煤直接液化残渣基炭材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤直接液化残渣(简写为CLR)是一种高碳、高灰、高硫的混合物,约占煤直接液化工艺使用原煤的20~30wt.%,有效利用CLR对提高煤直接液化工艺的经济性、实现煤炭清洁高效利用具有重要意义。本文以CLR为原料,采用KOH活化法制备了多种炭材料,并研究了其作为催化甲烷裂解制氢催化剂时的催化性能以及作为超级电容器电极材料时的电化学性能。
     本文系统研究了KOH活化法制备CLR基炭材料的工艺条件(包括KOH/CLR质量比、KOH与CLR混合时采用的溶剂种类、碳化温度程序、碳化后的洗涤方式、CLR组成等)对所制备炭材料的孔结构、催化甲烷裂解性能及其作为超级电容器电极时的电化学性能等方面的影响,提出并实现了以CLR内在矿物质及其与KOH反应生成的无机盐作为炭材料成孔过程中的模板,直接制备出了孔径集中分布在3-5nm的CLR基介孔炭。
     通过索氏抽提和脱灰的方式将CLR分为重油(8.0wt%)、沥青烯(29.2wt.%)、前沥青烯(12.1W.%)、复杂碳基质(29.0wt.%)和矿物质(21.7wt.%)五部分,研究了各部分对炭材料孔结构和性能的影响。结果显示:在KOH活化过程中,CLR中的有机质作为碳源时趋向于形成微孔炭,而在CLR内在矿物质的模板作用下,可直接制得介孔炭(介孔孔隙率高达92%)。这种介孔炭材料具有比微孔炭材料更高且更稳定的催化甲烷裂解的活性。经过KOH活化、碳化及碳化后的洗涤等步骤,可将CLR基炭材料中的硫和铁等杂质含量降低到0.2%以下。相对于商业活性炭、炭黑BP2000以及文献报道的同类炭材料,CLR基介孔炭在催化甲烷裂解反应中表现出更高的催化活性和稳定性。
     CLR基炭材料的孔结构特征与其催化性能之间的关系表明:较大的比表面积和孔容促使炭材料具有较高且较稳定的催化甲烷裂解的活性。“催化-再生”性能测试实验显示脉冲式再生方式比连续式的效果更好,但是再生过程中产生的CO或C02会使催化甲烷裂解制氢反应丧失了相对于甲烷水蒸汽重整反应的优势。
     采用KOH活化与外加添加剂相结合的方法,可实现CLR基炭材料孔结构的调控,制备出多级孔道炭材料。研究了不同硅源材料(Si02、正硅酸乙酯、Na2SiO3和SBA-15)、金属氧化物(A1203和MgO)和有机物(蔗糖、尿素和CTAB)三类添加剂对炭材料的孔结构、催化活性和电化学性能的影响。结果发现:不同种类的添加剂会导致炭材料成孔机理的不同。以硅源材料或A1203作为添加剂时,它们通过与KOH反应生成无机盐,进而充当炭材料成孔过程中的模板;MgO通过自身占位的方式,可直接充当炭材料成孔过程中的模板;而有机添加剂通过在碳化过程中释放气体来影响炭材料的孔结构。通过优化添加剂的用量,可显著降低炭材料电极的等效电阻,进而将其电容值提高30%以上。当以MgO为添加剂时,所制备的炭材料电极性能优异;其电容值在5mV/s的扫描速率下高达186F/g,在10A/g的电流密度下为137F/g,在200mV/s扫描速率下经6000次的充放电循环后仍然保持在118F/g左右。以A1203为添加剂所制备的CLR基炭材料催化剂,通过甲烷裂解的方式首次实现了同时制备出纤维炭和氢气的优异效果;且生成的纤维炭也具有一定的催化活性。
     采用KOH活化结合外加Fe(NO3)3或Ni(NO3)2两种添加剂的方式,利用炭的高温还原性,可直接制备出掺杂Fe或Ni单质的炭材料,省略了传统制备工艺所必需的氢气还原步骤,简化了制备过程。当以掺杂Ni的炭材料作为催化甲烷裂解的催化剂时,甲烷转化率随着反应时间逐渐增高。这主要归因于生成的积碳中分散着粒径较小的Ni活性成分;该积碳可再次用作催化剂使用,且有利于提高Ni活性成分的利用率。
     选用具有不同灰含量的4种煤和2种油页岩为碳源,探讨了将制备与应用CLR基炭材料的方法拓展至煤或油页岩基炭材料领域的可行性,结果显示:在KOH活化过程中,引入添加剂可显著改进低灰煤基炭材料的孔结构和电化学性能;但却会破坏高灰煤基炭材料的孔结构,进而抑制其电化学性能。油页岩灰分含量较高,使得炭材料的收率较低;但可直接利用它的内在矿物质及其与KOH反应生成的无机盐为模板,制备出介孔炭。
Direct coal liquefaction residue (CLR) is rich in carbon, ash and sulfur contents, sharing about20-30wt.%of the raw coal used in the direct coal liquefaction process. It is necessary to effectively utilize CLR for the benefits of the process and developing clean and efficient coal technologies. In this study, various CLR based carbons were prepared by KOH activation and used as catalysts for hydrogen production by catalytic methane decomposition (CMD) and as supercapacitor electrodes.
     Effects of carbon preparation conditions including the weight ratio of KOH/CLR, solvents for mixing KOH and CLR, carbonization procedure and solvents for washing the carbonized samples and CLR compositions, were investigated on the resultant carbon pore structure, catalytic activity and electrochemical performance. The results show that CLR based mesoporous carbons, with the pore sizes centred at3-5nm, can be directly prepared by KOH activation by using the mineral matters contained in the CLR and their salts formed with KOH as the templates.
     The CLR were separated into five fractions, including oil, asphaltene, preasphaltene, complex carbon matrix and mineral matter, by Soxhlet extraction and demineralization. They share8.0,29.2,12.1,29.0and21.7wt.%of the CLR. As for their effects on the resultant carbons, the organic matter alone is conducive to developing a microporous structure, while the mineral matter plays a positive role on the KOH activation process of the CLR and can serve as the template for mesoporous structure (the mesoporosity up to92%). The resultant mesoporous carbon shows higher and more stable activity for CMD than the microporous. The contents of the impurities(including sulfur and Fe) in the resultant carbon can be down to less than0.2%after KOH activation, carbonization and washing after carbonization. And the CLR-based mesoporous carbon has higher and more stable activity for CMD than commercial coal-based activated carbon, carbon black BP2000and the similar carbons reported in literatures.
     The relationship between carbon catalytic activities and the textural properties indicates that larger surface area and higher pore volume correspond to higher and more stable catalytic activity. With respect to the decomposition-regeneration cycles, pulsed regeneration is better than the continuous. However, CO and/or CO2will release during the regeneration process, resulting in that the CMD reaction will wipe out its advantage compared with the traditional steam methane reform process.
     The porous structures of CLR-based carbons can be adjusted and hierarchical porous carbons can be obtained by KOH activation with addition of some additives. It was investigated the effects of three kinds of additives, including different silica materials (SiO2, TEOS, Na2SiO3and SBA-15), metal oxides(AI2O3and MgO) and organic materials (sugar, urea and CTAB), on the resultant carbon pore structure, catalytic performance and electrode capacitance. The results show that different additives correspond to different mechanisms for the carbon porous structures. Some nanoparticles, formed by the reaction of the silica materials (or AI2O3) and KOH, can serve as space fillers of nanopores in the carbonized carbon. So can MgO particles themselves. The gases, produced by the decomposition of the organic additives, can develop and/or widen some pores. Equivatent resistances of the carbon electrodes can be reduced by the optimum dosage of the additive, with the capacitance increased by more than30%. When MgO was used as the additive, the resultant carbon electrode shows excellent capacitive performance, with the capacitance up to186F/g at the scan rate of5mV/s or137F/g at the current density of10A/g and good cycle stability (keeping the capacitance of about118F/g) after6000cycles at200mV/s. When Al2O3was used as the additive, the resultant carbon can serve as the carbon catalyst of CMD for simultaneous production of hydrogen and fibrous carbons, which was reported for the first time. And the produced fibrous carbons show good catalytic activity for CMD.
     Fe (or Ni)doped carbons can be directly prepared from CLR by KOH activation with addition of Fe(NO3)3(or Ni(NO3)2). The preparation method can utilize the carbon reducibility at high temperature, eliminating hydrogen reduction process required by the traditional synthesis process. When Ni doped carbon was used as the catalyst for CMD, methane conversion increased with the reation time. It was mainly attributed to that the carbon deposits produced by CMD were mixed with small particles of active Ni. So they can serve as the catalysts for CMD, increasing the active Ni utilization.
     4coals and2oil shales, as carbon precursors with different ash contents, were used to prepare carbons by the methods mentioned for CLR-based carbons. The results show that the method combined with KOH activation and the additive can improve the porous structure and electrochemical performance of the carbons from coal with low ash content, but do harm to those from coal with high ash content. Due to the high ash content, carbons from oil shales had a low yield. But the mineral matters contained in oil shales and their salt nanoparticles formed by the reaction with KOH can serve as the template for mesoporous carbons.
引文
[1]BP世界能源统计年鉴,2012年6月.(?)tttp://www.bp.com/statisticalroview.
    [2]Liu Z Y, Shi S D, Li YW. Coal liquefaction technologies-Development in China and challenges in chemical reaction engineering [J]. Chemical Engineering Science,2010,65(1):12-17.
    [3]Patel P, Piato R China and South Africa pursue coal liquefaction [J]. Mrs Bulletin,2012,37(3): 204-205.
    [4]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社,2005.
    [5]Itoh H, Hiraide M, Kidoguchi A, et al. Simulator for coal liquefaction based on the NEDOL process [J]. Industrial & Engineering Chemistry Research,2001,40(1):210-217.
    [6]范传宏.煤直接液化工艺技术及工程应用[J].石油炼制与化工,2003,34(7):20-24.
    [7]Elliot MA煤利用化学(下册,徐晓等译)[M].北京:化学工业出版社,1991.
    [8]Gentzis T, Parker R J, Simpson P L. Liquefaction of Black-Thunder coal. 1. Petrographic examination of residues [J]. Fuel,1995,74(11):1599-1610.
    [9]Aleksic B R, Ercegovac M D, Cvetkovic 0 G, et al. Direct hydroliquefaction of a low rank soft brown coal [J]. Fuel Processing Technology,1998,58(1):33-43.
    [10]郭树才.煤化工工艺学[M].北京:化学工业出版社,1992.
    [11]Li X, Hu H Q. Zhu S W, et al. Kinetics of coal liquefaction during heating-up and isothermal stages [J]. Fuel,2008,87(4-5):508-513.
    [12]刘文郁.煤直接液化残渣热解特性研究[D].北京:煤炭科学研究院总院北京煤化工分院,2005.
    [13]谷小会.神华煤直接液化残渣结构特性的探讨[D].北京:煤炭科学研究院总院北京煤化工分院,2005.
    [14]方磊.神华煤液化残渣及水煤浆的燃烧特性研究与数值模拟[D].杭州:浙江大学,2006.
    [15]Hata K, Watanabe Y, Wada K, et al. Iron sulfate sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source [J]. Fuel Processing Technology,1998,56(3):291-304.
    [16]Maroto-Valer M, Andersen J M, Snape C E. In situ H-1 NMR study of the fluidity enhancement for a bituminous coal by coal tar pitch and a hydrogen-donorliquefaction residue [J]. Fuel,1998, 77(9-10):921-926.
    [17]Cui H, Yang J, Liu Z, et al. Effect of remained catalysts and enriched coal minerals on devolatilization of residual chars from coal liquefaction [J]. FueL 2002,81(11-12):1525-1531.
    [18]Cornils B, Hibbel J, Ruprecht P, et al. Gasification of hydrogenation residues using the Texaco coal-gasification process [J]. Fuel Processing Technology,1984,9(3):251-264.
    [19]崔洪,杨建丽,刘振宇,等.煤直接液化残渣的性质与气化制氧[J].煤炭转化.2001,24(1):15-2().
    [20]Chu X, Li W, Chen H. Gasification property of direct coal liquefaction residue with steam [J]. Process Safety and Environmental Protection,2006,84(B6):440-445.
    [21]崔洪.煤液化残渣的物化性质及其反应性研究[D].太原:中科院山西煤化学研究所,2001.
    [22]陈明波,王彬,赵奇,等.煤直接液化残渣焦化特性研究[J].洁净煤技术,2005,11(1):29-33.
    [23]王彬,刘文郁,陈明波,等.煤直接液化残渣热态连续进料炼焦试验研究[J].洁净煤技术,2005,11(3):22-25.
    [24]Li J, Yang J L, Liu Z Y Hydro-treatment of a direct coal liquefaction residue and its components [J]. Catalysis Today, 2008, 130(2-4): 389-394.
    [25]Yang J L, Wang ZX, Liu Z Y, et al. Novel use of residue from direct coal liquefaction process [J]. Energy & Fuels, 2009, 23: 4717-4722.
    [26]Xiao N, Zhou Y, Qiu J S, et al. Preparation of carbon nanofibers/carbon foam monolithic composite from coal liquefaction residue [J]. Fuel, 2010, 89(5). 1169-1171.
    [27]Zhou Y, Xiao N, Qiu J S, et al. Preparation of carbon microfibers from coal liquefaction residue [J]. Fuel, 2008, 87(15-16): 3474-3476.
    [28]Amuda O S, Grwa A A, Bello I A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon [J]. Biochemical Engineering Journal, 2007, 36(2): 174-181.
    [29]Chen Y, Zhu Y C, Wang Z C, et al. Application studies of activated carbon derived from rice husks produced by chemical-thermal process - A review [J]. Advances in Colloid and Interface Science. 2011, 163(1): 39-52.
    [30]Acharya J, Saliu J N, Sahoo B K, et al. Removal of chromium (VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride [J]. Chemical Engineering Journal, 2009,150(1): 25-39.
    [31]Ioannidou O. Zabaniotou A. Agricultural residues as precursors for activated carbon production - A review [J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1966-2005.
    [32]Lillo-Rodenas M A. Lozano-Castcllo D. Cazorla-Amoros D, et al. Preparation of activated carbons from Spanish anthracite II. Activation by NaOH [J]. Carbon. 2001, 39(5): 751-759.
    [33]Li X K, Zhang Q Y, Tang L L, et al. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported actuated carbon prepared from petroleum coke [J]. Journal of Hazardous Materials, 2009, 163(1): 115-120.
    [34]Shawabkeh R A. Synthesis and characterization of activated carbo-aluminosilicatc material from oil shale [J]. Microporous and Mesoporous Materials, 2004, 75(1-2): 107-114.
    [35]Shim J W, Park S J, Ryu S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers [J]. Carbon. 2001, 39(11): 1635-1642.
    [36]Cai Q, Huang Z H, Kang F Y et al. Preparation of activated carbon microsphercs from phenolic-resin by supercritical water activation [J]. Carbon, 2004, 42(4): 775-783.
    [37]Kinoshita H. Suda Y Kawakubo T, et al. Electroanalysis of NADH using a new electrode prepared from plastic formedcarbon [J]. Microchcmical Journal. 1994. 49(2-3): 226-234.
    [38]Liang C D. Li Z, Dai S. Mesoporous carbon materials: Synthesis and modification. Angcw andte Chemie International Edition. 2008. 47(20): 3696-3717.
    [39]Raymundo-Piiiero E, Azais P, Cacciaguerra T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization [J], Carbon. 2005. 43(4): 786-795.
    [40]Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials [J]. Advanced Materials,2006,18(16):2073-2094.
    [41]Ting C C, Wu H Y,Vetrivel S, et al. A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organic-inorganic self-assembly of triblock copolymer, sucrose and silica [J]. Microporous and Mesoporous Materials,2010,128(1-3):1-11.
    [42]Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis [J]. Carbon,1998, 36(3):159-175.
    [43]Abbas H F, Daud W M A W. Hydrogen production by methane decomposition:A review [J]. International Journal of Hydrogen Energy,2010,35(3):1160-1190.
    [44]Muradov N, Smith F, T-Raissi A Catalytic activity of carbons for methane decomposition reaction [J]. Catalysis Today,2005,102:225-233.
    [45]Muradov N. Catalysis of methane decomposition over elemental carbon [J]. Catalysis Communications,2001,2(3-4):89-94.
    [46]Suelves I, Lazaro M J, Moliner R, et aL Hydrogen production by methane decarbonization: Carbonaceous catalysts[J]. International Journal of Hydrogen Energy,2007,32(15):3320-3326.
    [47]Serrano D P, Botas J A, Pizarro P, et al. Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH4 decomposition[J]. Chemical Communications,2008, (48):6585-6587.
    [48]Botas J A, Serrano D P, Guil-Lopez R, et al. Methane catalytic decomposition over ordered mesoporous carbons:A promising route for hydrogen production [J]. International Journal of Hydrogen Energy,2010,35(18):9788-9794.
    [49]Takenaka S, Kobayashi S. Ogihara H, et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber [J]. Journal of Catalysis,2003,217(1):79-87.
    [50]Takenaka S, Serizawa M, Otsuka K. Formation of filamentous carbons over supported Fe catalysts through methane decomposition [J]. Journal of Catalysis,2004,222(2):520-531.
    [51]Suelves I, Pinilla J L, Lazaro M J, et al. Carbonaceous materials as catalysts for decomposition of methane [J]. Chemical Engineering Journal,2008,140(1):432-438.
    [52]Abbas H F, Daud W M A W. Deactivation of palm shell-based activated carbon catalyst used for hydrogen production by thermocatalytic decomposition of methane [J]. International Journal of Hydrogen Energy,2009,34(15):6231-6241.
    [53]Moliner R, Suelves I, Lazaro M J, et al. Thermocatalytic decomposition of methane over activated carbons:Influence of textural properties and surface chemistry [J]. International Journal of Hydrogen Energy,2005,30(3):293-300.
    [54]Krzyzynski S, Kozlowski M. Activated carbons as catalysts for hydrogen production via methane decomposition [J]. International Journal of Hydrogen Energy,2008,33(21):6172-6177.
    [55]Kim M H, Lee E K, Jun J H, et al. Hydrogen production by catalytic decomposition of methane over activated carbons:Kinetic study [J]. International Journal of Hydrogen Energy,2004,29(2): 187-193.
    [56]Lee Y S, Kwak J H, Han G Y et al. Characterization of active sites for methane decomposition on carbon black through acetylene chemisorption[J]. Carbon,2008,46(2):342-348.
    [57]Dunker A M, Ortmann J P. Kinetic modeling of hydrogen production by themial decomposition of methane[J]. International Journal of Hydrogen Energy,2006,31(14):1989-1998.
    [58]Lee E K, Lee S Y, Han G Y, et al. Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production [J]. Carbon,2004,42(12-13):2641-2648.
    [59]Lazaro M J, Pinilla J L, Suelves I, et al. Study of the deactivation mechanism of carbon blacks used in methane decomposition [J]. International Journal of Hydrogen Energy.2008,33(15):4104-4111.
    [60]Serrano D P, Botas J A, Guil-Lopez R. H2 production from methane pyrolysis over commercial carbon catalysts:Kinetic and deactivation study [J]. International Journal of Hydrogen Energy,2009, 34(10):4488-4494.
    [61]Lee S Y, Ryu B H, Han G Y et al. Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production [J]. Carbon,2008,46(14):1978-1986.
    [62]Ashok J, Naveen K S,Venugopal A, et al. COx free hydrogen by methane decomposition over activated carbons [J]. Catalysis Communications,2008,9(1):164-169.
    [63]Lee K K, Han G Y, Yoon K J, et al. Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst [J]. Catalysis Today,2004,93-95:81-86.
    [64]Bai Z, Chen H, Li B, et al. Catalytic decomposition of methane over activated carbon [J]. Journal of Analytical and Applied Pyrolysis,2005,73(2):335-341.
    [65]Abbas H F, Daud W M A W. Therm ocatalytic decomposition of methane using palm shell based activated carbon:Kinetic and deactivation studies [J]. Fuel Processing Technology,2009,90(9): 1167-1174.
    [66]Muradov N, Smith F, Huang C, et al. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions [J]. Catalysis Today,2006,116(3):281-288.
    [67]Abbas H F, Daud W M A W. Thermoc atahtic decomposition of methane for hydrogen production using activated carbon catalyst:Regeneration and characterization studies [J]. International Journal of Hydrogen Energy,2009,34(19):8034-8045.
    [68]Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources,2006,157(1):11-27.
    [69]Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage [J]. Advanced Materials,2011.23(42):4828-4850.
    [70]Inagakia M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors [J]. Journal of Power Sources,2010,195(24):7880-7903.
    [71]Fan Z, Chen J H, Cui K Z. et al. Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotubecomposites [J]. Electrochimica Acta,2007,52(9):2959-2965.
    [72]Kim I H, Kim K B. Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications [J]. Journal of the Electrochemical Society. 2006,153(2):A383-A389.
    [73]Lao Z J. Konslantinov K_ Tournairc Y, et al. Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors[J]. Journal of Power Sources,2006,162(2): 1451-1454.
    [74]Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta,2000,45(15-16):2483-2498.
    [751 White R J, Budarin V, Luque R, et al. Tuneable porous carbonaceous materials from renewable resources [J]. Chemical Society Reviews.2009,38(12):3401-3418.
    [76]Titirici M M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization [J]. Chemical Society Reviews,2010,39(1):103-116.
    [77]Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon,2005,43(6):1303-1310.
    [78]Endo M, Kim Y J, Ohta H, et al. Morphology and organic EDLC applications of chemically activated AR-resin-based carbons[J]. Carbon,2002,40(14):2613-2626.
    [79]Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte [J]. Carbon,2003, 41(9):1765-1775.
    [80]Gamby J, Taberna P L, Simon P, et al. Studies and characterisations of various activated carbons used forcarbon/carbonsupercapacitors [J]. Journal of Power Sources,2001,101(1):109-116.
    [81]Simon P, Gogotsi Y Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11): 845-854.
    [82]Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor [J]. Journal of the American Chemical Society,2008,130(9):2730-2731.
    [83]Fuertes AB, Pico F, Rojo J M. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons [J]. Journal of Power Sources,2004,133(2):329-336.
    [84]Liu H Y, Wang K P, Teng H S. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation[J]. Carbon,2005,43(3):559-566.
    [85]Muradov N Z,Veziroglu T N. From hydrocarbon to hydrogen-carbon to hydrogen economy [J]. International Journal of Hydrogen Energy,2005,30(3):225-237.
    [86]Lu C L, Xu S P, Gan Y X, et al. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH [J]. Carbon,2005,43(11):2295-2301.
    [87]Tan I A W, Ahmad A L, Hameed B H Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology [J]. Journal of Hazardous Materials,2008,153(1-2):709-717.
    [88]Khare P, Baruah B P, Rao PG Application of chemometrics to study of kinetics of coal pyrolysis:A novel approach[J]. Fuel,2011,90(11):3299-3305.
    [89]Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, et al. Influence of pore size distribution on methane storage at relatively low pressure:Preparation of activated carbon with optimum pore size [J]. Carbon,2002,40(7):989-1002.
    [90]Yue Z R, Economy J, Bordson G Preparation and characterization of NaOH-activated carbons from phenolic resin[J]. Journal of Materials Chemistry,2006.16(15):1456-1461.
    [91]Avelar F F, Bianchi M L, Goncalves M, et al. The use of piassava fibers (Attalea funifera) in the preparation of activated carbon [J]. Bioresource Technology,2010,101(12):4639-4645.
    [92]Ahmad M A, Alrozi R. Optimization of rambutan peel based activated carbon preparation conditions for Remazol Brilliant Blue R removal [J]. Chemical Engineering Journal,2011.168(1): 280-285.
    [93]Ma J H Tan J D, Du X W, et al. Effects of preparation parameters on the textural features of a granular zeolite/activated carbon composite material synthesized from elutrilithe and pitch [J]. Microporous and Mesoporous Materials,2010,132(3):458-463.
    [94]Zubizarreta L, Arenillas A, Pirard J P, et al. Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH [J]. Microporous and Mesoporous Materials,2008, 115(3):480-490.
    [95]Vilaplana-Ortego E, Lillo-Rodenas M A, Alcaiiiz-Monge J, et al. Isotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation [J]. Carbon,2009. 47(8):2141-2142.
    [96]Ryu S Y, Kim D S, Jcon J D, et al. Pore size distribution analysis of mesoporous TiO2 spheres by 1H nuclear magnetic resonance (NMR) cryoporometry [J]. Journal of Physical Chemistry C,2010, 114(41):17440-17445.
    [97]Kruk M, Jaroniec M. Determination of mesopore size distributions from argon adsorption data at 77 K [J]. Journal of Physical Chemistry B,2002,106(18):4732-4739.
    [98]Kruk M, Jaroniec M. Argon adsorption at 77 K as a useful tool for the elucidation of pore connectivity in ordered materials with large cagelike mcsopores [J]. Chemistry of Materials,2003, 15(15):2942-2949.
    [99]Kim T W, Ryoo R, Kruk M, et al. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time [J]. Journal of Physical Chemistry B.2004,108(31):11480-11489.
    [100]Schuth F. Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angewandte Chemie International Edition,2003,42(31):3604-3622.
    [101]Morishita T, Tsumura T, Toyoda M, et al. A review of the control of pore structure in MgO-templated nanoporous carbons [J]. Carbon,2010,48(10):2690-2707.
    [102]Lillo-Rodenas M A, Juan-Juan J, Cazorla-Amoios D, et al. About reactions occurring during chemical activation with hydroxides [J]. Carbon,2004,42(7):1371-1375.
    [103]Lee H I, Stucky G D, Kim J H, et al. Spontaneous phase separation mediated synthesis of 3D mesoporous carbon with controllable cage and window size [J]. Advanced Materials,2011,23(20): 2357-2361.
    [104]Gaiiana J, Gonzalez-Garcia C M, Gonzalez J F, et al. Preparation of activated carbons from bituminous coal pitches [J]. Applied Surface Science,2004,238(1-4):347-353.
    [105]Leofanti G, Padovan M, Tozzola G, et al. Surface area and pore texture of catalysts [J]. Catalysis Today,1998.41(1-3):207-219.
    [106]Hu Z H, Srinicasan M P. Mesoporous high-surface-area activated carbon [J]. Microporous and Mesoporous Materials,2001,43(3):267-275.
    [107]Przepiorski J, Karolczyk J, Takeda K, et al. Porous carbon obtained by carbonization of PET mixed with basic magnesium carbonate:Pore structure and pore creation methanism[J]. Industrial & Engineering Chemistry Research,2009,48(15):7110-7116.
    [108]Tamai H, Yoshida T, Sasaki M, et al. Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex [J]. Carbon,1999,37(6):983-989.
    [109]Hu Z H, Srinivasan M P, Ni Y M. Novel activation process for preparing highly microporous and mesoporous activated carbons [J]. Carbon,2001,39(6):877-886.
    [110]Morishita T, Soneda Y, Tsumura T, et al. Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors [J]. Carbon,2006,44(12): 2360-2367.
    [Ⅲ]Hua W, Jin L J, He X F, et al. Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma[J]. Catalysis Communications,2010,11(11):968-972.
    [112]Ermakova M A, Ermakov D Y Chuvilin AL, et al. Decomposition of methane over iron catalysts at the range of moderate temperatures:The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments[J]. Journal of Catalysis,2001,201(2):183-197.
    [113]Pinilla J L, Utrilla R, Karn R K, et al. High temperature iron-based catalysts for hydrogen and nanostrucrured carbon production by methane decomposition [J]. International Journal of Hydrogen Energy,2011,36(13):7832-7843.
    [114]Figueiredo J L, Qrfao J J M, Cunha A F. Hydrogen production via methane decomposition on Raney-type catalysts [J]. International Journal of Hydrogen Energy,2010,35(18):9795-9800.
    [115]Chu X J, Li W, Li B Q, et al. Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal[J]. Fuel,2008,87(2):211-215.
    [116]Lolja S A A model for alkaline removal of sulfur from a low-rank coal [J]. Fuel Processing Technology,1999,60(3):185-194.
    [117]Uzun D, Ozdogan S. Sulfur removal from original and acid treated lignites by pyrolysis [J]. Fuel, 2006,85(3):315-322.
    [118]Ryu B H, Lee S Y, Lee D H, et al. Catalytic characteristics of various rubber-reinforcing carbon blacks in decomposition of methane for hydrogen production [J]. Catalysis Today,2007,123(1-4): 303-309.
    [119]Nabais J M V Teixeira J Q Almeida I. Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors [J]. Bioresource Technology,2011,102(3):2781-2787.
    [120]Pivinskii Y E. Nanodisperse silica and some aspects of nanotechnologies in the field of silicate materials science. Part 1[J]. Refractories and Industrial Ceramics,2007,48(6):408-417.
    [121]Bergese P, Alessandri I, Bontempi E, et al. Phase transformations in bulk nanostructured potassium niobiosilicate glasses [J]. Journal of Physical Chemistry B,2006,110(51):25740-25745.
    [122]Guo YP, Yang S F,Yu K F, et al. The preparation and mechanism studies of rice husk based porous carbon[J]. Materials Chemistry and Physics,2002,74(3):320-323.
    [123]GAAL L. Tree-mould caves in Slovakia [J]. International Journal of Speleology,2003,32(1/4): 107-111.
    [124]Wang G Q, Huang C C, Xing W, et al. Micro-meso hierarchical porous carbon as low-cost counter electrode for dye-sensitized solar cells[J]. Electrochimica Acta,2011,56(16):5459-5463.
    [125]Zheng Z J, Gao Q M. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-form aldehyde resins with high performance for supercapacitors[J]. Journal of Power Sources,2011,196(3):1615-1619.
    [126]Hu Y S, Adelhelm P, Smarsly B M, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability [J]. Advanced Functional Materials.2007,17(12):1873-1878.
    [127]Yamada H, Nakamura H, Nakahara F, et al. Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores [J]. Journal of Physical Chemistry C, 2007. 111(1): 227-233.
    [128]Serrano D P, Botas J A, Fierro J L G, et al. Hydrogen production by methane decomposition: Origin of the catalytic activity of carbon materials [J]. FueL 2010, 89(6): 1241-1248.
    [129]Liang C D, Xie H. Schwartz V. et al. Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane [J]. Journal of the American Chemical Society, 2009, 131(22): 7735-7741.
    [130]Guil-Lopez R, Botas J A, Fierro J LG et al. Comparison of metal and carbon catalysts for hydrogen production by methane decomposition [J]. Applied Catalysis A: General, 2011, 396(1-2): 40-51.
    [131]Stein A, Wang Z Y Fierke M A. Functionalization of porous carbon materials with designed pore architecture [J]. Advanced Materials, 2009, 21(3): 265-293.
    [132]Lozano-Castello D, Lillo-Rodenas M A, Cazorla-Amoros D, et al, Preparation of activated carbons from Spanish anthracite I. Activation by KOH [J]. Carbon, 2001, 39(5): 741-749.
    [133]Hasegawa G Aoki M, Kanamori K, et al. Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area [J|. Journal of Materials Chemistry. 2011. 21(7): 2060-2063.
    [134]Montes-Moran M A, Suarez D, Menendez J A, et al. On the nature of basic sites on carbon surfaces: An overview [J]. Carbon. 2004. 42(7): 1219-1225.
    [135]Hulicova-Jurcakova D. Seredych M. Lu G Q, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous actuated carbon on its electrochemical performance in supercapacitors [J]. Advanced Functional Materials. 2009, 19(3): 438-447.
    [136]Ania C O. Khomenko V, Raymundo-Pinero E. et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template [J]. Advanced Functional Materials. 2007, 17(11): 1828-1836.
    [137]Beguin F, Szostak K, Lota G et al. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanorube/polyacrylonilrile blends [J]. Advanced Materials, 2005. 17(19): 2380-2384.
    [138]Machnikowski J. Grzyb B. Machnikowska H, et al. Surface chemistry of porous carbons from N-pohmers and their blends with pitch [J]. Microporous and Mesoporous Materials. 2005. 82(1-2): 113-120.
    [139]Xu F, Cai R J, Zeng Q C, et al. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapfcitors [J]. Journal of Materials Chemistry 2011. 21(6): 1970-1976
    [140]Huang W T. Zhang H. Huang Y Q, et al. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors |J]. Carbon 2011. 49(3): 838-843.
    [141]Ruiz. V. Pandolfo AG High-frequency carbon supercapacitors from polufurfuryl alcohol [J]. Journal of Power Sources, 2011, 196(18): 7816-7822.
    [142]Kierzek K, Frackowiak E, Lota G et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation [J]. Elcctrochimica Acta. 2004, 49(4): 515-523.
    [143]Xing W, Qiao S Z, Ding R G, et al. Superior electric double layer capacitors using ordered mesoporous carbons [J]. Carbon,2006,44(2):216-224.
    [144]Lei Z B, Christov N, Zhang L L, et al. Mesoporous carbon nanospheres with an excellent electrocapacitive performance [J]. Journal of Materials Chemistry,2011,21(7):2274-2281.
    [145]Li H, Yu D H, Hu Y et al. Effect of preparation method on the structure and catalytic property of activated carbon supported nickel oxide catalysts [J]. Carbon,2010,48(15):4547-4555.
    [146]Tzeng S S, Hung K H,Ko T H. Growth of carbon nanofibers on activated carbon fiber fabrics [J]. Carbon,2006,44(5):859-865.
    [147]Bai Z Q, Chen H K, Li B Q, et al. Methane decomposition over Ni loaded activated carbon for hydrogen production and the formation of filamentous carbon [J]. International Journal of Hydrogen Energy,2007,32(1):32-37.
    [148]Bedia J, Rosas J M, Rodriguez-Mirasol J, et al. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation [J]. Applied Catalysis B:Environmental, 2010,94(1-2):8-18.
    [149]Morales-Torres S, Siliva A M T, Maldonado-Hodar F J, et al. Pt-catalysts supported on activated carbons for catalytic wet air oxidation of aniline:Activity and stability [J]. Applied Catalysis B: Environmental,2011,105(1-2):86-94.
    [150]Ashok J, Raju G, Reddy P S, et al. Catalytic decomposition of CH4 over NiO-Al2O3-SiO2 catalysts: Influence of catalyst preparation conditions on the production of H2 [J]. International Journal of Hydrogen Energy,2008,33(18):4809-4818.
    [151]Chen D, Christensen K O, Ochoa-Fernandez E, et al. Synthesis of carbon nanofibers:Effects of Ni crystal size during methane decomposition [J]. Journal of Catalysis,2005,229(1):82-96.
    [152]Takenaka S, Ogihara H, Otsuka K. Structural change of Ni species in Ni/SiO2 catalyst during decomposition of methane [J]. Journal of Catalysis,2002,208(1):54-63.
    [153]Li Y Zhang B C, Xie X W. et al. Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers [J]. Journal of Catalysis,2006,238(2):412-424.
    [154]Ermakova M A, Ermakov D Y Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition [J]. Catalysis Today,2002,77(3):225-235.
    [155]Choma J, Jamiola D, Augustynek K, et al. Carbon-gold core-shell structures:formation of shells consisting of gold nanoparticles [J]. Chemical Communications,2012,48(33):3972-3974.
    [156]Wen Z H, Ci S Q, Zhang F, et al. Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatarysts for oxygen reduction reaction [J]. Advanced Materials,2012,24(11): 1399-1404.
    [157]Pinilla J L, Suelves I, Lazaro M J. et al. Activity of NiCuAl catalyst in methane decomposition studied using a thermobalance and the structural changes in the Ni and the deposited carbon [J]. International Journal of Hydrogen Energy.2008,33(10):2515-2524.
    [158]Monthioux M, Noe L, Dussault L, et al. Texturising and structurising mechanisms of carbon nanofilaments during growth [J]. Journal of Materials Chemistry,2007,17(43):4611-4618.
    [159]Yamada Y, Tsung C K, Huang W Y et al. Nanocrystal bilayer for tandem catalysis [J]. Nature Chemistry,2011,3(5):372-376.