复杂稠密气固两相流动的CFD-DEM模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠密气固两相流动是流态化工程设备中的常见流动形式。伴随着气固流态化技术日益广泛的应用,其反应器内部的稠密气固两相流动早已成为学界和工程界所共同关注的热点问题,由于其内在机理的复杂性和多变性,人们还远未真正了解和认知其神秘的本质。随着计算机技术和理论的日渐发展,数值模拟技术已经成为科学研究和工程应用的重要手段。鉴于直接数值模拟(DNS)技术还未能用于实际工程尺度问题的模拟和研究,欧拉-欧拉方法又需要太多的模型假设,因此,介于两者之间的CFD-DEM方法成为备受研究者青睐的方法。
     本文运用发展的CFD-DEM程序,借助于大型的计算机硬件平台,进行了鼓泡流化床和喷动床内稠密气固两相流动的一系列模拟研究。主要内容可分四部分
     第一部分是采用CFD-DEM方法和双流体模型方法对一个薄的三维鼓泡流化床进行研究,首先研究了基于两种方法的二维模型所得计算结果的异同,进而采用三维的CFD-DEM模型方法研究了两种不同的湍流模型以及曳力模型对模拟结果的影响。该部分最后模拟分析了固相颗粒在此床体中的混合和扩散特性。
     第二部分是运用CFD-DEM方法研究了一个圆柱-锥底形喷动床内的稠密气固两相流动特性,在与相关实验参数取得较好的对比之后,系统分析了床内的气固流动形态、气固速度分布、气固流率分布、空隙率分布以及进气速度对相关参数的影响;此后,进一步系统地研究和对比了不同入口高度和长度的圆柱形导流管对床内气固流动特性的影响。该部分最后模拟分析了导流管所受的磨损,以及系统内的颗粒扩散特性。
     第三部分是运用CFD-DEM方法研究了一个内含上百万颗粒的狭缝式矩形截面-锥底喷动床内的气固流动特性,并对比了不同床层高度下的最小喷动速度和压降特性,进而又分析了床内的特征流态、气固速度分布、固相流率分布、时均空隙率分布以及空截面气速对床内流动的影响。此后,该部分对比研究了三维喷动床和厚度收缩的薄三维喷动床内气固流动形态的差别,证明了该种床型所具有的强烈三维效应。
     本文第四部分是用CFD-DEM方法研究床体几何尺度放大的问题,研究了双体的狭缝式矩形截面-锥底喷动床内的气固流动特性,得到床内流态信息、气固速度和流率信息,空隙率分布信息以及双体间相互作用的信息,为喷动床反应器的放大设计提供理论和技术支持。
The dense gas-solid two-phase flows are frequently encountered in the apparatus of fluidization engineering. With the increasingly widely utilization of the gas-solid fluidization technology, the dense gas-solid two-phase flows have been hot spots issues focused by both the academic researchers and the engineering workers, for which the fully understanding on the mysterious essence has been obtained only in some aspects due to the complexity and the multivariate lying in its latent mechanism. As a result of the development of the computational technology, numerical simulation has become a powerful tool in the scientific research and the application of engineering. Since the direct numerical simulation (DNS) has not been applied in the simulation research on the practical issue encountered in the industry and many assumptions have to be made to close the governing equations in the Euler-Euler approach, a mediate approach called CFD-DEM (Computational fluid dynamics-Discrete element method) has been increasingly favored by numerical researchers.
     The current work conducted a series of numerical study on the gas-solid two phase flow in the bubbling fluidized bed and spouted bed based on the coupling of CFD-DEM approach under the platform of a large scale computational hardware. The main content of the current work can be divided into the following four parts:
     The first part of this research is carried out in a pseudo3D bubbling fluidized bed with the methods of CFD-DEM and Two fluid model method (TFM), respectively. Firstly, the investigation concentrates on the comparison between the simulation results obtained with these two methods in the2D computational model, followed with the researches on the effects of two turbulence models and several drag force models on the simulation results with the3D coupling framework of CFD-DEM. Moreover, the mixing and dispersion properties of the solid phase in the bubbling fluidized bed have been analyzed based on the post-processing of the simulation results.
     The second part of the research is focused on the investigation of the gas-solid flow property in a conical-based cylindrical spouted bed in the framework of CFD-DEM coupling method. First of all, the simulation has been compared with the experimental results, followed with the discussion on the gas-solid behavior, the distribution properties of the velocity and the flux both for the gas and solid phases, the voidage distribution property of fluid phase, and the the influence of the superficial gas velocity on the related parameters of the system. Then, the systematic research and comparison have been conducted on the effect of the entrainment distance and the length of the draft tube in the3D spouted bed on the gas-solid behaviors. At last, the erosion property of the draft tube and the systematic dispersion characteristic of the solid phase were studied.
     The third part of the work lies in the3D slot rectangular spouted bed to capture the gas solid flow properties. And the flow property, the velocity distribution behavior of both the fluid and solid phases, the distribution property of solid flux, the voidage and the influence of the superficial gas velocity on the gas-solid flow behaviors in the system were systematically investigated. Moreover, the difference on the gas solid flow behavior were observed based on the comparison of the simulation results carried out in the3D and the2D spouted bed, respectively. The results show that the3D computation method is required in the numerical study of the gas solid flow in the spouted bed.
     The final part of the current work is concentrated on the discussion of the scale-up of the geometry parameters of the spouted bed using the CFD-DEM method, for which the numerical simulation is carried out in a3D rectangular spouted bed with two diverging bases and two slots. The gas solid flow behaviors, the information of the velocity, the flux and the voidage both of the fluid and solid phases were investigated. Then, the mutual effect between the two spouted beds in the system is discussed, which is useful for the mechanism understanding and the scale-up designing of the spouted bed.
引文
Albina, D.O.,2006,Emissions from multiple-spouted and spout-fluid fluidized beds using rice husks as fuel. Renewable Energy 31(13),2152-2163.
    Altzibar, H., Lopez, G., Aguado, R., Alvarez, S., San Jose, M. J., Olazar, M.,2009, Hydrodynamics of Conical Spouted Beds Using Different Types of Internal Devices F-2486-2011 G-4849-2011, Chem. Eng. Technol.,32(3),463-469.
    Antony, S.J.,2000, Evolution of force distribution in three-dimensionalgranular media. Physical Review E 63, 011302.
    Andrews, M.J., O'Rourke, P.J.,1996, The multiphase particle-in-cell(MPPIC) method for dense particle flow, Int. J. multiphase flow,22(2):379-402
    Altzibar, H., Lopez, G., Alvarez, S., Jose, M., Barona, A., Olazar, M.,2008, A draft-tube conical spouted bed for drying fine particles, Dry. Technol.,26(3),308-314.
    Becker, H. A.1961, An investigation of laws governing the spouting ofcoarse particles. Chem. Eng. Sci.13, 245-262.
    Beetstra, R., Van der Hoef, M.A., Kuipers, J.A.M.,2006, Numerical study of segregation using a new drag force correlation for poly-disperse systems derived from lattice Boltzmann simulations, Chem. Eng. Sci., 62(1-2),246-255
    Beetstra, R., van der Hoef, M. A., Kuipers, J. A. M.,2007a, Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres, AIChE J.,53(2),489-501.
    Beetstra, R., van der Hoef, M. A., Kuipers, J. A. M.,2007b, Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations, Chem. Eng. Sci., 62(1-2),246-255.
    Bendat, J.S., Piersol, A. G.,1993, Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons, Inc., New York,2nd Edition.
    Benyahia, S., Syamlal, M., O'Brein, T.J.,2007, Study of the ability of multiphase continuum models to predict core-annulus flow, AIChE J.,2549-2568.
    Bird, R. B., Stewart, W. E., & Lightfoot, E. N.,2006, Transport Phenomena (2nd ed.). New York:John Wiley & Sons.
    Bitter, J.G.A.,1963a, A study or erosion phenomena, part 1, Wear,6:5-21.
    Bitter, J.G.A.,1963b, A study or erosion phenomena, part 1, Wear,6:169-192-1.
    Boemer, A., Qi, H., Renz U.,1997, Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed, Int. J. of Multiphase Flow,23,927-944.
    Bokkers, G.A., van SintAnnaland, M., Kuipers,J.A.M.,2004, Mixing and segregation in a bidiperse gas-solid fluidised bed:a numerical and experimental study, Powder Technol.,140,176-186.
    Bouillard, J.X., Lyczkowski, R.W., Gidaspow D.,1989, Porosity distributions in a fluidized bed with an immersed obstacle. AIChE J.,35:908-922.
    Campbell, C.S., Brennen, C.E.,1985, Computer simulations of granular shear flows, J. Fluid Mech.,151: 167-188.
    Cao, J., Ahmadi, G.,1995, Gas-Particle Two-Phase turbulent flow in a vertical duct, Int. J. Multiphase Flow, 21(6),1203-1228.
    Cao, J., Cheng, Z., Fang, Y., Jing, H., Huang J., Wang, Y.,2008, Simulation and experimental studies on fluidization properties in a pressurized jetting fluidized bed. Powder Technol.,183,127-132.
    Chen, Z.W.,2008, Hydrodynamics, stability and Scale-up of slot-rectangular spouted beds. Ph.D. thesis, The university of British Columbia, Vancouver.
    Chen, Z., Lim, C. J., Grace, J. R.,2008, Hydrodynamics of slot-rectangular spouted beds:Effect of slot configuration on the local flow structure, Can. J. Chem. Eng.,86(3),598-604.
    Chen, Z., Lim, C. J., Grace, J. R.,2011, Stability of slots-rectangular spouted beds:effect of slot configuration, Can. J. Chem. Eng.,89(6),1401-1407.
    Chu, K.W., Yu A. B.,2008, Numerical simulation of complex particle-fluid flows, Powder Technol.,179: 104-114
    Cook, B.K., Noble, D.R., Williams, J.R.,2004, A direct simulation methodfor particle-fluid systems, Eng. Comput.,21,151-168.
    Cooper, S., Coronella, C. J.,2005, CFD simulations of particle mixing in a binary fluidized bed, Powder Technol.,151:27-36.
    Crowe, C.T., Sommerfeld, M., Tsuji, Y.,1998, Multiphase Flow with Dropletsand Particles, CRC Press, Boca Raton., FL.
    Cundall, P.A., Strack, O.D.L.,1979, A discrete numerical model for granular assemblies, Geotechbique,29, 47-65
    Deen, N. G., Annaland, M. V., Van der Hoef, M. A., Kuipers, J.,2007, Review of discrete particle modeling of fluidized beds, Chem. Eng. Sci.,62(1-2),28-44.
    Di Renzo, A., Di Maio, F.P.,2004, Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chem.Eng. Sci.,59:525-541.
    Ding, J., Gidaspow, D.,1990. A bubbling fluidization model using kinetic theory of granular flow.AIChE Journal 36,523-538.
    Dogan, O. M., Freitas, L., Lim, C. J., Grace, J. R., Luo, B.,2000, Hydrodynamics and stability of slot-rectangular spouted beds. Part Ⅰ:Thin bed, Chem. Eng. Commun.,181,225-242.
    Dong, K.J., Yang, R.Y., Zou, R.P., Yu, A.B.,2006, Role of interparticle forcesin the formation of random loose packing, Phys. Rev. Lett.,96,145505.
    Du, B., Wei, F.,2002, Lateral solids mixing behavior of different particles in a riser with FCC particles as fluidized material, Chem. Eng. & Proc.,41(4),329-335.
    Du, W., Bao, X. J., Xu, J., Wei, W. S.,2006, Computational fluid dynamics (CFD) modeling of spouted bed: Influence of frictional stress, maximum packing limit and coefficient of restitution of particles, Chem. Eng. Sci.,61(14),4558-4570.
    Duarte, C. R., Olazar, M., Murata, V. V., Barrozo, M. A. S.,2009, Numerical simulation and experimental study of fluid-particle flows in a spouted bed, Powder Technol.,188(3),195-205.
    Epstein, N., Lim, C. J., Mathur, K. B., Data and models for flow distribution and pressure drop in pouted beds, Can. J. Chem. Eng.,1978,56,436-447.
    Ergun, S.,1952, Fluid-flow through packed columns, Chem.Eng. Prog.,48(2),91-94.
    Fan, L.S., Zhu, C.,1998, Principles of gas-solid flow, Cambridge University Press, Cambridge.
    Feng, Y.Q., Yu, A.B.,2004b, Comments on "Discrete particle-continuum fluid modelling of gas-solid fluidised beds" by Kafui et al. [ChemicalEngineering Science 57 (2002) 2395-2410], Chem. Eng. Sci., 59,719-722.
    Finnie, I.,1972, Some observations on the erosion of ductile metals, Wear,19:81-90.
    Finnie, I., McFadden, D.H.,1978, On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence, Wear,48:181-190.
    Follansbee, P.S., Sinclair, G.B., Williams, J.C.,1981-1982, Modelling of low velocity particulate ersion in ductile materials by spherical particles, Wear,74:107-122.
    Freitas, L. A. P., Dogan, O. M., Lim, C. J., Grace, J. R., Luo, B.,2000, Hydrodynamics and stability of slot rectangular spouted beds. Part-Ⅱ Increasing bed thickness, Chem. Eng. Commun.
    Freitas, L., Dogan, O. M., Lim, C. J., Grace, J. R., Bai, D. R.,2004, Identification of flow regimes in slot-rectangular spouted beds using pressure fluctuations, Can. J. Chem. Eng.,82(1),60-73.
    Freitas, L., Mitsutani, K., Lim, C. J., Grace, J. R., Wei, W. S.,2004, Voidage profiles in a slot-rectangular spouted bed, Can. J. Chem. Eng.,82(1),74-82.
    Frey, G. M.,2005, Multiresolutional partial least squares and principal component analysis of fluidized bed drying, Master Dissertation, Canada, University of Saskatchewan.
    Gamwo, I. K., Soong, Y., Lyczkowski, R.W.,1999, Numerical simulation and experimental validation of solids flows in a bubbling fluidized bed, Powder Technol.,103:117-129.
    Garg, R., Galvin J., Li, T. W., Pannala, S.,2012, Open-source MFIX-DEM software for gas-solids flows:Part Ⅰ—Verification studies, Powder Technol.,220,122-137
    Ge, W., Li, J.H.,2001, Macro-scale pseudo-particle modelling forparticle-fluid systems, Chinese Sci. Bull., 46,1503-1507.
    Ge, W., Li, J.H.,2003a, Macro-scale phenomena reproduced in microscopicsystems-pseudo-particle modeling of fluidization, Chem. Eng. Sci.,58,1565-1585.
    Ge, W., Li, J.H.,2003b, Simulation of particle-fluid systems with macro-scalepseudo-particle modeling, Powder Technol..,137,99-108.
    Gera, D., Gautam, M., Tsuji, Y., Kawaguchi, T., Tanaka, T.,1998, Computer simulation of bubbles in large-particle fluidized beds. Powder Technol.,98,38-47.
    Gera, D., Syamlal, M., & O'Brien, T. J.,2004, Hydrodynamics of particle segregation in fluidized beds. Int. J. of Multiphase Flow,30(4),419-428.
    Gidaspow D.,1994, Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions, Boston: Academic
    Gidaspow, D., Lin, C., Seo, Y.C.,1983, Fluidization in Two-Dimensional Beds with a Jet.Part Ⅰ. Experimental porosity distribution, Ind. Chem. Fundam.,22(2),187-193.
    Gidaspow, D., Syamlal, M., Seo, Y.C.,1986, Hydrodynamics of Fluidization:Supercomputer Generated vs. Experimental Bubbles, J. of Powder and Bulk Solids Tech.,10(3),19-23.
    Gishler, P. E,, Mathur, K. B.,1983, Method of contacting solid particles with fluids, Can. J. Chem. Eng., 61,265
    Goldschmidt, M. J. V., Beetstra, R., Kuipers, J. A. M.,2004, Hydrodynamic modelling of dense gas-fluidised beds:comparison and validation of 3D discrete particle and continuum models. Powder Technol.,142(1), 23-47.
    Goldschmidt, M.J.V., Kuipers, J.A.M., Van Swaaij, W.P.M.,2001, Hydrodynamic modeling of dense gas-fluidised beds using the kinetictheory of granular flow:effect of coefficient of restitution on bed dynamics, Chem. Eng. Sci.,56 (2),571-578.
    Gong, X., Hu, G., Li, Y.,2006, Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles. Industrial & Engneering Chemistry Research 45,4830-4836.
    Grabavcic, Z. B., Vukovic, D. V, Zdanski, F. K., Littman, H., Fluid flow patterns, minimum spouting velocity and pressure drop in spouted beds, Can. J. Chem. Eng.,1976,52,145-149.
    Gryczka, O., Heinrich, S., Deen, N. G., Kuipers, J., Morl, L.,2009, Three-Dimensional Computational Fluid Dynamics Modeling of a Prismatic Spouted Bed C-2568-2009, Chem. Eng. Technol.,32(3),470-481.
    Gui, N., Fan, J. R.,2011, Numerical study of particle mixing in bubbling fluidized beds based on fractal and entropy analysis, Chem. Eng. Sci.,66(12),2788-2797.
    Gui, N., Fan, J. R., Luo, K.,2008, DEM-LES study of 3-D bubbling fluidized bed with immersed tubes A-8039-2012, Chem. Eng. Sci.,63(14),3654-3663.
    Halow, J.S., Nicoletti, P.,1992, Observation of fluidized bed coalescence using capacitance imaging, Powder Technol.,69,255-277.
    Halow, J.S., Fasching, G.E., Nicoletti, P., Spenik, J.L.,1993, Observations of a fluidized bed using capacitance imaging, Chem. Eng. Sci.,48(4),643-659.
    Hao, J., Pan, T. W., Glowinski, R., Joseph, D. D.,2009, A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids:A positive definiteness preserving approach, J. of Non-Newtonian Fluid Mech.,156(1-2),95-111.
    He, Y. L., Lim, C. J., Grace,J. R., Zhu, J. X.,1994a, Measurements of voidage profiles in spouted beds, Can. J. Chem. Eng.,72,229-234.
    He, Y. L., Qin, S. Z., Lim, C. J.,Grace,J. R.,1994b, Particle velocity profiles and solid flow patterns in spouted beds,Can. J. of Chem. Eng.,72,561-568.
    He, Y. R., Zhao, G. B., Bouillard, J., Lu, H. L.,2004, Numerical simulations of the effect of conical dimension on the hydrodynamic behaviour in spouted beds, Can. J. Chem. Eng.,82(1),20-29.
    He, Y., Zhan, W., Zhao, Y., Lu, H., Schlaberg, I.,2009, Prediction on immersed tubes erosion using two-fluid model in a bubbling fluidized bed, Chem. Eng. Sci.,64,3072-3082.
    Herrmann, H. J., Luding, S.,1998, Modeling granular media on the computer. Continuum Mech. and Thermodynamics,10(4),189.
    Hill, R. J., Koch, D. L., Ladd, A. J. C.,2001a, The first effects of fluid inertia on flows in ordered and random arrays of spheres, J. of Fluid Mech.,448,213-241.
    Hill, R. J., Koch, D. L., Ladd, A. J. C.,2001b, Moderate-Reynolds-number flows in ordered and random arrays of spheres, J. of Fluid Mech.,448,243-278.
    Hoomans, B.P.B., Kuipers, J.A.M., Breils, W.J., van Swaaji, W.M.P.,1996, Discrete particle simulation of bubble and slug formation ini a two-dimensional gas-fluidized bed:a hard-sphere approach. Chem. Eng. Sci.,51(1):99-118
    Hosseini, S. H., Ahmadi, G., Razavi, B. S., Zhong, W. Q.,2010, Computational Fluid Dynamic Simulation of Hydrodynamic Behavior in a Two-Dimensional Conical Spouted Bed, Energ. Fuel.,24,6086-6098.
    Hosseini, S. H., Zivdar, M., Rahimi, R.,2009, CFD simulation of gas-solid flow in a spouted bed with a non-porous draft tube, Chem. Eng. Process.,48(11-12),1539-1548.
    Huang, C., Yao, W., Fei, W.,2008, Solids mixing behavior in a nano-agglomerate fluidized bed. Powder Technol.182:334-341.
    Huilin, L., Gidaspow, D.,2003, Hydrodynamics of binary fluidisation in a riser:CFD simulation using two granular temperatures, Chem. Eng. Sci.,58, pp.3777-3792.
    Huilin, L., Gidaspow, D., Manger, E.,2001a, Kinetic theory of fluidized binary granular mixtures, Phys. Rev. E,64,061301.
    Huilin, L., Wenti, L., Rushan, B., Lidan Y., Gidaspow, D.,2000, Kinetic theory of fluidized binary granular mixtures with unequal granular temperature, Physica A,284:265-276.
    Huilin, L., Yurong, H., Gidaspow, D.2003a, Hydrodynamic modeling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow, Chem. Eng. Sci.,58, pp.1197-1205.
    Huilin, L., Yurong, H., Gidaspow, D., Lidan, Y.,Yukun, Q.,2003b, Size segregation of binary mixture of solids in bubbling fluidized beds, Powder Technol.,134, pp.86-97
    Huilin, L., Yongli, S., Yang, L., Yurong,H, Bouillard, J.,2001b, Numerical simulations of hydrodynamic behaviour in spouted beds, Chem. Eng. Res. Des.,79(A5),593-599,
    Hu, H.H.,1996, Direct simulation of flows of solid-liquid mixtures, Int. J. of Multiphase Flow.,22,335-352.
    Ishikura, T., Nagashima, H., Ide, M.,2003, Hydrodynamics of a spouted bed with a porous draft tube containing a small amount of finer particles, Powder Technol.,131(1),56-65.
    Israelachvili,J.N.,1991, Intermolecular and Surface Forces, Academic Press,London.
    Jenkins, J. T.,1987, Boundary conditions for rapid granular flow:flat, frictional walls, Trans ASME., 176:67-93
    Ji, H., Tsutsunu, A., Yoshida, K.,1998, Solid circulation in a spouted bed with a draft tube, J. of Chem. Eng. of Japan,31,842-845.
    Johansson, K., Norling, R., Hjornhede, A., Almstedt, A. E,2004, Hydrodynamics and steel tube wastage in a fluidized bed at elevated temperature, Chem. Eng. Sci.,59:31-40.
    Kafui, K.D., Thornton, C., Admas, M.J.,2004, Reply to comments by Feng and Yu on 'Discrete particle-continuum fluid modeling of gas-solidfluidized beds', Chem. Eng. Sci.,59,723-725.
    Kassia G, S., Val Eria V, M., Marcos A. S., B.,2009, three dimensional computaional fluid dynamics modeling of spouted bed, Can. J. of Chem. Eng.,87,211-219.
    Kawaguchi, T., Sakamoto, M., Tanaka, T., Tsuji, Y.,2000, Quasi-three dimensional numerical simulation of spouted beds in cylinder, Powder Technol.,109(1-3),3-12.
    Koch, D.L., Hill, R.J.,2001, Inertial effects in suspension and porous-media flows, Ann. Rev. Fluid Mech.,33, 619.
    Krzywanski, R. S., Epstein, N. and Bowen, B. D.1992, Multi-dimensional model of a spouted bed, Can. J. Chem. Eng.,70,858-872
    Kuipers, J. A. M.,van Duin, K. J., van Beckum, F. P. H.,vanSwaaij, W. P. M.,1992, A numerical model of gas fluidized beds. Chem. Eng. Sci.,47(8), pp.1913-1924.
    Kuipers, J.A.M., van Duin K.J., van Beckum, F.P.H., van Swaaij, W.P.M.,1993, Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed, Computers & Chem. Eng.,17,839-858.
    Kuipers JAM, van Swaaij WPM.,1998, Computational fluid dynamics applied to chemical reaction engineering. Adv. Chem. Eng.24:227-328
    Lacey, P. M. C.1954, Developments in the theory of particle mixing. J.of Applied Chem.,4,257.
    Lan, X., Xu, C., Gao, J., Al-Dahhan, M.,2012, Influence of solid-phase wall boundary condition on CFD simulation of spouted beds, Chem. Eng. Sci.,69(1),419-430.
    Lefroy, G.A., Davidson, J.F.,1969, The mechanism of spouted beds, Trans. Inst. Chem. Eng.,47,120-128.
    Lindborg, H., Lysberg, M., Jakobsen, H.A.,2007, Practical validation of the two-fluid model applied to dense gas-solid flows in fluidized beds. Chem. Eng. Sci.,62,5854-5869.
    Langston, P.A., Tuzun, U., Heyes, D.M.,1994, Continuous potential discrete particle simulations of stress and velocity-fields in hoppers—transition from fluid to granular flow, Chem. Eng. Sci.49:1259-1275.
    Li, J., Kuipers, J.A.M.,2003, Gas-particle interactions in dense gas-fluidized beds, Chem. Eng. Sci.,58 (3-6), 711-718.
    Li, J. H.,2000, Compromise and resolution-exploring the multi-scale nature of gas-solid fluidization, Powder Technol.,111,50-59
    Li, T. W., Garg, R., Galvin J., Pannala, S.,2012, Open-source MFIX-DEM software for gas-solids flows:Part Ⅱ—Validation studies, Powder Technol.,220,138-150
    Li, T. W., Pougatch, K., Salcudean, M., Grecov, D.,2009, Numerical simulation of a spouted bed with a draft tube with and without liquid spary, Can. J. Chem. Eng.,87(2),237-251.
    Li, Y., Zhang, J.P., Fan, L.S.,1999, Numerical simulation of gas-liquid-solidfluidization systems using a combined CFD-VOF-DPM method, bubblewake behavior, Chem. Eng. Sci.,54,5101-5107.
    Lim, C. J., Mathur, K. B., Modeling of particle movement in spouted beds. In:Davidson, J. F., Keairns, D. L. (ed) Fluidization proceeding of the second engineering foundation conference. Cambridge Univ. Press, 1978,140-109
    Lim, K. S., Gururajan, V. S., Agarwal, P. K.,1993, Mixing of homogeneous solids in bubbling fluidized beds: Theoretical modeling and experimental investigation using digital image analysis, Chem. Eng. Sci., 48(12):2251-2265.
    Link, J. M., Cuypers, L. A., Deen, N. G., Kuipers, J. A. M.,2005, Flow regimes in a spout-fluid bed:A combined experimental and simulation study, Chem. Eng. Sci.,60(13),3425-3442.
    Link, J. M., Deen, N. G., Kuipers, J., Fan, X., Ingram, A., Parker, D. J., Wood, J., Seville, J.,2008, PEPT and discrete particle simulation study of spout-fluid bed regimes, Aiche J.,54(5),1189-1202.
    Link, J. M., Godlieb, W., Deen, N. G., Kuipers, J.,2007, Discrete element study of granulation in a spout-fluidized bed, Chem. Eng. Sci.,62(1-2),195-207.
    Link, J., Zeilstra, C., Deen, N., Kuipers, H.,2004, Validation of a Discrete Particle Model in a 2D Spout-Fluid Bed Using Non-Intrusive Optical Measuring Techniques, The Canadian Journal of Chemical Engineering, 82(1),30-36.
    Liu, D., Chen, X.,2010, Lateral solids dispersion coefficient in large-scale fluidized beds, Combust. Flame.,157,2116-2124
    Liu, D., Xiao, S., Chen, X., Bu, C.,2012, Investigation of solid mixing mechanisms in a bubbling fluidized bed using a DEM-CFD approach, Asia-Pac. J. Chem. Eng.,7(Suppl.2):S237-S244.
    Liu, G. Q., Li, S. Q., Zhao, X. L., Yao, Q.,2008, Experimental studies of particle flow dynamics in a two-dimensional spouted bed, Chem. Eng. Sci.,63(4),1131-1141.
    Lu, H. L., He, Y. R., Liu, W. T., Ding, J. M., Gidaspow, D., Bouillard, J.,2004, Computer simulations of gas-solid flow in spouted beds using kinetic-frictional stress model of granular flow, Chem. Eng. Sci., 59(4),865-878.
    Lu, H., Wang, S., Zhao, Y., Yang, L., Gidaspow, D., Ding, J.,2005, Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model, Chem. Eng. Sci.,60 (13), 3217-3231.
    Lyczkowski, R.W., Folga, S., Chang, S.L., Bouillard, J.X., Wang, C.S., Berry, G.F., Gidaspow, D.,1989, State-of-the-art computation of dynamics and erosion in fluidized bed tube banks. In:Proceedings of the 10th International Conference on Fluidized Bed Combus-tion, San Francisco, pp.465-478.
    Mamuro, T.,Hattori, H., Flow pattern of fluid in spouted beds,1968, Can. J. Chem. Eng.,56,436-447.
    Marsheck, R. M., Gomezplata, A.,1965, Particle Flow patterns in a Fluidized bed, A.I.Ch.E. J.,11:167.
    Mason, H.,1978, Solid circulation studies in a gas solid fluid bed. Chem. Eng. Sci.,33:621.
    Mathur,K.B., Epstein,N.,1974, Spouted beds, Academic Press INC. LTD., New York, pp304
    Mathur, K.B., Gishler,N.,1955, A technique for contacting gases with coarse solid particles, A.I.Ch.E. J.,l, 157-164.
    Moreno, R., Ghadiri, M., Antony, S.J.,2003, Effect of the impact angleon the breakage of agglomerates:a numerical study using DEM. PowderTechnol.,130,132-137.
    Morgan,M.H. III., Day, J.Y.,Littman, H.,1985, Spout voidage distribution, stability and particle circulation rates in spouted beds of coarse particles, Chem. Eng. Sci.,40,1367-1377.
    Mostoufi, N., Chaouki, J.,2001, Local solid mixing in gas-solid fluidized beds, Powder Technol.,114(1-3), 23-31.
    Muir, j. r., Berruti, F., Behie, L. A.,1990, Solids circulation in spouted and spout-fluid beds with draft tubes. Chem. Eng. Commun.,88,153-171
    Muthy, D.V.R., Singh, P.N.,1994, Minimum spouting velocity in multiple spouted beds. The Canadian Journal of Chemical Engineering 72,235-239.
    Nagashima, H., Ishikura, T., Ide, M.,2011, Flow regiems and vertical solids conveying in a spouted bed with a draft tube, Can. J. Chem. Eng.,89(2),264-273.
    Nan, Gui., JianRen, Fan., Kun, Luo.,2008, DEM-LES study of 3-D bubbling fluidized bed with immersed tubes, Chem. Eng. Sci.,63(14),3654-3663.
    Neto, J., Duarte, C. R., Murata, V. V., Barrozo, M.,2008, Effect of a draft tube on the fluid dynamics of a spouted bed:Experimental and CFD studies, Dry. Technol.,26(3),299-307.
    Nguyen, H. V., Whitehead, A. B., Potter, O. E.,1977, Gas back mixing, solids movement, and bubble activities in large scale fluidized beds, A.I.Ch.E. J.,23:913.
    Norouzi, H. R., Mostoufi, N., Mansourpour, Z., Sotudeh-Gharebagh, R., Chaoki., J.,2011, Characterization of solid mixing patterns in bubbling fluidized beds, Chem. Eng. R.&D.,89(6),817-826.
    Olazar, M., San Jose, M. J., Izquierdo, M. A., Alvarez, S., Bilbao, J.,2001, Local Bed Voidage in Spouted Beds, Ind. Eng. Chem. Res.,40,427-433.
    Olsson, J., Pallares, D., Johnsson, F.,2012, Lateral fuel dispersion in a large-scale bubbling fluidized bed, Chem. Eng. Sci.,74,148-159.
    Pain, C.C., Mansoorzadeh, S., de Oliveira, C.R.E.,2001b, A Study of bubbling and slugging fluidized beds using the two-fluid granular temperature model. Int. J. of Multiphase Flow,27,527-551.
    Pain, C.C., Mansoorzadeh, S., de Oliveira, C.R.E., Goddard, A.J.H.,2001a, Numerical modeling of gas-solid fluidized beds using the two-fluid model. Int. J. for Numerical Methods in Fluids,36,91-124.
    Pain, C.C., Mansoorzadeh, S., Gomes, J.L.M., de Oliveira, C.R.E.,2002, A numerical investi-gation of bubbling gas-solid fluidized bed dynamics in 2D geometries. Powder Technol.,128,56-77.
    Pallares,D.,Johnsson,F.,2006, A novel technique for particle tracking in cold 2-dimensional fluidized beds—simulating fuel dispersion, Chem. Eng. Sci.,61(8),2710-2720.
    Pan, T. W., Joseph, D. D., Bai, R., Glowinski, R., Sarin, V.,2002, Fluidization of 1204 spheres:simulation and experiment. J. of Fluid Mech.,451,169-191.
    Pan, T. W., Joseph, D. D., & Glowinski, R.,2001, Modelling Rayleigh-Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation. J. of Fluid Mech.,434, 23-37.
    Pannala,S., Syamlal, M., O'Brein, T. J., Computational gas-solids flows and reacting systems:Theory, methods and practice,2011, Engineering Science Reference. New York, USA
    Patil, D.J., van Sint Annaland, M., Kuipers,J.A.M.,2005a, Critical comparison of hydrodynamics models for gas-solid fluidized beds-Part I:bubbling gas-solid fluidized beds operated with a jet, Chem. Eng. Sci.,60 (1),57-72.
    Patil, D.J., van SintAnnaland, M., Kuipers, J.A.M.2005b, Critical comparison of hydrodynamics models for gas-solid fluidizedbeds-Part Ⅱ:freely bubbling gas-solid fluidized beds, Chem. Eng. Sci.,60 (1),73-84.
    Pianarosa, D. L., Freitas, L. A. P., Lim, C. J., Grace, J. R., Dogan, O. M.,2000, Voidage and particle velocity profiles in a spout-fluid bed, Can. J. of Chem. Eng.,78(1),132-142.
    Poux, M., Fayolle, P., Bertrand, J., Bridoux, D., Bousquet, J.,1991, Powder mixing:some practical rules applied to agitated systems.Powder Technol.,68,213-234.
    Qiaoqun, S., Huilin, L., Wenti, L., Yurong, H., Lidan Y., Gidaspow, D.,2005, Simulation and experiment of segregating/mixing of rice husk-sand mixture in a bubbling fluidized bed, Fuel,84:1739-1748.
    Ren, B., Shao, Y., Zhong, W., Jin, B., Yuan, Z., Lu, Y.,2012, Investigation of mixing behaviors in a spouted bed with different density particles using discrete element method, Powder Technol.,222,85-94.
    Ren, B., Zhong, W. Q., Jin, B. S., Yuan, Z. L., Lu, Y.,2011 a, Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) Simulation of Gas-Solid Turbulent Flow in a Cylindrical Spouted Bed with a Conical Base, Energ&Fuel.,25(9),4095-4105.
    Ren, B., Zhong, W. Q., Jin, B. S., Yuan, Z. L., Lu, Y.,2011b, Modeling of Gas-Particle Turbulent Flow in Spout-Fluid Bed by Computational Fluid Dynamics with Discrete Element Method, Chem. Eng. Technol.,34(12),2059-2068.
    Rhodes, M. J., Wang, X. S., Nguyen, M., Stewart, P., Liffrnan, K.,2001a, Study of mixing in gas-fluidized beds using a DEM model, Chem. Eng. Sci.,56(8),2859-2866.
    Rhodes, M.J.,Wang, X.S., Nguyen, M., Stewart, P., Liffman, K.,2001b, Use of discrete element method simulation in studying fluidization characteristics:influence of interparticle force, Chem. Eng. Sci.,56 (1),69-76.
    Rocha, S. C. S., Taranto, O. P., Silva, V. A., Goncalves, C. H., Raghavan, G. S. V.,1998, Pressure Drop Fluctuation Analysis as a Tool for Obtaining the Fluid-Dynamic Regimes in Spouted Beds, Drying'98 A, 512-518.
    Rong, D., Mikafumi, T., Horio, M.,1999, Particle and bubble movements around tubes immersed in fluidized bed a numerical study, Chem. Eng. Sci.,54(23):5737-5754.
    Rong, L. W., Zhan, J. M.,2010, Improved DEM-CFD model and Validation:A cornical-base spouted bed simulation study, J. of Hydrodynamics,22(3),351-359.
    Rowe, P. N., Widmer, A. J.,1973, Estimation of solids circulation rate in a bubbling fluidized bed, Chem. Eng. Sci.,28:979.
    Rowe, P. N., Partridge, B. A., Cheney, A. G., Henwood, G. A., Lyall,E.,1965, The mechanisms of solids mixing in fluidized beds, Transactions of the Inst. of Chem. Eng.,43:271.
    Roy, D., Larachi, F., Legros, R., Chaouki, J.,1994, A study of solid behavoir in spouted beds using 3-D particle tracking, Can. J. Chem. Eng.,72(6),945-952
    Sadutta, M.B. and Murthy, D.V.R.,2000. Mixing behaviour of solids in multiple spouted beds, Can. J. Chem. Eng.78,382-385.
    Salikov, V., Antonyuk, S., Heinrich, S.,2012, Using DPM on the way to tailored prismatic spouted beds, Chem. Ing. Tech.,84(3SI),388-394.
    Savage, S.b., Jeffrey, D.J.,1981, The stress tensor in a granular flow at high shear rates, J. Fluid Mech., 110,255-272
    Syamlal, M.,1998, MFIX Documentation, Numerical Techniques, Technical Note,DOE/MC-31346-5824, NTIS/DE98002029, National Technical Information Service,Springfield, USA.,VA.
    San Jose, M. J., Alvarez, S., de Salazar, A. O., Olazar, M., Bilbao, J.,2007, Operating conditions of conical spouted beds with a draft tube. Effect of the diameter of the draft tube and of the height of entrainment zone, Ind. Eng. Chem. Res.,46(9),2877-2884.
    San Jose. M. J., Olazar, M., Izquierdo, M. A., Alvarez, S., Bilbao, J.,2004, Solids trajectories and cycle times in spouted bed, Ind. Eng.Chem. Res.,43(13),3433-3438.
    Sato, S., Shimizu, A., Yokomine, T.,1995, Numerical prediction of erosion for suspension flow duct, Wear, 186-187,203-209.
    Savage, S.B., Jeffrey, D.J.,1981, The stress tensor in a granular flow at high shear rates, J. Fluid Mech.,110, 255-272.
    Seiler, C.; Fryer, P. J.; Seville, J. P. K.,2008, Statistical modeling of the spouted bed coating process using positron emission particle tracking (PEPT) data, Can. J. Chem. Eng.,86, 571-581.
    Sundararajan, G., Shermon, P.G.,1983, A new model for the erosion of metals at normal incidence, Wear,84: 237-258.
    Sundararajan, G.,1991, A comprehensive model for the solid particle erosion of ductile materials, Wear,149: 111-127.
    Sankaranarayanan, K., Shan, X., Kevrekidis, I. G., Sundaresan, S.,1999, Bubble flow simulations with the lattice Boltzmann method. Chem. Eng. Sci.,54(21).
    Sankaranarayanan, K., Sundaresan, S.,2008, Lattice Boltzmann Simulation of Two-Fluid Model Equations. Ind. Eng. Chem. Res.,47(23),9165-9173.
    Schlichthaerle, P., Wether, J.,2001, Solids mixing in the bottom zone of a circulating fluidized bed, Powder Technol.,120(1/2),21-33.
    Schouten, J.C., Van den Bleek, C. M.,1998, Monitoring the Quality of Fluidization Using the Short Term Predictability of Pressure Fluctuations, A.I.C.h.E. J.,44,48-60.
    Shen, L. H., Zhang, M. Y.,1998, Effect of particle size on solids mixing in bubbling fluidized beds. Powder Technol.,97(2):170-177.
    Shirvanian, P. A., Calo, J. M., Hradil, G.,2006, Numerical simulation of fluid-particle hydrodynamics in a rectangular spouted vessel, Int. J. Multiphas. Flow,32(6),739-753.
    Shuyan, W., Xiang, L., Huilin, L., Long, Y., Dan, S., Yurong, H., Yonglong, D.,2009, Numerical simulations of flow behavior of gas and particles in spouted beds using frictional-kinetic stresses model, Powder Technol.,196(2),184-193.
    Simons, S.J.R., Seville, J.P.K., Adams, M.J.,1994,An analysis of the ruptureenergy of pendular liquid bridges. Chem. Eng. Sci.,49,2331-2339.
    Singh, V., Gupta, G. S., Rudolph, V.,2006, Prediction of minimum spouting velocity in two-dimensional flat bottom spouted beds, Chem. Eng. Commun.,193(3),338-362.
    Snider, D. M.,2001, An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J. of Comput. Phys.,170(2),523-549.
    Snider, D. M., O'Rourke, P. J., Andrews, M. J.,1998, Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows. Int.Jo. of Multiphase Flow,24(8),1359-1382.
    Sun, D., Wang, S. Y., Liu, G. D., Wang, S. A., Liu, Y. J., Wei, L. X.,2010, Simulations of flow behavior of gas and particles in a spouted bed using a second-order moment method-frictional stresses model, Chem. Eng. Sci.,65(9),2635-2648.
    Svensson, A., Johnsson, F., Leckner, B.,1996, Fluidization Regimes in Non-Slugging Fluidized Beds:the Influence of Pressure Drop across the Air Distributor, Powder Technology,86,299-312.
    Swasdisevi, T., Tanthapanichakoon, W., Charinpanitkul, T., Kawaguchi, T., Tanaka, T., Tsuji, Y.,2004, Investigation of Fluid and Coarse-Particle Dynamics in a Two-Dimensional Spouted Bed, Chem. Eng. Technol.,27(9),971-981.
    Takens, F., Detecting strong attractors in turbulence. In:Rand, D. A., Yong, L. S., eds. Dynamical systems and turbulence, Lecture notes in mathematics.1981, New York:Springer Verlag,898,366-381.
    Takeuchi, S., Wang, S., Rhodes, M.,2004, Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system, Chem. Eng. Sci.,59(17),3495-3504.
    Takeuchi, S., Wang, S., Rhodes, M.,2008, Discrete element method simulation of three-dimensional conical-base spouted beds, Powder Technol.,184(2),141-150.
    Takeuchi, S., Wang, X. S., Rhodes, M. J.,2005, Discrete element study of particle circulation in a 3-D spouted bed, Chem. Eng. Sci.,60(5),1267-1276.
    Taranto, O.P., Rocha, S. C. S., Raghavan, G. S. V.,1997, Monitoring Spouted Bed Regimes through the Analysis of Bed Pressure Drop Fluctuations,47th Can. Chem. Engng. Conf., Edmonton, AB
    Tian, F., Zhang, M., Fan, H., Gu, M., Wang, L., Qi, Y.,2007, Numerical study on microscopic mixing characteristics in fluidized beds via DEM, Fuel Process. Technol.,88(2),187-198.
    Thornton, C., Yin, K.K.,1991, Impact of elastic spheres with and without adhesion. Powder Technol.,65; 153-166.
    Trujillo, L., Alam, M., Herrmann, H. J.,2003, Hydrodynamic model for particle size segregation ingranular media, Physica A,330:519-542.
    Tsuji, T., Uemaki, O., Itoh, H., Shinohara, K.,1998, Particle flow model in spouted bed, Advanced Powder Technol.,9(2),129-140.
    Tsuji, Y., Kawaguchi, T., Tanaka, T.,1993, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol.,77(1),79-87.
    van Buijtenen, M. S., Borner, M., Deen, N. G., Heinrich, S., Antonyuk, S., Kuipers, J.,2011, An experimental study of the effect of collision properties on spout fluidized bed dynamics, Powder Technol.,206(1-2SI), 139-148.
    van Buijtenen, M. S., Deen, N. G., Heinrich, S., Antonyuk, S., Kuipers, J. A. M.,2009, A discrete element study of wet particle-particle interaction during granulation in a spout fluidized bed, Can. J. of Chem. Eng.,87(2),308-317.
    van Buijtenen, M. S., Deen, N. G., Heinrich, S., Antonyuk, S., Kuipers, J. A. M.,2009, Discrete Particle Simulation Study on the Influence of the Restitution Coefficient on Spout Fluidized-Bed Dynamics, Chem. Eng. Technol.,32(3),454-462.
    van der Hoef, M. A., Annaland, M. V., Kuipers, J.,2004, Computational fluid dynamics for dense gas-solid fluidized beds:a multi-scale modeling strategy, Chem. Eng. Sci.,59(22-23),5157-5165.
    van der Hoef, M.A., Van Sint Annaland, M., Deen, N.G., Kuipers, J.A.M.,2008, Numerical simulation of dense gas-solid fluidized beds:a multiscale modeling strategy. Annual Review of Fluid Mechanics, 40,47-70.
    Van Velzen, D., Flamn, H.J., Langenkamp,H., Casile, A.,1974, Motion of solids in spouted beds. Can. J. Chem. Eng.,52,156-161.
    Vieira Neto, J. L., Duarte, C. R., Murata, V. V., Barrozo, M. A. S.,2008, Effect of a Draft Tube on the Fluid Dynamics of a Spouted Bed:Experimental and CFD Studies, Drying Technol.,26,299-307.
    Vu-Quoc, L., Zhang, X.,1999a, An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations, Mech. of Materials,31,235-269.
    Vu-Quoc, L., Zhang, X.,1999b, An elastoplastic contact force-displacement model in the normal direction, displacement-driven version, Proceedings of the Royal Society of London Series A—Math. Phys. & Eng. Sci.,455:4013-4044.
    Walton, O.R., Braun, R.L.,1986, Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. of Rheology,30:949-980.
    Wang, S. Y., Hao, Z. H., Sun, D., Liu, Y. K., Wei, L. X., Wang, S. A.,2010, Hydrodynamic simulations of gas-solid spouted bed with a draft tube, Chem. Eng. Sci.,65(4),1322-1333.
    Wang, S. Y., Liu, Y. J., Liu, Y. K., Wei, L. X., Dong, Q., Wang, C. S.,2010, Simulations of flow behavior of gas and particles in spouted bed with a porous draft tube, Powder Technol.,199(3),238-247.
    Wang, X.S., Rhodes, M.J.,2003, Determination of particle residence time atthe walls of gas fluidized beds by discrete element method simulation, Chem. Eng. Sci.,58 (2),387-395.
    Wang, X.S., Rhodes, M.J.,2004a, Mechanistic study of defluidization by numerical simulation, Chem. Eng. Sci.,59(1),215-222.
    Wang, X.S., Rhodes, M.J.,2004b, Numerical study of gas fluidization under increased 'gravity', Adv. Powder Technol.,15 (6),629-638.
    Wang, Z. G., Bi, H. T., Lim, C. J.,2006, Numerical simulations of hydrodynamic behaviors in conical spouted beds, China Particuology,4(3-4),194-203.
    Wen, C. Y., Yu, Y. H.,1966, Mechanics of Fluidization, Chem.Eng. Prog. Symp. Series,62,(62),100-111.
    Werther, J., Molerus, O.,1973a, The local structure of gas fluidized beds-Ⅰ. A statistically based measuring system, Int. J. of Multiphase flow.,1,103-122.
    Werther, J., Molerus, O.,1973b, The local structure of gas fluidized beds-Ⅱ. The spatial distribution of bubbles, Int. J. of Multiphase flow.,1,123-138.
    Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.,2000, Capillary bridges between two spherical bodies, Langmuir.,16,9396-9405.
    Williams, J., & O'Connor, R.,1999, Discrete element simulation and the contact problem. Archives of Comput. Methods in Eng.,6(4),279-304.
    Wiman J, Almstedt A. E.,1997, Aerodynamics and heat transfer in a pressurized fluidized bed:Influence of pressure, fluidization velocity, particle size and tube geometry, Chem. Eng. Sci.,52:2677-2696.
    Wiman, J. B., Mahpour, A. E., Almstedt.,1995, Erosion of horizontal tubes in a pressurized fluidized bed influence of pressure fluidization velocity and tube-bank geometry, Chem. Eng. Sci.,50(21):3345-3356.
    Wong, K. K., Clark, H. M.,2007, A model of particle mixing behavior in a bubbling fluidized bed, J. Hydrodynamics,19,335-341
    Wu, Z. H., Mujumdar, A. S.,2008, CFD modeling of the gas-particle flow behavior in spouted beds, Powder Technol.,183(2),260-272.
    Xiong, Y.Q., Zhang, M.Y., Yuan, Z.L.,2005, Three-dimensional numericalsimulation method for gas-solid injector, Powder Technol.,160,180-189.
    Xu, B.H., Yu, A.B.,1997, Numerical simulation of the gas-solid flow in afluidized bed by combining discrete particle method with computationalfluid dynamics, Chem. Eng. Sci.,52,2785-2809.
    Xu, B.H., Yu, A.B.,1998, Comments on the paper "Numerical simulationof the gas-solid flow in a fluidized bed by combining discrete particlemethod with computational fluid dynamics"—reply, Chem. Eng. Sci., 53,2646-2647.
    Yang, H. R., Lu, J. F., Yue, G. X.,2002, Lateral solids mixing in the dense zone of a circulating fluidized bed, Chinese J. of Chem. Eng.,10(4),490-193.
    Ye, M., van der Hoef, M.A., Kuipers, J.A.M.,2005, The effects of particle and gas properties on the fluidization ofGeldart Aparticles, Chem. Eng. Sci.,60,4567-4580
    Zhang, Y., Jin, B. S., Zhong, W. Q., Ren, B., Xiao, R.,2010, DEM simulation of particle mixing in flat-bottom spout-fluid bed, Chem. Eng. Res. Des.,88(5-6A),757-771.
    Zhao, X. L., Li, S. Q., Liu, G. Q., Song, Q., Yao, Q.,2008, Flow patterns of solids in a two-dimensional spouted bed with draft plates:PIV measurement and DEM simulations, Powder Technol.,183(1),79-87.
    Zhao, X. L., Li, S. Q., Liu, G. Q., Yao, Q., Marshall, J. S.,2008, DEM simulation of the particle dynamics in two-dimensional spouted beds, Powder Technol.,184(2),205-213.
    Zhao, Y., Cheng, Y., Jiang, M., Jin, Y.,2008, Numerical simulation of two-dimensional spouted bed with draft plates by discrete element method, Front. of Chem. Eng. in China,2(1),5.
    Zhong, W. Q., Xiong, Y. Q., Yuan, Z. L., Zhang, M. Y.,2006, DEM simulation of gas-solid flow behaviors in spout-fluid bed, Chem. Eng. Sci.,61(5),1571-1584.
    Zhong, W. Q., Zhang, M. Y., Jin, B. S.,2006, Maximum spoutable bed height of spout-fluid bed, Chem. Eng. J.,124(1-3),55-62.
    Zhong, W. Q., Zhang, M. Y., Jin, B. S., Chen, X. P.,2006, Flow pattern and transition of rectangular spout-fluid bed, Chem. Eng. Process.,45(9),734-746.
    Zhong, W., Zhang, M.,2005, Pressure fluctuation frequency characteristics in a spout-fluid bed by modern ARM power spectrum analysis, Powder Technol.,152(1-3),52-61.
    Zhong, W. Q., Zhang, Y., Jin, B. S.,2010, Novel Method To Study the Particle Circulation in a Flat-Bottom Spout-Fluid Bed, Energ. Fuel.,24,5131-5138.
    Zhou, H., Flamant, G., Gauthier, D., Lu, J.,2004a, Numerical simulation ofthe turbulent gas-particle flow in a fluidized bed by an LES-DPM model, Chem.Eng. R&D.,82,918-926.
    Zhou, H.S., Flamant, G., Gauthier, D.,2004b, DEM-LES of coal combustionin a bubbling fluidized bed. Part I, gas-particle turbulent flow structure, Chem. Eng. Sci.,59,4193-4203.
    Zhu, H. P., Zhou, Z. Y., Yang, R. Y., Yu, A. B.,2007, Discrete particle simulation of particulate systems: Theoretical developments, Chem. Eng. Sci.,62(13),3378-3396.
    Zhu, H. P., Zhou, Z. Y., Yang, R. Y., Yu, A. B.,2008, Discrete particle simulation of particulate systems:A review of major applications and findings, Chem. Eng. Sci.,63(23),5728-5770.
    Zhu, R. R., Zhu, W. B., Xing, L. C., Sun, Q. Q.,2011, DEM simulation on particle mixing in dry and wet particles spouted bed, Powder Technol.,210(1),73-81.
    岑可法,倪明江,骆仲泱,严建华,池涌,方梦祥,李绚天,程乐鸣,1998,循环流化床锅炉理论设计与运行,中国电力出版社,北京。
    郭慕孙,李洪钟,2007,流态化手册,化学工业出版社,北京。
    刘欢鹏,刘玉成,李巍,2006,DSMC-LES方法数值模拟鼓泡流化床内气泡和颗粒流动行为.高校化学工程学报,20(2),180-185。
    刘道银,陈晓平,陆利烨,赵长遂,2009,流化床密相区颗粒扩散系数的CFD数值预测,化工学报,60(9),2183-2190。
    王福军,计算流体动力学分析,CFD软件及运用,2004,清华大学出版社,北京。
    谢俊,金保昇,钟文琪,2012,基于MP-PIC模型的流化床煤气化过程三维数值模拟,工程热物理学报,33(6),981-984.
    朱润孺,朱卫兵,邢力超,孙巧群,2010,矩形喷动床混合特性的三维数值研究,中国电机工程学报,17,12-16。