏响应谱得到了开路电压和短路电流。通过改变前驱体反应浓度和掺杂比例等方法,优化实验条件,提高了器件的特性参数。
     (3)用水相合成方法自组装制备有序排列的ZnO:In纳米棒阵列结构材料,研究了In掺杂对ZnO纳米棒阵列电子结构和光学性质的影响。自组装ZnO纳米棒阵列结构材料,研究了它的结构和光学性质,以及模板对ZnO纳米棒生长、形貌的影响。扫描电子显微镜观察到高度取向的纳米棒阵列结构,选区电子衍射照
One-dimensional ZnO nanostructures are one of the present research hotspots in ZnO materials, due to their excellent optical and electrical properties. In this thesis, we investigate the structural, optical and electronic properties of self-assembled zinc oxide (ZnO) and indium doping zinc oxide (ZnO:In) nanorods and array nanostructures synthesized without catalyst in aqueous solution. We also explore the properties of ZnO:In heterojunction photovoltaic devices. The details are as follows:
    (1) One-dimensional ZnO and ZnO:In nanostructures were synthesized without catalyst in aqueous solution. XRD and Raman spectra demenstrated the formation of typical hexagonal wurtzite structures, and an increase of lattice constant after In doping. The PL spectra of ZnO showed a strong UV emission band, and a very weak visible emission associated with deep level defects. Indium incorporation induced the broadening of optical bandgap, blueshift of UV emission, and the quenching of the near-band-edge photoluminescence. This may be useful for photocurrent producing. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The mechanism of the negative thermal quenching was investigated.
    (2) The ZnO:In nanorods/SiO_2/n-Si heterostructure photovoltaic device was prepared. The structural and photoelectric properties of the as-grown ZnO:In nanorods were analyzed. ZnO:In nanorods had a strong and broad UV surface photovoltage response, the charge transfer properties were investigated. The photoelectric conversion properties of ZnO:In nanorods/SiO_2/n-Si heterostructure were investigated. ZnO:In/SiO_2/n-Si heterostructure showed a wide range photocurrent spectral response
引文
1 S. L. King, J. G E. Gardenlers, I. W. Boyd, Pulsed-laser deposited ZnO for device application, Appl. Surf. Sci, 1996,96-98, 811-818.
    2. C. Klingshirn, The Luminescence of ZnO under High One- and Two-QuantumExcitation, Phys. Status Solid (b), 1975,71(2), 547-556. 3 B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Effects of native defects on optical andelectrical properties of ZnO prepared by pulsed laser deposition, Materials Scienceand Engineering B, 2000,71(1-3), 303-305.
    4. 宋词, 杭寅,徐军,氧化锌晶体的研究进展. 人工晶体学报, 2004,33(1), 81-87.
    5 B. J. Lokhande, P. S. Patil, M. D. Uplane, Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique, Physica B, 2001,302-303,59-63.
    6 H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Appl. Phys.Lett., 2000, 76(3), 259-261.
    7 K. T. Ramakrishna Reddy, H. Gopalaswamy, P. J. Reddy and R. W. Miles, Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis, J. Cryst. Grwoth, 2000,210(4), 516-520.
    8 P. Nunes, E. Fortunato, R. Martins, Influence of the post-treatment on the properties of ZnO thin films, Thin Solid Films, 2001,383(1-2), 277-280.
    9 T. Minami, T. Yamamoto, T. Miyata, Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering, Thin Solid Films, 2000,366(1-2), 63-68.
    10 T. Minami, H. Sato, H. Nanto, S. Takata, Highty Conductive and Transparent Silicon Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys., 1986,25(9), L776-L779.
    11 B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K Omaev and M. R. Rabadanov, Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system, J. Gryst. Growth, 1999,198-199(2), 1222-1225.
    12 M. de la L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, D.R. Acosta, Characteristics of ZnO:F thin films obtained by chemical spray. Effect of the molarity and the doping concentration, Thin Solid Films, 2001,394(1-2), 241-248.
    13 D. C. Look, Recent Advances in ZnO Materials and Devices,.Materials Scienceand Engineering,2001, B80:383-387.
    14 S. Fung, X. L. Xu, Y. W. Zhao, et al., Galium/aluminum interdiffudion between n-GaN and sapphire, J.Appl. Phys., 1998,84(4), 2355-2359.
    15 X. L. Xu, C. D. Beling, S. Fung, Y. W. Zhao, N. F. Sun, T. N. Sun, and Q. L. Zhang, et al., Formation mechanism of a degenerate thin layer at the interface of a GaN/sapphire system, Appl. Phys. Lett., 2000, 76(2), 152-154.
    16 K. Minegishi, Y. Koiwai, and K. Kikuchi, Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition, Jpn. J. Appl. Phys. ,1997,36, L1453-L1455.
    17 I. Akasaki, H. Amano, M. Kito, K. Hiramatsu , Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED. J.Luminescence 1991,48/49,666-669.
    18 S. Ghosh, A. Dasgupta, S. Ray, Influence of boron doping and hydrogen dilution on p-type microcrystalline silicon carbide thin fihns prepared by photochemical vapor deposition. J.Appl. Phys., 1995,78(5),3200-3207.
    19 J. Kramer, Blue-green luminescence in ZnO: Excitation by 20-eV kinetic energy gas-phase positive ions. J.Appl. Phys. ,1976,47 (4), 1719-1720.
    20 K. Vanheusden,C. H.Seager, W.L. Warren, D. R.Tallant, J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys.Lett., 1996,68(3), 403-405.
    21 K. Vanheusden, W. L.Warren, C. H. Seager, D. R. Tallant, J. A.Voigt, Mechanisms behind green photo luminescence in ZnO phosphor powders J.Appl.Phys., 1996, 79(10), 7983-7990.
    22 P. Yu, Z. K. Tang, GK.L Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Ultraviolet spontaneous and stimulated emission from ZnO microcrystallite thin films at room temperature, Solid State Commun., 1997, 103, 459-463.
    23 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett., 1997,70(17), 2230-2232.
    24 H. Cao, Y. G Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline fihns, Appl. Phys. Lett., 1998,73 (25), 3656-3658.
    25 H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, Photon statistics of random lasers with resonant feedback, Phys. Rev. Lett., 2001,86,4524-4527.
    26 H. Cao, Y. G Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Random Laser Action in Semiconductor Powder, Phys. Rev. Lett., 1999, 82 (11-15), 2278-2281.
    27 X. L. Guo, J. H. Choi, H. Tabata, and T. Kawai, Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural light-Emitting Diode, Jpn. J. Appl. Phys., 2001,40, L177-L180.
    28 Report, The 3~(rd) international workshop on ZnO and related materials, October 5-8, 2004, Sendai, Japan.
    29 Z. L. Wang, Characterizing the Structure and Properties of Individual Wire-like Nanoentities, Adv. Mater., 2000,12(17): 1295-1298.
    30 刘益春, 陈艳伟,申德振,ZnO一维纳米线及其异质结构的外延生长,物理34, (2005) 654-659.
    31 P. Y ang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Controlled growth of ZnO nanowires and their optical properties. Advanced Functional materials, 2002,12(5), 323-331.
    32 P. X. Gao, Y. Ding, Z. L. Wang, Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst, Nano Lett., 2003,3 (9), 1315-1320.
    33 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 2001, 292: 1897-1899.
    34 J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, P. Yang, Single Nanowire Lasers, J. Phys. Chem. B, 2001,105(46), 11387-11390.
    35 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Adv. Mater., 2001,13(2): 113-116.
    36 J.-J. Wu, S.-C. Liu, Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition, Adv. Mater., 2002,14(3): 215-218.
    37 H. T. Ng, B. Chen, J. Ii, J. Han, M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, Optical properties of single-crystalline ZnO nanowires on m-sapphire, Appl. Phys. Lett., 2003,82(13): 2023-2025.
    38 W. I. Park, G-C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Adv. Mater., 2004,16(1): 87-909.
    39 S. E. Ann, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G T. Kim, Photoresponse of sol-gel-synthesized ZnO nanorods, Appl. Phys. Lett., 2004, 84(24): 5022-5024.
    40 H. T. Ng, J. Ii, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science, 2003,300, 1249.
    41 X. Y. Kong, Z. L. Wang, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, Nano Lett., 2003, 3(12), 1625.
    42 Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of Semiconducting Oxides, Science, 2001,291,1947-1949.
    43 X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts, Science, 2004,303:1348.
    44 Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter, 2004,16, R829-R858.
    45 Z. L. Wang, Nanostructures of Zinc Oxide, Materialstoday, 2004,7(6), 26-33.
    46 T. Kawasaki, H. Katayama-Yoshida, Physics and control of valence states in ZnO by codoping method, Physica B, 2001,302-303,155-162.
    47 R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, and T. Venkatesan, et al.,
    Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices, Appl. Phys. Lett. 1998,73(3), 348.
    48 S.-K. Hong, T. Hanada, H. Makino, Y. Chen, H.-J. Ko, and T. Yao, et al., Band alignment at a ZnO/GaN (0001) heterointerface, Appl. Phys. Lett., 2001, 78(21), 3349-3351.
    49 W. I. Park, G-C. Yi, Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN, Adv. Mater., 2004,16(1), 87-90.
    50 T. Nakayama and M. Murayama, Electronic structures of hexagonal ZnO/GaN interfaces, J. Cryst. Growth, 2000,214,299-303.
    51 W. I. Park, G-C. Yi, and H. M. Jang, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn_(1-x)Mg_xO(0≤x≤0.49) thin films, Appl. Phys. Lett., 2001,79(13), 2022-2024.
    52 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diff., Theor. Gen. Grystallogr. 1976,32:751.
    53 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 2002,415: 617-620.
    54 Y. Wu, R. Fan, P. Yang, Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires, Nano Lett., 2002,2(2), 83-86.
    55 M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, et al. One-dimensional Steeplechase for Electrons Realized, Nano Lett., 2002,2(2): 87-89.
    56 W. I. Park, D. H. Kim, S.-W. Jung, and G-C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett., 2002, 80(22): 4232-4234.
    57 W. I. Park, G-C. Yi, M. Kim, and S. J. Pennycook, Quantum Confinement Observed in ZnOZnMgO Nanorod Heterostructures, Adv. Mater., 2003, 15(6): 526-529.
    58 P. D. Yang, C. M. Lieber, Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites, J. Mater. Res., 1997,12 (11), 2981-2996.
    59 Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, Efficient field emission from ZnO nanoneedle arrays, Appl. Phys. Lett., 2003,83 (1), 144-146.
    60 H. B. Huang, S. G Yang, J. F. Gong, H. W. Liu, J. H. Duan, X. N. Zhao, R. Zhang, Y. L. Liu, Y. C. Liu, Controllable Assembly of Aligned ZnO Nanowires/Belts Arrays, J. Phys. Chem. B, 2005,109,20746 -20750.
    61 J. J. Wu, S. C. Iiu, C. T. Wu, K. H. Chen, L. C. Chen, Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes, Appl. Phys. Lett., 2002, 81(7), 1312-1314.
    62 J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes, Chem.
    Mater., 2003,15(1), 305-308.
    63 X. H. Kong, X. M. Sun, X. L. Li, Y. D. Li, Catalytic growth of ZnO nanotubes, Materials chemistry and Physics, 2003,82,997-1001.
    64 L. Vayssieres, K. Keis, A. Hagfeldt, and S.-E. Lindquist, Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem. Mater. 2001, 13(12), 4395-4398.
    65 B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Formation of highly aligned ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett., 2004, 84(20), 4098-4100.
    66 L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides, Chem. Mater., 2001,13(2), 233-235.
    67 L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater., (Weinheim, Ger.) 2003,15(5): 464-466.
    68 X. J. Feng, L. Fen, M. H. Jin, J. Zhai, L. Jiang, and D. B. Zhu, Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films, J. Am. Chem. Soc., 2004,126,62-63.
    69 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 2000,287(5455), 1019-1022.
    70 H. Fabricius, T .Skettrup, P. Bisgaard. Ultraviolet detectors in thin sputtered ZnO films. Appl. Optics, 1986,25,2764-2766.
    71 S. Liang, H. Sheng, Y. Liu, et al. ZnO Schottky ultraviolet photodetectors, J. Cryst. Growth, 2001,225,110-113.
    72 叶志镇,张银珠,陈汉鸿, 何乐年, 邹璐,黄靖去,吕建国.ZnO 光电导紫外控测器的制备和特性研究电子学报, 2003,31(11), 1605-1607.
    73 T. Matsushita, Yasushi, Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys., 1997,36, L1453-L1455.
    74 Y. R. Ryu, S. Zhu, D. C. Look, et al. Synthesis of p-type ZnO films, J. Cryst. Growth, 2000,216(1-4), 330-334.
    75 H. Ohta, K. Kawamura, M. Orita, et al. Current injection emission from a transparent p-n-junction composed of p-SrCu_2O_2/n-ZnO, Appl.Phys.Lett., 2000, 77(4), 475-477.
    76 T. Aoki, Y. Hatanaka, and D. C. Look,ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett., 2000,76(22), 3257-3259.
    77 X. L. Guo, J.-H. Choi, H. Tabata, and T. Kawai, Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode, Jpn. J. Appl. Phys., 2001,40,L177-L180.
    1 Y. F. Lu, H. Q. Ni, Z. H. Mai, Z. M. Ren, The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition. J. Appl. Phys., 2000, 88, 498-502.
    2 A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G. K. L. Wong and Y. Segawa, Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE, Materials Science and Engineering B, 1998, 54, 24-28.
    3 T. Minami, H. Nanto, S. Takata. Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys. 1984, 23, L280-L282.
    4 L. Vayssieres, Ph. D. Dissertation, Universite Pierre et Marie Curie, Paris, 1995.
    5 L. Vayssieres, C. Chaneac, E. Tronc, J. P. Jolivet, Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles, J. Colloid Interface Sci., 1998, 205(2), 205-212.
    6 L. Vayssieres, A. Hagfeldt, S.-E. Lindquist, Pure Appl. Chem., 2000, 72(1-2), 47-52.
    7 W. C. W. Maxwell, D. J. Gao, X. H. Bailey, R. E. Hart, M. Y. Nie, S. M. Curr. Opin. Biotechnol. 2002, 13, 40.
    8 C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1990.
    9 U. Kock, A. Fojtik, H. Weller and A. Henglein, Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects, Chem. Phys. Lett., 1985, 122, 507-510.
    10 D. W. Bahnemann, C. Kurmann, M.R. Hoffmann, Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study, J. Phys. Chem., 1987, 91 (14), 3789-3798.
    11 A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, Identification of the transition responsible for the visible emission in ZnO using quantum size effects, J. Lumines., 2000, 90(3-4), 123-128.
    12 M. Haase, H. Weller, A. Henglein, Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization, J. Phys. Chem., 1988, 92, 482-487.
    13 L. Guo, S. H. Yang, C. L. Yang, P. Yu, J. Wang, W. Ge, G. K. L. Wong, Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc Oxide Nanoparticles, Chem. Mater., 2000, 12(8), 2268-2274.
    14 L. Spanhel, M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal, growth in concentrated zinc oxide colloids, J. Am. Chem. Soc., 1991, 113(8), 2826-2833.
    15 丛秋滋,《多晶二维X射线衍射》,科学出版社,1997,p36.
    16 马金鑫,朱国凯,《扫描电子显微镜入门》,科学出版社,1985,p49.
    17 G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, Nitrogen-bonding environments in glow-discharge-deposited a-Si:H films, Phys. Rev. B, 1983, 28, 3234-3240.
    18 沈学础,半导体光学性质,第五章,科学出版社,p 307.
    19 黄昆,韩汝琦,固体物理学,第九章,高等教育出版社,p437.
    20 方容川,固体光谱学,第八章,中国科学技术大学出版社,p231.
    21 B. S. Li, Y. C. Liu, D. Z. Shen, Y. M. Lu, J. Y. Zhang, X. G..Kong, X. W. Fan, and Z. Z. Zhi, Growth of high quality ZnO thin films at low temperature on Si(100) substrates by plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol. A, 2002, 20(1), 265-265.
    22 夏建白,现代半导体物理,北京大学出版社,p162.
    23 V. Srikant, and D. R. Clarke, Optical absorption edge of ZnO thin fills: The effect of substrate, J. Appl. Phys. 1997, 81(9), 6357-6364.
    24 L. Kronik, Y. Shapira, Surface photovoltage spectroscopy of simiconductor structures: the crossroads of physics, chemistry and electrical engineering, Surf. Interface Anal, 2001, (31): 954-965.
    25 B. H. Wang, D. J. Wang, A comparative study oftransition states of porous silicon by surface photovoatage spectroscopy, J. Phys. Chem. Solids, 1997, 58(1), 25-31.
    26 A. Castaldini, D. Cavalcoli, et al. Surface photovoltage analysis of crystalline silicon for photovoltaic applications, Solar Ene. Mater. & Sol. Cel, 2002, (72), 559-569.
    27 V. Svrcek, I. Pelant, P. Fojtik, J. Kocka, A. Fejfar, et al., Surface photovoltage measurements in c-Si:H Manifestation of the bottom space charge region, J. Appl. Phy., 2002, 92(5), 2323-2329.
    28 R. Chakrabarti, J. Dutta, Surface photovoltage measurement in DdS/CdTe solar cell: Grain boundary efect, Solar Ene. Mater. Sol. Cel, 2000, 61, 113-126.
    29 L. Burstein, Y. Shapira, Surface photovoltage spectroscopy of porous silicon, Phys. Rev. B, 1997, 15, 1930-1933.
    30 Z. H. Yang, P. Zhang, et al., Surface photovoltage behavior of porous silicon modified with SO_4 specimens, Mater. Chem. Phys., 2000, 63, 167-169.
    31 Y. H. Lin, D. J. Wang, and Q. D. Zhao, A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B, 2004, 108, 3202-3206.
    1 Z. L. Wang, Nanowires and nanobelts-Materials, Properties and devices, Vol Ⅱ: Nanowires and Nanobelts of Functional Materials, 清华大学出版社,序言.
    2 S. B. Zhang, S.-H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, 2001, 63, 075205(1-7).
    3 T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Highly Transparent and Conductive Zn_2In_2O_5 Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys., Part 2, 1995, 34, L971 -L974.
    4 J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, Zinc-indium-oxide: A high conductivity transparent conducting oxide, Appl. Phys. Lett., 1995, 67, 2246-2248.
    5 H. Takatsuji, T. Hiromori, K. Tsujimoto, S. Tsuji, K. Kuroda, and H. Saka, Mater. Res. Soc. Symp. Proc. 1998, 508, 315.
    6 T. Minami, Dynamics of the striped nanostructure of the oxidized Cu(110) surface: A momentum-resolved electron stimulated desorption ion angular distribution study, J. Vac. Sci. Technol. A, 1999, 17, 1765-1760.
    7 Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon, Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film, Thin Solid Films, 2003, 445, 63-71.
    8 J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G._Li, and J. G. Hou, Indium-doped zinc oxide nanobelts, Chem. Phys. Lett., 2004, 387, 466-470.
    9 S. Y. Bae, H. C. Choi, C. W. Na, and J. Park, Influence of In incorporation on the electronic structure of ZnO nanowires, Appl. Phys. Lett., 2005, 86, 033102(1-3).
    10 J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo, and Z. F. Ren, Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons, Chem. Phys. Lett., 2003, 372, 717-722.
    11 W. I. Park, G-C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Adv. Mater., 2004, 16(1), 87-909.
    12 A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, Appl. Phys. Lett., 1999, 75, 3327-3329.
    13 T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering, Thin Solid Films, 2000, 372(1-2), 173-176.
    14 H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Periodic array of uniform ZnO nanorods by second-order self-assembly, Appl. Phys. Lett., 2003, 84(17), 3376-3378.
    15 H. Q. Le, S. J. Chua, K. P. Loh, E. A. Fitzgerald, Y. Wkoh, Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis, Nanotechnology, 2006,17,483-488.
    16 L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. (Weinheim, Ger.) 2003,15, 464-466.
    17 S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, Comparative Structure and Optical Properties of Ga-,In-,and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation, J. Phys. Chem. B, 2005,109, 2526.
    18 R. Loudon, Adv. Phys., 1964,13, 423.
    19 C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, First-Order Raman Effect in Wurtzite-Type Crystals, Phys. Rev., 1969,181,1351-1363.
    20 N. Y. Garces, N. C. Giles, and L. E. Halliburton, G. Cantwell and D. B. Eason, D. C. Reynolds and D. C. Look, Production of nitrogen acceptors in ZnO by thermal annealing, Appl.Phys.Lett., 2002, 80(8), 1334-1336.
    21 M. Girtan and G Folcher, Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process, Surf. Coat. Technol., 2003, 172, 242-250.
    22 B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Lu, J. Y. Zhang, X.G Kong, X.W. Fan, Effect of the growth temperature on ZnO thin films grown by plasma enhanced chemical vapor deposition, Thin Solid Films, 2002,414,170-174.
    23 E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev., 1954, 93, 632-633.
    24 I. Hamberg and C. G Granqvist, Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows, J. Appl. Phys., 1986, 60, R123-R160.
    25 B. Kumar, H. Gong and R. Akkipeddi, High mobility undoped amorphous indium zinc oxide transparent thin films, J. Appl. Phys., 2005, 98, 073703(1-5).
    26 J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu and W. H. Schaff, Effects of the narrow band gap on the properties of InN, Phys. Rev. B, 2002, 66, 201403(1-4).
    27 E. O. Kane, Band structure of indium antimonide, J. Phys. Chem. Solids, 1957,1, 249-261.
    28 T. Makinoa, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo and M. Kawasakib, Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga, Appl. Phys. Lett., 2004, 85,759-761.
    29 A.V. Dijken, E. A. Meulenkamp, The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation, J. Phys. Chem. B, 2000,104,1715.
    30 Y. C. Liu, X. T. Zhang, J. Y. Zhang, Visible luminescence mechanism of nanocrystalline ZnO thin films. Chinese J. Luminescence, 2002,23 (6), 563-569.
    31 A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, M. Heuken, J. Balsing, and A. Krost, Structural and optical properties of epitaxial and bulk ZnO, Appl. Phys. Lett., 2002, 80 (12), 2078-2080.
    32 K. Thonke, Th. Gmber, N. Teofilov, R. Sch6nfelder, A. Waag, and R. Sauer, Donor-acceptor pair transitions in ZnO substrate material, Physica B, 2001, 308-310, 945-948.
    33 D. J. As, F. Schmilgus, C. Wang, B. Schottker, D. Schikora, and K. Lischka, The near band edge photoluminescence of cubic GaN epilayers, Appl. Phys. Lett., 1997, 70, 1311-1313.
    34 J. F. Wang, D. Masugata, C. B. Oh, A. Omino, S. Seto, and M. Isshiki, Activation of Nitrogen Acceptor in ZnSe Homo-Epilayer Grown by MOCVD, Phys. Status Solidi A, 2002, 193, 251-256.
    35 B. P. Zhang, N. T. Binh, and Y. Segawa K. Wakatsuki, N. Usami, Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, Appl. Phys. Lett., 2003, 83, 1635-1637.
    1 L. W. Yang, X. L. Wu, G. S. Huang, T. Qiu, and Y. M. Yang, In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration, J. Appl. Phys. 2005, 97, 014308(1-4).
    2 P. X. Gao and Z. L Wang, Nanoarchitectures of semiconducting and piezoelectric zinc oxide, J. Appl. Phys. 2005, 97, 044304(1-7).
    3 H. C. Hsu, C. Y. Wu, and W. F. Hsieh, Stimulated emission and lasing of random-growth oriented ZnO nanowires, J. Appl. Phys. 2005, 97, 064315(1-4).
    4 W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, Excitonic emissions observed in ZnO single crystal nanorods, Appl. Phys. Lett. 2003, 82, 964-966.
    5 W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy, Adv. Mater. (Weinheim, Ger.)2002, 14(24), 1841-1843.
    6 B. Sun and H. Sirringhaus, Solution-Processed Zinc Oxide Field-Effect Transistors Based on Self-Assembly of Colloidal Nanorods, Nano Lett., 2005, 5(12), 2408-2413.
    7 L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds, Nano Lett., 2005, 5(7), 1231-1236.
    8 L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K. O. Velthaus, and H. W. Schock, ZnO/CdS/CulnSe_2 thin-film solar ceils with improved performance, Appl. Phys. Lett., 1993, 62, 597-599.
    9 A. Gupta and A. D. Compaan, All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide, Appl. Phys. Lett., (2004), 85, 684-686.
    10 M. A. Green and S. R. Wenham, Novel parallel multijunction solar cell, Appl. Phys. Lett., 1994, 65, 2907-2909.
    11 C. Heske, U. Groh, L. Weinhardt, O. Fuchs, B. Holder, E. Umbach, C. Bostedt, L. J. Terminello, S. Zweigart, T. P. Niesen, and F. Karg, Damp-heat induced sulfate formation in Cu(In,Ga)(S,Se)_2-based thin film solar cells, Appl. Phys. Lett., 2002, 81, 4550-4552.
    12 G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation, Appl. Phys. Lett., 2004, 85, 479-481.
    13 T. Yoshida and H. Minoura, Electrochemical Self-Assembly of Dye-Modified Zinc Oxide Thin Films, Adv. Mater. (Weinheim, Ger.) 2000, 12, 1219-1222.
    14 W. Kern, D. A. Puotinen, RCA Rev. 1970, 31, 187.
    15 L. Kronik and Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surf. Sci. Rep., 1999, 37, 1-206.
    16 F. Kohan, G. Ceder, and D. Morgan, Chris G. Van de Walle, First-principles study of native point defects in ZnO, Phys. Rev. B, 2000, 61, 15019-15027.
    17 S. B. Zhang, S.-H. Wei, and Alex Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, 2001, 63(7), 075205(7pages).
    18 C. H. Park, S. B. Zhang, and S. H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, 2002, 66, 073202.
    19 Y. H. Lin, D. J. Wang, and Q. D. Zhao, A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B, 2004, 108, 3202-3206.
    20 L. Kronik, Y. Shapira, Surface photovoltage spectroscopy of simiconductor structures: the crossroads of physics, chemistry and electrical engineering[J]. Surf. Interface Anal, 2001, (31), 954-965.
    21 R. T. Senger and K. K. Bajaj, Optical properties of confined polaronic excitons in spherical ionic quantum dots, Phys. Rev. B, 2003, 68, 045313(1-8).
    22 刘玉学,刘益春,申德振_钟国柱,范希武,孔祥贵,离子注入及后退火方法制备SiO_2基质中镶嵌ZnO纳米粒子的结构和光学性质,发光学报,2002,3(5): 445_450.
    23 L. Guo, S. H. Yang, C. L. Yang, P. Yu, et al.. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties, Appl. Phys. Lett., 2000, 76, 2901-2903.
    24 A. Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, S.-E. Lindquist, Sven Sodergren, Electron Transport in the Nanostructured TiO2-Electrolyte System Studied with Time-Resolved Photocurrents, J. Phys. Chem. B, 1997, 101 (14), 2514-2518.
    25 S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G. T. Kim, Photoresponse of sol-gel-synthesized ZnO nanorods, Appl. Phys. Lett., 2004, 84, 5022-2024.
    26 I. Hamberg and C. G. Granqvist, Evaporated Sn-doped In203 films: Basic optical properties and applications to energy-efficient windows, J. Appl. Phys., 1986, 60 R123-R159.
    1 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 2001, 292: 1897-1899.
    2 J. C. Johnson, H. Yan, R. D. Schaller, et al. Single Nanowire Lasers. J. Phys. Chem. B, 2001, 105(46): 11387-11390.
    3 Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, Efficient field emission from ZnO nanoneedle arrays, Appl.Phys.Lett., 2003, 83 (1), 144-146.
    4 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, 2001, 13(2): 113-116.
    5 W. I. Park, G-C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Adv. Mater., 2004, 16(1): 87-909.
    6 W. I. Park, G-C. Yi, M. Kim, and S. J. Pennycook, Quantum Confinement Observed in ZnOZnMgO Nanorod Heterostructures, Adv. Mater., 2003, 15(6): 526-529.
    7 L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem. B, 2001,105 (17), 3350-3352.
    8 R. A. Laudise, A. A. Ballman, HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE, J. Phys. Chem. B 1960, 64(5), 688-691.
    9 L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem. Mater., 2001, 13 (12), 4395-4398.
    10 Sarig, S. In Handbook of Crystal Growth; Hurle, D. T. J., Ed.; North-Holland: Amsterdam, 1994, Vol. 2b, pp 1219-1269.
    11 S. Yamabi, H. Imai, J. Mater. Chem., 2002, 12, 3773-3778.
    12 J. Slunecko, M. Kosec, J. Holc, G. Drazic, B. Orel, Morphology and Crystallization Behavior of Sol-Gel-Derived Titania, J. Amer. Ceram. Soc., 1998, 81 (5), 1121-1145.
    13 P. K. Dutta, P. K. Gallagher, J. Twa, Rarnan spectroscopic and thermoanalytical studies of the reaction of barium hydroxide with anatase and titanium oxide gels, Chem. Mater., 1992, 4(4), 847-851.
    14 K. Matsui, H. Suzuki, M. Ohgai, H. Arashi, Raman Spectroscopic Studies on the Formation Mechanism of Hydrous-Zirconia Fine Particles, J. Amer. Ceram. Soc., 1995, 78 (1), 146.
    15 C. M. Phillippi, K. S. Mazdiyasni, J. Amer. Ceram. Soc., 1971, 54 (5), 254.
    16 W. J. Li, E. W. Shi, W. Z. Zong, Z. W. Yin, Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth, 1999, 203, 186-196.
    17 D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals 4th Edition, Butterworth Heinemann, Oxford, 1997, p209.
    18 R. B. Peterson, C. L. Fields, B. A. Gregg, Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions, Langmuir, 2004, 20, 5114-5118.
    19 Z. L. Wang, Nanostructures of Zinc Oxide, Materialstoday, 2004, 7(6), 26-33.
    20 M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films, Thin Solid Films, 1996, 280, 20.
    21 S. Y. Bae, H. C. Choi, C. W. Na, and J. Park, Influence of In incorporation on the electronic structure of ZnO nanowires, Appl. Phys. Lett., 2005, 86, 033102(1-3).
    22 L. Pauling, The Nature of the Chemical Bond, Chap. 3, Cornell University, Ithaca, New York, 1960.
    23 R. Cebulla, R. Werndt, K. Ellmer, Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties, Appl. Phys. Lett., 1998, 83,1087-1089.
    24 B. R. Strohmeier, D. M. Hercules, Surface spectroscopic characterization of the interaction between zinc ions and γ-alumina, J. Catal., 1984, 86(2), 266-279.
    25 L. K. Rao, V. Vinni, Novel mechanism for high speed growth of transparent and conducting tin oxide thin films by spray pyrolysis, Appl. Phys. Lett., 1993, 63, 608-610.
    26 J. C. C. Fan, J. B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, J. Appl. Phys., 1977,48(8), 3524 -3531.
    27 D. S. Jiang, H.Jung, K. Ploog, Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy, J. Appl. Phys., 1988, 64, 1371-1377.
    28 E. Hosono, S. Fujihara, I. Honma, H. Zhou, The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells, Adv. Mater., 2005,17, 2091-2094.
    29 W. I. Park, D. H. Kim, S.-W. Jung, and Gyu-Chul Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett., 2002, 80(22), 4232-4234.