基于滑模变结构方法的永磁同步电机控制问题研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电动机(Permanent Magnet Synchronous Motors, PMSM)以高功率密度、高效率、高可靠性及结构简单、轻量化等优点著称,目前广泛应用于国民经济、工业生产和国防航天等领域。然而,永磁同步电机是一个多变量、强耦合的非线性系统,存在着诸如电流耦合、系统饱和、参数摄动和外部扰动等诸多不利因素,直接影响着控制系统性能的提高。为了实际工程应用的需求,迫切需要在永磁同步电机控制方法上有所突破,以保证高性能永磁同步电机系统的发展。
     滑模变结构控制(Sliding Mode Control, SMC)是一种非线性控制方法,对内部参数摄动和外部干扰具有较强的鲁棒性和较高的控制精度,且实现简单,故其在电机控制领域受到广泛关注。本文主要针对永磁同步电机系统发展的需求,系统分析了永磁同步电机相关控制技术发展状况,同时归纳和总结了滑模变结构控制技术的发展现状,对近年来滑模控制技术在永磁同步电机系统中的应用进展做了较为深入的分析。针对永磁同步电机系统中存在的问题,将滑模控制技术应用于永磁同步电机控制系统,实现永磁同步电机电流、速度和位置高精度控制及无位置传感器永磁同步电机控制,并在此基础上设计有位置传感器与无位置传感器两种模式的永磁同步电机调速控制系统。本文的研究工作如下:
     (1)针对常规永磁同步电机矢量控制系统中存在电流耦合及不确定干扰等问题,提出了一种基于快速终端滑模自适应电流鲁棒控制算法。由于常规的永磁同步电机矢量控制系统无法完全实现电流解耦控制,系统的存在参数摄动、建模不准确等诸多不确定性影响着系统性能提高,为此将快速终端滑模控制与自适应控制技术结合,设计自适应快速终端滑模电流控制器,利用李雅普诺夫函数证明系统收敛性,并通过仿真试验验证了所提算法的可行性和有效性。该算法不仅能够降低电流耦合及反电动势对系统的影响,而且也提升了电流控制器对系统不确定的抗干扰能力。
     (2)针对永磁同步电机驱动系统存在的饱和问题进行了分析,对传统Anti-reset Windup方法进行了改进,提高了存在饱和现象的永磁同步电机控制系统性能。为了进
     一步提高系统控制性能,重点针对永磁同步电机系统中存在参数摄动和外部扰动及传统一阶滑模系统存在的“抖振”问题,提出一种二阶积分滑模速度控制方法。该速度控制算法采用了积分滑模面,设计一种二阶滑模控制律,从而避免了常规滑模控制系统存在的“抖振”问题,同时针对电机驱动系统中在饱和限制下易产生Windup现象,进行抗饱和设计。通过仿真试验结果表明所提出的二阶滑模速度控制算法较常规抗饱和算法性能更优,具有更强的适应性。
     (3)针对永磁同步电机位置伺服系统中存在摩擦和传动间隙等问题,提出一种基于快速终端滑模的永磁同步电机位置伺服控制方法。将快速终端滑模控制方法应用于永磁同步电机位置跟踪控制中,同时为了进一步降低快速终端滑模控制对于控制对象数学模型的依赖,将其与径向基神经网络(RBF)相结合,设计了基于径向基神经网络的快速终端滑模永磁同步电机位置跟踪控制器,有效提升了永磁同步电机的控制性能。同时,针对永磁同步电机系统中存在外部扰动问题,提出了一种基于扰动观测器的永磁同步电机快速终端滑模控制方法,实现了位置跟踪系统控制精度的提高。仿真试验验证明了所提算法具有实际工程应用价值。
     (4)针对永磁同步电机无位置传感器控制问题,分析了永磁同步电机的能观性,在此基础上提出一种基于二阶滑模控制方法的滑模观测器,并将其用于电机位置和速度观测。通过与传统滑模观测器的仿真分析比较,验证了所提出滑模观测器的性能,其无需额外增加滤波器,即可获得平滑的电机速度和位置估算值,提高了速度和位置估算精度。
     (5)针对注塑机和汽车电空调等对永磁同步电机的实际需求,设计有传感器和无位置传感器两种控制模式的永磁同步电机驱动控制系统,并通过试验验证了所设计的控制系统能够满足实际工程需要。
Recently, the permanent-magnet synchronous motors (PMSM) have been applied widely in the capital economy, industrial production, defense and space industries and so on because they have many advantages of high power density, high efficiency, high reliability and fast dynamics etc. However, PMSM is a multivariable and strongly coupling nonlinear system, whose control performance is still influenced by the current coupling, windup, parameter variations and perturbations in practical applications. In order to meet the demands of PMSM application in the future, great progress in the PMSM control methods has to be made to ensure the development of high-performance PMSM.
     Sliding mode control (SMC) is one of the nonlinear control methods, which is insensitive to parameter variations and external disturbance. Therefore, SMC is paid widely attention. In the dissertation, according to the real demands of PMSM, the PMSM development and the sliding mode control technology are summarized. Especially, the application of SMC in the PMSM system is analyzed. For the problems of PMSM system mentioned above, the SMC method is applied in the PMSM control system, so as to control the current, speed and position, and further realize the sensorless control of PMSM. Based on the studies, a PMSM control system which has two modes with and without the position sensor is designed and developed. The research results are showed as bellow:
     (1) An adaptive current robust control algorithm based on the fast terminal sliding mode is proposed to solve the current coupling and uncertain disturbance in the conventional PMSM vector control system. The conventional PMSM vector control system can not realize the decoupling control completely. In addition, the inaccurate model would result in the uncertainty. Therefore, the fast terminal sliding mode control and adaptive control method are hybridized, and the adaptive fast terminal sliding mode current controller is designed. The convergence of the algorithm is proved by Lyapunov function, and the simulation experiments validate the reliability and applicability. The algorithm not only reduces the influence of the current coupling and back electromotive force on the system, but also strengthens the anti-interference capability of the current controller on the system uncertainty.
     (2) The windup phenomenon in the PMSM drive system is analyzed, and the traditional anti-reset windup method is modified. A second order integral sliding mode control algorithm is proposed to solve the parameter variation, external disturbance of PMSM and chattering of one order sliding mode system. The algorithm utilizes the integral manifold. The second order sliding mode control law is designed by the Lyapunov function approach and effectively eliminates the system chattering phenomenon. Meanwhile, an anti-windup control method is used to address the windup phenomenon of the PMSM control system. The computer simulation results are presented to verify the feasibility of the method.
     (3) For the friction and drive clearance of PMSM servo system, a servo control method is proposed based on the fast terminal sliding mode (FTSM). The FTSM is used for tracking the position of PMSM. In order to further alleviate the dependence of FTSM on the mathematical model of the object, we design a PMSM position tracking controller which combines the FTSM and RBF neural network. The novel method improves the control performance of PMSM. Meanwhile, for the external disturbance, a disturbance observer based FTSM method is presented to increase the control precision of position tracking system.
     (4) For the permanent magnet synchronous motor sensorless vector control, we analyze the observability of PMSM and present a second order sliding mode observer which is to estimate the rotor position and speed. The proposed sliding mode observer can successfully eliminate the system chattering problem, without the low pass filter in the conventional sliding mode observer and improve the precision of the estimated motor position and speed while compared to the conventional sliding mode observer.
     (5) According to the demand of the injecting molding machine and car air conditioning on PMSM, PMSM drive control system is developed which has two modes with and without sensor. The experimental results show that the control system is feasible and effective in the practical engineering project.
引文
[1]Bose B. K. Power electronics and motor drives recent progress and perspective [J]. IEEE Transactions on Industrial Electronics.2009,56(2):581-588.
    [2]唐任远.稀土永磁电机发展综述[J].电气技术.2005(4):1-4.
    [3]暨绵浩.永磁同步电动机及其调速系统综述和展望[J].微特电机.2007,35(3):49-52.
    [4]王鑫,李伟力,程树康.永磁同步电动机发展展望[J].微电机.2007,40(5):69-72.
    [5]Uddin M. N., Radwan T. S., Rahman A. A. Performance of interior permanent magnet motor drive over wide speed range [J]. IEEE Transactions on Energy Conversion.2002, 1(17):79-84.
    [6]高为炳.变结构控制理论及设计方法[M].科学出版社,1996:225-234.
    [7]Edwards C., Spurgeon S. K. Sliding mode control:theory and applications [M]. Taylor & Francis.1998:28-33.
    [8]Andon V. T., Giuseppe L. C., Vincenzo G., Francesco C., Okyay K. Sliding mode neuro-adaptive control of electric drives [J]. IEEE Transactions on Industrial Electronics.2007,54(1):671-679.
    [9]Liu S. M., Ding L. J. Application of adaptive fuzzy sliding mode controller in pmsm servo system [C]. In:Preceedings of the International Conference on Computing, Control and Industrial Engineering (CCIE),2010,2:95-98.
    [10]Chen Z. M., Meng W. J., Gang J., Wang H. Fuzzy reaching law sliding mode control of robot manipulators [C]. In:Preceedings of the Pacific-Asia Workshop on Computational Intelligence and Industrial Application,2008,2:393-397.
    [11]Lin H., Yan W., Wang Y., Gao B., Yao Y. Nonlinear sliding mode speed control of a pm synchronous motor drive using model reference adaptive backstepping approach [C]. In:Preceedings of the International Conference on Mechatronics and Automation, 2009,828-833.
    [12]Lin F. J., Wai R. J. Sliding-mode-controlled slider-crank mechanism with fuzzy neural network [J]. IEEE Transactions on Industrial Electronics.2001,48(1):60-70.
    [13]Rahman M. A. Recent advances of ipm motor drives in power electronics world [C]. In: Preceedings of the International Conference on Power Electronics and Drives Systems, 2005,1:24-31.
    [14]Kawai H., Tasaka Y. Evaluation of the energy-saving performance of the pmsm drive system [C]. In:Preceedings of the International Power Electronics Conference (IPEC), 2010,1605-1608.
    [15]Bose B. K. Recent advances and applications of power electronics and motor drives-introduction and perspective [C]. In:Preceedings of the 34th IEEE Annual Conference of Industrial Electronics,2008,25-27.
    [16]French C., Acarnley P. Control of permanent magnet motor drives using a new position estimation technique [J]. IEEE Transactions on Industry Applications.1996,32(5): 1089-1097.
    [17]Xu L. Y., Wang C. J. Implementation and experimental investigation of sensorless control schemes for pmsm in super-high variable speed operation [C]. In:Preceedings of the 1998 IEEE Industry Applications Conference,1998,1:483-489.
    [18]Wu R., Slemon G. R. A permanent magnet motor drive without a shaft sensor [J]. IEEE Transactions on Industry Applications.1991,27(5):1005-1011.
    [19]贾洪平,贺益康.基于高频注入法的永磁同步电动机转子初始位置检测研究[J].中国电机工程学报.2007(15):15-20.
    [20]Jang J. H., Sul S. K., Ha J. I., Ide K., Sawamura M. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency [J]. IEEE Transactions on Industry Applications.2003,39(4): 1031-1039.
    [21]Jang J. H., Ha J. I., Ohto M., Ide K., Sul S. K. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection [J]. IEEE Transactions on Industry Applications.2004,40(6):1595-1604.
    [22]Andreescu G. D., Pitic C. I., Blaabjerg F., Boldea I. Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of ipmsm drives [J]. IEEE Transactions on Energy Conversion.2008,23(2):393-402.
    [23]Xu J. F., Wang F. Y., Xie S. F., Xu J. P., Feng J. H. A new control method for permanent magnet synchronous machines with observer [C]. In:Preceedings of the IEEE 35th Annual Power Electronics Specialists Conference,2004,2:1404-1408.
    [24]Gaur P., Aziz M., Mittal A. P., Singh B. Sensorless control schemes for permanent magnet synchronous motor [C]. In:Preceedings of the IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering,2005,1-4.
    [25]Yamamoto Y., Yoshida Y., Ashikaga T. Sensor-less control of pm motor using full order flux observer [J]. IEEJ Transactions on Industry Applications.2004,124: 743-749.
    [26]Kim J. S., Sul S. K. New approach for high-performance pmsm drives without rotational position sensors [J]. IEEE Transactions on Power Electronics.1997,12(5): 904-911.
    [27]孙海军,郭庆鼎,高松巍,杨理践.系统辨识法永磁同步电机无传感器控制[J].电机与控制学报.2008(3):244-247.
    [28]Baik I. C., Kim K. H., Youn M. J. Robust nonlinear speed control of pm synchronous motor using adaptive and sliding mode control techniques [J]. IEE Proceedings-Electric Power Applications.1998,145(4):369-376.
    [29]Bolognani S., Oboe R., Zigliotto M. Sensorless full-digital pmsm drive with ekf estimation of speed and rotor position [J]. IEEE Transactions on Industrial Electronics. 1999,46(1):184-191.
    [30]Gallegos M. A., Alvarez R., Nunez C. A., Perez-Pinal F. Comparison of two nonlinear speed observers for induction motors [C]. In:Preceedings of the 32nd Annual Conference on IEEE Industrial Electronics,2006,799-804.
    [31]Murat B., Seta B., Metin G. Speed-sensorless estimation for induction motors using extended kalman filters [J]. IEEE Transactions on Industrial Electronics.2007.54(1): 272-280.
    [32]郑泽东,李永东,Fadel Maurice,肖曦.基于扩展Kalman滤波器的PMSMi高性能控制系统[J].电工技术学报.2007,22(10):18-23,29.
    [33]Kang J., Hu B., Liu H., Xu G. Sensorless control of permanent magnet synchronous motor based on extended kalman filter [C]. In:Preceedings of the International Conference on Services Science, Management and Engineering,2009,567-570.
    [34]Young S. K., Sung L. R., Young A. K. An improved sliding mode observer of sensorless permanent magnet synchronous motor [C]. In:Preceedings of the SICE 2004 Annual Conference,2004,1:192-197.
    [35]Yoon-Seok H., Jung-Soo C., Young-Seok K. Sensorless pmsm drive with a sliding mode control based adaptive speed and stator resistance estimator [J]. IEEE Transactions on Magnetics.2000,36(5):3588-3591.
    [36]苏健勇,李铁才,杨贵杰.基于四阶混合滑模观测器的永磁同步电机无位置传感器控制[J].中国电机工程学报.2009,29(24):98-102.
    [37]Zhuang X., Rahman M. F. An adaptive sliding stator flux observer for a direct-torque-controlled ipm synchronous motor drive [J]. IEEE Transactions on Industrial Electronics.2007,54(5):2398-2406.
    [38]Ran L., Guangzhou Z. Position sensorless control for pmsm using sliding mode observer and phase-locked loop [C]. In:Preceedings of the IEEE 6th International Power Electronics and Motion Control Conference,2009,1867-1870.
    [39]Chu J. B., Hu Y. W., Huang W. X., Wang M. J., Yang J. F., Shi Y. X. An improved sliding mode observer for position sensorless vector control drive of pmsm [C]. In: Preceedings of the IEEE 6th International Power Electronics and Motion Control Conference,2009,1898-1902.
    [40]Ilioudis V. C., Margaris N. I. Pmsm sensorless speed estimation based on sliding mode observers [C]. In: Preceedings of the IEEE Power Electronics Specialists Conference, 2008,2838-2843.
    [41]Chi S., Zhang Z., Xu L. Y. A novel sliding mode observer with adaptive feedback gain for pmsm sensorless vector control [C]. In:Preceedings of the IEEE Power Electronics Specialists Conference,2007,2579-2585.
    [42]Feng Y., Zheng J., Yu X. H., Truong N. V. Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system [J]. IEEE Transactions on Industrial Electronics.2009,56(9):3424-3431.
    [43]Eom W., Kang I., Lee J. M. Enhancement of the speed response of pmsm sensorless control using an improved adaptive sliding mode observer [C]. In:Preceedings of the 34th Annual Conference of IEEE Industrial Electronics,2008,188-191.
    [44]Ezzat M., De Leon J., Gonzalez N., Glumineau A. Observer-controller scheme using high order sliding mode techniques for sensorless speed control of permanent magnet synchronous motor [C]. In:Preceedings of the 49th IEEE Conference on Decision and Control (CDC),2010,4012-4017.
    [45]Ezzat M., De Leon J., Gonzalez N., Glumineau A. Sensorless speed control of permanent magnet synchronous motor by using sliding mode observer [C]. In: Preceedings of the 11th International Workshop on Variable Structure Systems (VSS), 2010,227-232.
    [46]Wang Y. H., Zhang X. Z., Yuan X. F., Liu G. R. Position-sensorless hybrid sliding-mode control of electric vehicles with brushless dc motor [J]. IEEE Transactions on Vehicular Technology.2011,60(2):421-432.
    [47]Chen Z., Tomita M., Doki S., Okuma S. New adaptive sliding observers for position-and velocity-sensorless controls of brushless dc motors [J]. IEEE Transactions on Industrial Electronics.2000,47(3):582-591.
    [48]Kye-Lyong K., Jang-Mok K., Keun-Bac Ⅱ., Kyung-Hoon K.. Sensorless control of pmsm in high speed range with iterative sliding mode observer [C]. In:Preceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004,2:1111-1116.
    [49]Paponpen K., Konghirun M. An improved sliding mode observer for speed sensorless vector control drive of pmsm [C]. In:Preceedings of the CES/IEEE 5th International Power Electronics and Motion Control Conference,2006,2:1-5.
    [50]Liu X. P., Wang B. Ann observer of permanent magnet synchronous motor based on svpwm [C]. In:Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications,2006,1:95-100.
    [51]Lian K., Chiang C., Tu H. Lmi-based sensorless control of permanent-magnet synchronous motors [J]. IEEE Transactions on Industrial Electronics.2007,54(5): 2769-2778.
    [52]Unal S., Ozdemir M. Sensorless control of the permanent magnet synchronous motor using neural networks [C]. In:Electrical Machines and Power Electronics,2007. ACEMP '07. International Aegean Conference on,2007,638-642.
    [53]赵争鸣,袁立强,孟朔,李崇坚.通用变频器矢量控制与直接转矩控制特性比较[J].电工技术学报.2004,19(4):81-83.
    [54]Zhong L., Rahman M. F., Hu W. Y., Lim K. W., Rahman M. A. A direct torque controller for permanent magnet synchronous motor drives [J]. IEEE Transactions on Energy Conversion.1999,14(3):637-642.
    [55]Zhong L., Rahman M. F., Hu W. Y., Lim K. W. Analysis of direct torque control in permanent magnet synchronous motor drives [J]. IEEE Transactions on Power Electronics.1997,12(3):528-536.
    [56]Rahman M. F., Haque M. E., Lixin T., Limin Z. Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies [J]. IEEE Transactions on Industrial Electronics.2004,51(4):799-809.
    [57]Foo G. H. B., Rahman M. F. Direct torque control of an ipm-synchronous motor drive at very low speed using a sliding-mode stator flux observer [J]. IEEE Transactions on Power Electronics.2010,25(4):933-942.
    [58]Sazawa M., Yamada T., Ohishi K., Katsura S. Anti-windup algorithm with priority to proportional control output of speed pi controller for precision servo system [J]. Electrical Engineering in Japan.2010.170(3):57-64.
    [59]Da Z., Hui L.. Collins E. G. Digital anti-windup pi controllers for variable-speed motor drives using fpga and stochastic theory [J]. IEEE Transactions on Power Electronics. 2006,21(5):1496-1501.
    [60]Espina J., Arias A., Balcells J., Ortega C. Galceran S. Speed anti-windup pi strategies review for field oriented control of permanent magnet synchronous machines servo drives with matrix converters [C]. In:Preceedings of the 13th European Conference on Power Electronics and Applications,2009,1-8.
    [61]张月玲,党选举.基于死区迟滞函数的永磁同步直线电机滑模控制[J].中国电机工程学报.2011,31(3):67-74.
    [62]黄佳佳,周波,李丹,方斯琛.滑模控制永磁同步电动机位置伺服系统抖振[J].电工技术学报.2009,24(11):41-47.
    [63]In-Cheol B., Kyeong-Hwa K., Myung-Joong Y. Robust nonlinear speed control of pm synchronous motor using boundary layer integral sliding mode control technique [J]. IEEE Transactions on Control Systems Technology.2000,8(1):47-54.
    [64]Eker t. Sliding mode control with pid sliding surface and experimental application to an electromechanical plant [J]. ISA Transactions.2006,45(1):109-118.
    [65]纪志成,李三东,沈艳霞.自适应积分反步法永磁同步电机伺服控制器的设计[J].控制与决策.2005,20(3):329-331,336.
    [66]沈艳霞,林瑾,纪志成.自适应反步法感应电机控制器的设计和仿真研究[J].系统仿真学报.2006,18(2):451-455.
    [67]Orlowska-Kowalska T., Dybkowski M., Szabat K. Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors [J]. IEEE Transactions on Industrial Electronics.2010,57(2):553-564.
    [68]张国柱,陈杰,李志平.直线电机伺服系统的自适应模糊摩擦补偿[J].电机与控制学报.2009,13(1):154-160.
    [69]陈杰,李志平,张国柱.变结构神经网络自适应鲁棒控制[J].自动化学报.2010(1):174-178.
    [70]Wai R. J. Development of intelligent position control system using optimal design technique [J]. IEEE Transactions on Industrial Electronics.2003,50(1):218-231.
    [71]Jang J. O. Neural network saturation compensation for dc motor systems [J]. IEEE Transactions on Industrial Electronics.2007,54(3):1763-1767.
    [72]王军,肖建.永磁同步电动机自适应神经网络IP位置控制器[J].电机与控制学报.2005,9(6):525-528.
    [73]Utkin V. I. Variable structure systems with sliding modes [J]. IEEE Transactions on Automatic Control.1977,22(2):212-222.
    [74]Utkin V. I. Methods for constructing discontinuity planes in multidimensional variable structure systems [J]. Automation and Remote Control.1978,39:1466-1470.
    [75]Sivaramakrlshnan A. Y., Hariharan M. V., Srisailam M. C. Design of variable-structure load-frequency controller using pole assignment technique [J]. International Journal of control.1984,40(3):487-498.
    [76]El-Ghezawi O., Zinober A. S. I., Billings S. A. Analysis and design of variable structure systems using a geometric approach [J]. International Journal of Control. 1983,38(3):657-671.
    [77]Su W. C, Drakunov S. V., ii O. Constructing discontinuity surfaces for variable structure systems:a lyapunov approach [J]. Automatica.1996,32(6):925-928.
    [78]Davari A., Zhang Z. Application of the three-segment variable structure systems [C]. In: Proceedings of the American Control Conference,1991,62-63.
    [79]Man Z. H., Yu X. H. Terminal sliding mode control of mimo linear systems [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications.1997, 44(11):1065-1070.
    [80]Zak M. Terminal attractors for addressable memory in neural networks [J]. Physics Letters A.1988,133(1):18-22.
    [81]Utkin V. I., Shi J. Integral sliding mode in systems operating under uncertainty conditions [C]. In:Proceedings of the 35th IEEE Decision and Control,1996.4: 4591-4596.
    [82]Castanos F., Fridman L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations [J]. IEEE Transactions on Automatic Control.2006, 51(5):853-858.
    [83]Lee J. H., Youn M. J. A new improved continuous variable structure controller for accurately prescribed tracking control of bldd servo motors [J]. Automatica.2004, 40(12):2069-2074.
    [84]胡强晖,胡勤丰.全局滑模控制在永磁同步电机位置伺服中的应用[J].中国电机工程学报.2011,30(18):61-69.
    [85]Choi H., Park Y., Cho Y., Lee M. Global sliding-mode control. Improved design for a brushless dc motor [J]. Control Systems, IEEE.2001.21(3):27-35.
    [86]Yu S. H., Yu X. H. Robust global fast terminal sliding mode controller for rigid robotic manipulators [C]. In:Preceedings of the IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering,2002,3:1335-1338.
    [87]Man Z. H., Palaniswami M. Robust tracking control for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control.1994,39(1):154-159.
    [88]Yong F., Yu X. H., Man Z. H. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica.2002,38(12):2159-2167.
    [89]冯勇,鲍晟,余星火.非奇异终端滑模控制系统的设计方法[J].控制与决策.2002, 17(2):194-198.
    [90]高为炳,程勉.变结构控制系统的品质控制[J].控制与决策.1989,4(4):1-6.
    [91]Shtessel Y. B., Buffington J. M. Continuous sliding mode control [C]. In:Proceedings of the American Control Conference,1998,1:562-563.
    [92]Levant A. Principles of 2-sliding mode design [J]. Automatica.2007,43(4):576-586.
    [93]Levant A. Homogeneity approach to high-order sliding mode design [J]. Automatica. 2005(41).
    [94]Levant A. Quasi-continuous high-order sliding-mode controllers [C]. In:Preceedings of the 42nd IEEE Conference on Decision and Control,2003,5:4605-4610.
    [95]Levant A. Sliding order and sliding accuracy in sliding mode control [J]. International journal of control.1993,58(6):1247-1263.
    [96]Bartolini G., Ferrara A., Usani E. Chattering avoidance by second-order sliding mode control [J]. Automatic Control, IEEE Transactions on.1998,43(2):241-246.
    [97]Bartolini G., Ferrara A., Usai E., Utkin V. I. On multi-input chattering-free second-order sliding mode control [J]. IEEE Transactions on Automatic Control.2000, 45(9):1711-1717.
    [98]G Chiacchiarini H., Desages A. C., Romagnoli J. A., Palazoglu A. Variable structure control with a second-order sliding condition:application to a steam generator [J]. Automatica.1995.31(8):1157-1168.
    [99]Huangfu Y., Liu W., Laghrouche S., Miraoui A. Quasi-continuous high order sliding mode controller design for pmsm [C]. In:Preceedings of the International Conference on Electrical Machines and Systems,2008,3785-3788.
    [100]Pukdeboon C., Zinober A. S. I., Thein M. W. L. Quasi-continuous higher-order sliding mode controller designs for spacecraft attitude tracking manoeuvres [C]. In: Preceedings of the International Workshop on Variable Structure Systems,2008, 215-220.
    [101]Pukdeboon C., Zinober A. S. I., Thein M. W. L. Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers [J]. IEEE Transactions on Industrial Electronics.2010,57(4):1436-1444.
    [102]Bitao Z., Youguo P. Velocity control of permanent magnet synchronous motor based on second-order sliding-mode technology [C]. In:Proceedings of the International Conference on Digital Manufacturing and Automation (ICDMA),2010,2:893-897.
    [103]孙宜标,杨雪,夏加宽.基于二阶滑模的永磁直线同步电机的鲁棒速度控制[J].电工技术学报.2007,22(10):35-41.
    [104]李运华,杨丽曼,张志华.电液伺服系统的二阶滑模控制算法研究[J].机械工程学报.2005,41(3):72-75.
    [105]Damiano A., Gatto G. L., Marongiu I., Pisano A. Second-order sliding-mode control of dc drives [J]. IEEE Transactions on Industrial Electronics.2004,51(2):364-373.
    [106]Levant A. Higher-order sliding modes, differentiation and output-feedback control [J]. International Journal of Control.2003,76(9-10):924-941.
    [107]Boukhobza T., Barbot J. P. High order sliding modes observer [C]. In:Proceedings of the 37th IEEE Conference on Decision and Control,1998,2:1912-1917.
    [108]Davila J., Fridman L., Levant A. Second-order sliding-mode observer for mechanical systems [J]. IEEE Transactions on Automatic Control.2005,50(11):1785-1789.
    [109]Bartolini G., Pisano A., Usai E. An improved second-order sliding-mode control scheme robust against the measurement noise [J]. IEEE Transactions on Automatic Control.2004,49(10):1731-1737.
    [110]Lin F. J., Shyu K. K., Lin Y. S. Variable structure adaptive control for pm synchronous servo motor drive [J]. IEE Proceedings-Electric Power Applications.1999,146: 173-185.
    [111]Guan C., Pan S. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters [J]. Control Engineering Practice.2008,16(11): 1275-1284.
    [112]Liang Y., Cong S., Shang W. Function approximation-based sliding mode adaptive control [J]. Nonlinear Dynamics.2008,54(3):223-230.
    [113]Man Z. H., Yu X. H., Eshraghian K., Palaniswami M. A robust adaptive sliding mode tracking control using an rbf neural network for robotic manipulators [C]. In: Preceedings of the IEEE International Conference on Neural Networks,1995,5: 2403-2408.
    [114]Parma G. G., Menezes B. R., Braga A. P.. Costa M. A. Sliding mode neural network control of an induction motor drive [J]. International Journal of Adaptive Control and Signal Processing.2003,17(6):501-508.
    [115]Wai R. J.. Chang J. M. Implementation of robust wavelet-neural-network sliding-mode control for induction servo motor drive [J]. IEEE Transactions on Industrial Electronics. 2003,50(6):1317-1334.
    [116]Wai R. J., Chuang K. L., Lee J. D. On-line supervisory control design for maglev transportation system via total sliding-mode approach and particle swarm optimization [J]. IEEE Transactions on Automatic Control.2010,55(7):1544-1559.
    [117]周华伟,温旭辉,赵峰,张剑.基于内模的永磁同步电机滑模电流解耦控制[J].中国电机工程学报.2012,32(15):91-99.
    [118]Chang S. H., Chen P. Y., Ting Y. H.. Hung S. W. Robust current control-based sliding mode control with simple uncertainties estimation in permanent magnet synchronous motor drive systems [J]. Electric Power Applications, IET.2010,4(6):441-450.
    [119]Comanescu M., Longya X., Batzel T. D. Decoupled current control of sensorless induction-motor drives by integral sliding mode [J]. IEEE Transactions on Industrial Electronics.2008,55(11):3836-3845.
    [120]Mohamed Y. A. R. I., E1-Saadany E. F. A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in pmsm drive systems [J]. IEEE Transactions on Energy Conversion.2008,23(1):92-100.
    [121]王艳敏,王常虹,冯勇.具有逆变器死区补偿的永磁同步电动机滑模控制[J].吉林大学学报(工学版).2010,40(4):1096-1101.
    [122]王家军,许镇琳,王豪,孟明.基于逆变器死区特性的永磁同步电动机系统的μ-修整变结构控制[J].中国电机工程学报.2003,23(4):148-152.
    [123]Pisano A., Davila A., Fridman L., Usai E. Cascade control of pm dc drives via second-order sliding-mode technique [J]. IEEE Transactions on Industrial Electronics. 2008,55(11):3846-3854.
    [124]孙宜标,杨雪,夏加宽,王成元.基于对角化法的永磁直线同步电机二阶滑模控制[J].中国电机工程学报.2008,28(12):124-128.
    [125]Damiano A., Gatto G. L., Marongiu I., Pisano A. Second-order sliding-mode control of dc drives 2004,51(2):364-373.
    [126]Lin F. J., Chiu S. L., Shyu K. Novel sliding mode controller for synchronous motor drive [J]. IEEE Transactions on Aerospace and Electronic Systems.1998,34(2): 532-542.
    [127]Karami-Mollaee A., Pariz N., Shanechi H. M. Position control of servomotors using neural dynamic sliding mode [J]. Journal of Dynamic Systems, Measurement, and Control.2011,133.
    [128]张希,陈宗祥,潘俊民,王杰.永磁直线同步电机的固定边界层滑模控制[J].中国电机工程学报.2006,26(22):115-121.
    [129]张大兴,贾建援,郭永献.采用神经网络滑模控制的齿隙摩擦补偿[J].电子科技大学学报.2008,37(5):793-796.
    [130]张晓光,孙力,赵克.基于负载转矩滑模观测的永磁同步电机滑模控制[J].中国电机工程学报.2012,32(3):111-116.
    [131]皇甫宜耿,Laghrouche S.,刘卫国,Miraoui A.-一种高阶滑模控制的永磁同步电机磁通和电阻辨识[J].西北工业大学学报.2010,28(5):684-688.
    [132]Wang W., Bai Z. Sliding mode control based on disturbance observer for servo system [C]. In:Preceedings of the 2nd International Conference on Computer and Automation Engineering (ICCAE),2010,2:26-29.
    [133]Preindl M., Schaltz E. Sensorless model predictive direct current control using novel second-order pll observer for pmsm drive systems [J]. IEEE Transactions on Industrial Electronics.2011,58(9):4087-4095.
    [134]Luenberger D. An introduction to observers [J]. IEEE Transactions on Automatic Control.1971,16(6):596-602.
    [135]Walcott B., Zak S. State observation of nonlinear uncertain dynamical systems [J]. IEEE Transactions on Automatic Control.1987,32(2):166-170.
    [136]Davila J., Fridman L., Levant A. High-order sliding observation and fault detection [C]. In:Proceedings of the 16th Mediterranean Conference on Control and Automation, 2008,1699-1704.
    [137]寇宝泉,程树康.交流伺服系统及其控制[M].机械工业出版社.2008.
    [138]陈荣,邓智泉,严仰光.永磁同步伺服系统电流环的设计[J].南京航空航天大学报.2004,36(2):220-225.
    [139]Morimoto S., Sanada M., Takeda Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator [J]. IEEE Transactions on Industry Applications.1994,30(4):920-926.
    [140]Jung J., Nam K. A dynamic decoupling control scheme for high-speed operation of induction motors [J]. IEEE Transactions on Industrial Electronics.1999,46(1): 100-110.
    [141]杨南方,骆光照,刘卫国.误差补偿的永磁同步电机电流环解耦控制[J].电机与控制学报.2011.15(10):50-54.
    [142]杨明,徐殿国,贵献国.控制系统AntiWindup设计综述[J].电机与控制学报.,10(6):622-626.
    [143]March P., Turner M. C. Anti-windup compensator designs for nonsalient permanent-magnet synchronous motor speed regulators [J]. IEEE Transactions on Industry Applications.2009,45(5):1598-1609.
    [144]Bartolini G., Ferrara A., Usani E. Chattering avoidance by second-order sliding mode control [J]. IEEE Transactions on Automatic Control.1998,43(2):241-246.
    [145]Park J., Sandberg I. W. Universal approximation using radial-basis-function networks [J]. Neural computation.1991,3(2):246-257.
    [146]Zaltni D., Abdelkrim M. N., Ghanes M., Barbot J. P. Observability analysis of pmsm [C]. In:Preceedings of the 3rd International Conference on Signals, Circuits and Systems (SCS),2009,1-6.
    [147]Vaclavek P., Blaha P. Synchronous machine drive observability analysis for sensorless control design [C]. In:Preceedings of the IEEE International Conference on Control Applications,2007,1113-1117.