土木工程用非对称固液分离膜的结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以探索不同的工艺制备条件对土木工程专用的固液分离膜的结构与性能的影响为目的,研究了利用平板热压法制备的土木工程用非对称固液分离膜的结构与性能,探索了层压法制备分离膜的新思路。从热压条件出发,通过调节平板对聚丙烯针刺非织造基布的热压温度和时间制备出了具有良好渗透性能的土木工程用非对称固液分离膜,并对其主要性能进行了表征,得出了最佳的平板热压法制备条件。通过在聚丙烯微孔膜表面涂覆胶水或铺撒粉末粘合剂然后层压到基布上的方法制备了胶水粘结法分离膜和粉末粘结法分离膜,也对其主要性能进行了表征,为土木工程用非对称固液分离膜的研究拓宽了思路。
     主要研究内容有:在不同热压条件下采用平板热压法、胶水粘结法、粉末粘结法制备分离膜并对其主要性能进行表征;探讨热压条件对分离膜各项性能的影响并总结出最佳工艺。三种制备方法工艺简单、操作方便、可行性强;随着热压温度的升高和热压时间的延长,厚度、孔径及透气性减小,导水性增大,平板热压法分离膜的渗水性能良好,胶水粘结法和粉末粘结法制备的分离膜渗水性能极差;热压温度/热压时间为165℃/2s或170℃/2s时,平板热压法分离膜可获得较好的拉伸性能,110℃/2s时粉末粘结法分离膜可获得较好的拉伸性能,130℃/2s时粉末粘合法分离膜可获得较好的拉伸性能。
     研究结果表明,平板热压法的热压温度/热压时间分别为165℃/2s或170℃/2s时可获得渗透性能优良的适合混凝土工程用的分离膜;胶水粘结法和粉末粘结法制备的分离膜透气性尚可但渗水性极差,使用于气液分离或气固分离。
This project researches hot plate Civil Works Asymmetric Solid-liquid SeparationMembrane's (CASSM) structure and properties, and explores the new method for preparationseparation membrane. By means of changing hot-pressing temperature and time of the platewhich presses the polypropylene (PP) needled nonwoven base fabrics can get CASSM which hasa good penetration. The new method is that laminates the PP microporous membrane on the PPneedled nonwoven base fabrics to get CASSM, and uses polyacrylic ester class glue andpolythene(PE) powder as the binder. The paper gets the best hot-pressing temperature and timein hot plate method and broads the idea in new methods.
     The main research contents: Prepares sample which are including the hot plate membranesand laminated membranes, tests the samples' main performance and researches the influence ofhot pressing conditions on membrane's properties. The three methods are useful that the processis simple and the operation is convenient. Along with the increase of temperature and theextension of time, thickness, aperture and permeability decreases and hydraulic conductivityincreases. The hot plate membrane has a good penetration, but the laminated membranes'penetration is poor. The hot plate membrane can get a good tensile properties whentemperature/time is165℃/2s or170℃/2s, the glue membrane can get a good tensile propertieswhen temperature/time is110℃/2s and the powder membrane is130℃/2s.
     The result shows that when temperature/time is165℃/2s or170℃/2s the hot platemembrane has the best properties which is suitable for concrete works. The glue membrane andthe powder membrane in this paper just apply to gas-liquid separation or Gas-solid separation forgood water seepage control performance.
引文
[1]熊杰,胡国樑.产业用纺织品[M].杭州:浙江科学技术出版社,2007.
    [2]金万慧,胡国樑,林秋宝,等.聚丙烯透水模板布渗透性能的探讨[J].过滤与分离,2010,4:17-19.
    [3] RUSHTON A,WARD A S,HOLDICH R G. Solid—liquid filtration and separationtechnology[M]. Second. Completely Revised Edition.北京:化学工业出版社,2005.
    [4]孙越励,金杰.浙江省土工布生产应用现状与发展对策[J].产业用纺织品,2000,18(121):7-14.
    [5]迟景魁.中国土工合成材料发展现状及前景[J].产业用纺织品,2000,19(124):1-4.
    [6]裘愉发.论产业用纺织品[J].浙江纺织服装职业技术学院学报,2009(3):4-8.
    [7]金舜.产业用纺织品原料构成的探讨[J].天津纺织科技,2002,40(4):23-28.
    [8] Walter Fung and Mike Hardcastle. Textiles in automotive engineering. Wood headpublishing Ltd.2001.
    [9]刘雷艮,潘志娟.纤维过滤材料在印染废水处理领域的研究现状[J].产业用纺织品,2010,5.
    [10]朱民儒,张艳,李桂梅.非织造布和产业用纺织品发展前景乐观问题不容忽视[J].纺织服装周刊,2007(28):17.
    [11]各类产业用纺织品发展概况[J].纺织服装周刊,2007(28):17.
    [12]赵永霞.非织造土工布的发展与应用[J].纺织导报,2009(3):79-86.
    [13]杨光烈,储思敏.土工合成材料与非织造布的应用[J].非织造布,2007(3):12-15.
    [14]田正宏,张振丹,周兰庭,王燕飞.透水模板布水泥浆淤堵后的再生利用[J].建筑材料学报,2011,14(1):83-87.
    [15]许敏钟,田正宏,刘兆磊,王燕飞.透水模板布对混凝土抗渗性能印象分析[J].混凝土,2009(9):43-55.
    [16]田正宏,白凯国,朱静.透水模板布改善混凝土表层质量试验研究[J].东南大学学报,2008,38(1):146-150.
    [17] SOUSA C J. The combined benefits of CPF and RHA in improving the durability ofconcrete structures [J].Cement and Concrete Composites,2003,25(1):51-59.
    [18] MCKENNA P. Controlled permeability formwork [J]. Concrete Construction Industry,2005,39(10):28-31.
    [19] SORENSEN M G, The effect of using CPF when casting concrete [D]. Denmark, AalborgUniversity, January,2001.
    [20] Maher A. Bader. Performance of concrete in a coastal environment. Cement and ConcreteComposites,2003,25(4-5):539-548.
    [21]何祚云.聚丙烯非织造布的应用和发展[J].化工时刊,1998,(05):8-11.
    [22]钟建政.丙纶在非织造布工业中的应用现状及前景[J].合成纤维工业,1999,22(06):24-26.
    [23]王建刚,于春阳,王亚丽.丙纶纤维产品的开发及应用[J].天津纺织科技,2006,(01):38-41.
    [24] Koslowski H J. Nonwoven safast expending business. Chemical Fibers International,1998,48(5):360.
    [25]李瑞.21世纪聚烯烃纤维(丙纶)的现状与发展[J].中国纺织,2005,(05):144-149.
    [26] Yu Mingfang. Close Ties Lead to Growth in China's Manmade Fiber and NonwovensIndustries. International Fiber Journal,1998,(3):4-8.
    [27]章文.我国丙纶的现状与发展趋势[J].上海化工,2004,(07):41-42.
    [28]张凌清,李增俊.国内外涤纶、锦纶和丙纶工业丝市场发展现状(一)[J].产业用纺织品,2007,(08):1-14.
    [29]张凌清,李增俊.国内外涤纶、锦纶和丙纶工业丝市场发展现状(二)[J].产业用纺织品,2007,(10):1-8.
    [30] Zhang Jiru, Xia Lin, Lu Zhean. Material properties and tensile behaviors of polypropylenegeogrid and geonet for reinforcement of soil structures[J]. Journal of Wuhan University ofTechnology–Mater. Sci. Ed.,2002,17(3).
    [31]李波,王秀荣,李彦.针刺非织造布技术与市场现状[J].纺织导报,2007,(02):88-92.
    [32]王旭,焦晓宁,赵小翠.针刺非织造布的空气净化过滤材料的实验与分析[J].洁净与空调技术,2006,(01):16-18.
    [33]冯学本.谈谈针刺与水刺功能的区别与统一[J].非织造布,2002,10(02):11.
    [34]杨彩云.产业用纺织品[M].北京:中国纺织出版社,1997.
    [35]晏雄.产业用纺织品[M].上海:东华大学出版社,2003.
    [36]魏取福,张朝辉.非织造布复合土工膜排水机理的研究[J].北京纺织,1998,19(5):15-17.
    [37]罗瑞林.涂层织物[M].北京:中国纺织出版社,1994.
    [38]陈华辉.现代复合材料[M].北京:中国物资出版社,1998.
    [39] FZ/T60004-91非织造布厚度测定方法[S].
    [40] GB/T13761-92土工布厚度测定方法[S].
    [41]南京水利科学研究院主编.土工合成材料测试手册[M].水利水电出版社,1991.
    [42]土工合成材料工程应用手册编写委员会.土工合成材料工程应用手册[M].第二版.中国建筑工业出版社,2000.
    [43]郭秉臣主编.非织造布的性能与测试[M].中国纺织出版社,1998.
    [44] FZ/T60005-1991非织造布断裂强力和断裂伸长率的测定[S].
    [45] Sousa Coutinho J. The combined benefits of CPF and RHA improving the durability ofconcrete structures [J].Cement and Concrete Composites,2003,25(1):51-59.
    [46]王炳超.耐碱玻璃纤维网格布拉伸断裂强力及耐碱性检测项目的探讨[J].建筑节能,2010,38(228):41-43.
    [47]王庭荣,齐大鹏.织物结构相与拉伸断裂性能分析[J].轻纺工业与技术,2010,39(6):3-5.
    [48]雷利照.织物的几何结构与规格参数确定[J].上海纺织科技,2008,36(6):8-10.
    [49] GB/T2791-1995胶粘剂T剥离强度试验方法挠性材料对挠性材料[S].
    [50] FZ/T01085-2000热熔粘合衬布剥离强力测试[S].
    [51]李鹏刚,姚瑞东,张一心.层压防水透湿针织物的性能测试与研究[J].国际纺织导报,2011,4:61-66.
    [52] HOLMES D A. Performance characteristics of waterproof breathable [J]. Journal of CoatedFabrics,2000,29(4):306-316.
    [53] GB/T2679.14-1996过滤纸和纸板最大孔径的测定[S].
    [54] QC/T794过滤层平均孔径[S].
    [55] ASTMF128-89.实验室用硬质多孔过滤介质最大孔径和渗透率的标准测定方法,Annucl Book of Astm Standard1989[S].
    [56] ISO4003-77Permeable stintered metal materials deter mination of bubble test pore size[S].
    [57]郭仁惠,张建设.滤布性能测定及选用[M].北京:机械工业出版社,1997.
    [58][2] Rushtouu A,朱企新,许莉,等译.固液两相过滤及分离技术[M].北京:化学工业出版社,2005.
    [59] GB5249-1985.可渗透烧结金属材料-鼓泡试验孔径的测定[S].
    [60] GB1967-1996.多孔陶瓷孔径直径测定方法[S].
    [61] ASTMF902-84.通过测定渗透率和孔隙率计算当量平均孔径[S].
    [62] BS3321-86British Standard methods for measurement of the equivalent pore size of fabricsbubble test[S].
    [63] ASTMF316-86Standard test methods for pore size characteristics of membrane filters byBubble point cond mean pore test[S].
    [64]张清,张正德,魏海荣.多孔材料过滤精度表征方法[J].过滤与分离,2000,(1):33-37.
    [65]朱黎冉,魏芸,李忠全气泡法测量多孔材料孔径分布[J]粉末冶金工业,2006,16(4):26-30.
    [66] GB/T5453-1997纺织品织物透气性的测定方法[S].
    [67] GB/T13764-1992土工布透气性的试验方法[S].
    [68] Leonid Reznik, Omar Ghanayem, Anna Bourmistrov. PID plus fuzzy controller structures asa design base for industrial applications. Engineering Applications of Artificial Intelligence,2000,13(4):419-430.
    [69]安琳,武宜鸣,朱文俊.不同组织大麻织物抗渗水性和透气性的测试分析[J].纺织学报,2010,39(3):36-39.
    [70] Hu B G, George K I, Raymond G. New methodology for analytical and optimal design offuzzy PID controller.IEEE Trans on Fuzzy System,1999,7(5):521-538.
    [71] GB/T4744-1997纺织织物-抗渗水性测定-静水压试验[S].
    [72] GB1037-88塑料薄膜和片材透水蒸汽气试验方法-杯式法[S].
    [73]黄远红,胡文军,郭静,马艳.橡胶密封材料的渗水性和透气性研究[J].橡胶工业,2004,51(3):176-178.
    [74] ZBW04019纺织品毛细管效应实验法方法[S].
    [75]吴海燕,张云,谢红.不同类型防水透湿织物的液态水分管理能力[J].纺织学报,2011,32(1):32-40.
    [76] HUANG Jizhi, ZHANG Jianchun, GAO Weidong. Structure and properties ofpolytetrafluorethylene and polyurethane layered membrane for protective clothing [J].Journal of Donghua University,2006,23(1):49-52.
    [77]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2006.
    [78]于伟东.纺织材料学[M].上海:东华大学出版社,2006.