金属—有机框架材料的功能修饰、尺寸调控和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金属-有机框架(Metal-Organic Frameworks, MOFs)材料在能源气体储存及分离、生物及环境荧光探测等领域显示出重要的潜在应用而受到广泛关注。但是,传统MOFs材料通过较弱且选择性差的范德华力吸附气体分子,限制了其气体吸附容量和选择性的提高,因此需要对MOFs材料进行功能化修饰以增加其与目标气体分子的吸附强度及选择性。然而目前MOFs材料功能化修饰的研究开展还较少,采用多种功能修饰策略的研究更是较少涉及。同时,研制兼具高气体吸附容量和高吸附选择性的优异综合吸附性能的MOFs材料尚存在较大困难。而在MOFs材料荧光探测领域,MOFs材料的研究主要集中在块体MOFs的制备和应用,块体材料较大的尺寸限制了其在细胞及生物活体内的应用。但对MOFs材料的尺寸调控及纳米MOFs的研究尚在起步阶段。
     针对上述科学问题,本文开展了金属-有机框架材料的功能修饰、尺寸调控和性能研究:设计并合成了一种采用阳离子型框架的新型MOF材料,探索了离子型框架功能修饰策略对烷烃气体吸附与分离性能的影响;开发了采用多功能修饰并具有优异乙炔气体吸附与分离性能的新型MOF材料;研究阐明了MOFs材料中功能修饰策略对气体吸附和分离性能的协同作用和作用机理;探索了稀土-有机框架材料的尺寸调控方法,并成功研制了纳米稀土-有机框架材料,研究了其对细菌孢子及硝基爆炸物的荧光探测性能,为进一步开发可直接应用于细胞及生物活体内生物荧光探针奠定了基础。
     设计并合成了一种具有阳离子型框架功能修饰的新型MOF材料Zn8O(EDDA)4(ad)4·(HEDDA)2·6DMF·27H2O (ZJU-48; H2EDDA=二甲基-(E)-均二苯代乙烯-4,4-乙二酸;ad=腺嘌呤)。并采用气体吸附测试研究了阳离子型框架功能修饰策略对样品气体吸附性能的作用。ZJU-48是具有阳离子型框架的三维多孔结构,孔洞尺寸为9.1×9.1A2。N2吸附测试表明ZJU-48a是I型等温吸附线,BET比表面积1450m2g-1。ZJU-48a对乙炔的吸附量(57cm3g-1)远高于具有类似结构并得到大量研究的中性MOF材料MOF-5(26cm3g-1),表明离子型框架可以显著增强MOFs材料的气体吸附容量。ZJU-48a对乙烷/甲烷的吸附选择性约为6.0,对C1/C2烷烃气体可以进行有效分离。ZJU-48a对乙烷的吸附焓高达28.0KJ mol-1,是目前报道的MOFs材料乙烷吸附焓最高值之一。这主要是因为ZJU-48a的离子型骨架自身的电荷可以诱导气体分子发生极化从而产生静电作用,有效增强了烷烃气体与MOF材料孔洞内壁之间的作用。进一步采用吸附床分离和脉冲色谱柱分离等理论计算方法模拟了ZJU-48a对烷烃气体的实际分离过程,结果表明ZJU-48a对C1/C2烷烃气体可进行有效的实际分离。离子型框架功能修饰策略为烷烃气体吸附与分离材料的设计研究提供了一种新的思路。
     设计并合成了一种兼具开放金属位和Lewis吡啶位的多功能修饰位点的新型MOF材料Cu6(PDC)6·2.6H20(UTSA-50;PDC=3,5-吡啶二羧酸),并采用气体吸附测试研究了多功能修饰位点对乙炔气体吸附性能的作用机理。UTSA-50是孔洞中具有Cu(II)开放金属位和Lewis比啶位的多功能修饰位点的三维结构,其孔洞尺寸大小为6~11A。N2吸附测试表明UTSA-50a是I型等温吸附线,BET比表面积为865.09m2g-1。UTSA-50a的乙炔吸附量(90.6cm3g-1)远高于没有功能位点修饰的MOF-5(26cm3g-1).ZIF-8(25cm3g-1)及具有阳离子框架功能修饰的ZJU-48(57.07cm3g-1).UTSA-50a对乙炔的吸附焓高达39.4kJmo1-1。开放金属位和Lewis吡啶位通过与乙炔气体形成静电及氢键作用极大地增加了其的乙炔吸附作用力。296K下UTSA-50a对C2H2/CH4的吸附选择性高达68.0,是迄今为止报道的最高值。研究表明,将开放金属位和Lewis吡啶位相结合的多功能修饰策略可以显著提高MOFs材料的吸附容量和选择性,为设计与制备具有高效气体吸附与分离性能的MOFs材料提供了重要的指导作用。
     采用微乳液体系对稀土-有机框架材料Eu2(Fuma)2(Oxa)·8H20(EuFO;Fuma=富马酸;Oxa=草酸)的尺寸进行调控,利用BFDH理论对EuFO的可控生长机理进行了理论模拟,并研究了纳米EuFO材料对细菌孢子的主要成分2,6-吡啶二羧酸(简称DPA)的荧光探测性能。通过水和表面活性剂的摩尔比(简称W值)可对EuFO晶体的尺寸和形貌进行调控,实现了EuFO从大尺寸晶体、微米晶体到纳米晶体的一系列制备过程。其中,当W=15时,得到尺寸约为100nm的六边形片状纳米晶。利用BFDH理论计算得到EuFO晶体的三个生长晶面族{111}、{004}和{022},并通过模拟添加表面活性剂后三个生长晶面族生长速率的变化而得到与实验结果一致的晶体形貌。该理论模拟的结果可以阐明EuFO晶体的形貌变化过程,对纳米MOFs材料的可控制备具有重要的指导意义。荧光测试结果表明,EuFO六边形纳米片晶对DPA具有高灵敏度和高选择性的荧光增强探测性能。通过瞬态光谱测试对样品的荧光探测机理进行了研究。结果表明,EuFO对DPA探测的荧光增强效应主要是DPA与Eu(III)离子发生配位引起的。研究表明,MOFs材料的尺寸和形貌可以通过微乳液法进行精确调控并制备纳米MOFs材料,成功实现对细菌孢子的高灵敏度及高选择性的荧光探测。该研究为细胞及生物活体内的生物荧光探针应用奠定了基础。
     采用微乳液法制备了稀土-有机框架材料Eu2(BDC)3(H2O)4(EuBDC;BDC=对苯二甲酸)的纳米晶体,并研究了其对硝基爆炸物的荧光探测性能。在W=15的条件下,得到尺寸约为100nn的EuBDC纳米棒。荧光探测实验结果表明,EuBDC纳米棒对硝基爆炸物具有高灵敏度和高选择性的荧光淬灭探测性能。通过瞬态光谱测试和紫外-可见吸收光谱研究了样品的荧光探测机理。结果表明,EuBDC中的有机配体BDC和硝基苯衍生物对激发光能量存在竞争吸收,引起BDC所能吸收的能量被“过滤”,因而其通过天线效应传递给EU(Ⅲ)离子的能量减少,Eu(Ⅲ)离子的发光发生淬灭。上述研究结果表明,纳米MOFs材料可以实现高灵敏度、高选择性和快速便捷的荧光探测。MOFs材料的尺寸调控和纳米MOFs制备作为一种重要的策略有望制备出性能优异、具有广泛应用前景的新型生物及环境荧光探针。
Recent years, Metal-Organic Framework (MOF) materials have drawn great attentions due to their potential applications in gas sorption/separation and luminescent sensing. In this dissertation, the recent progress of MOF materials is reviewed, with specific focus on the functionalization, size control and properties of MOF materials. A cationic MOF material was synthesized, and small hydrocarbons C1/C2sorption/separation properties were studied. A MOF with both open metal sites and Lewis basic pyridyl sites was developed, and C2H2, CO2and CH4gas sorption/separation properties were explored. A nanoscale MOF material with controllable size was realized whose morphology has been simulated base on the BFDH method, and the sensing of bacteria endospores was research in detail. We also report the synthesis and sensing of nitroaromatic explosives of a nanoscale MOF material.
     A new cationic MOF material ZJU-48(ZngO (EDDA)4(ad)4·(HEDDA)2·6DMF·27H2O; H2EDDA=(E)-4,4'-(ethene-1,2-diyl) dibenzoic acid; ad=adenine) was solvothermally synthesized and the gas sorption/separation properties for small hydrocarbons was studied. ZJU-48features a three-dimensional structure with cationic skeleton and has one-dimensional pores of about9.1×9.1A2. The N2sorption isotherm at77K showed that ZJU-48a displayed Type-I sorption behavior with a BET surface area of1450m2g-1. ZJU-48a takes up C2H2(57cm3g-1), and this value is higher than the one with similar Zn4O structure MOF-5(26cm3g-1), which revealed that the structrue feature of charged skeleton in ZJU-48a played an important role in its acetylene storage. The enthalpy of C2H6is28.0KJmol-1, which is very high and is even comparable to that of Mg-MOF-74. This indicated that the charged skeleton in ZJU-48a do enhance the affinity between MOF and small hydrocarbon molecules, presumably by charge-induced forces between the charged skeleton and polarized gas molecules. Moreover, the adsorption selectivities of C2H6with respect to CH4are in excess of6.0for a range of pressure to100KPa, indicating the feasibility of this MOF for the practical application on C2/C1separation. To further demonstrate the feasibility for the practical separation, the breakthrough and pulse chromatographic experiments were simulated and the result showed that ZJU-48a has the ability of separating CH4in pure form from this quaternary mixture. The results indicated that the charged skeleton strategy can enhance the affinity between MOF material and polarized C2gas molecules, this strategy provided a new design approach for MOF materials.
     To immobilize both open metal sites and Lewis basic pyridyl sites into a microporous MOF material, UTSA-50(Cu6(PDC)6-2.6H2O; PDC=3,5-pyridine-dicarboxylate) was solvothermally synthesized and the C2H2, CO2and CH4gas sorption/separation properties were explored. UTSA-50features a three-dimensional structure with both open metal sites and Lewis pyridyl sites. The pore size is6-11A. The N2sorption isotherm at77K showed that UTSA-50a displayed Type-I sorption behavior with a BET surface area of604m2g"'. The amount of C2H2absorbed in UTSA-50(90.6cm3g-1) is higher than the ones without functionalization sites such as MOF-5, ZIF and cationic MOF ZJU-48. The storage density of adsorbed acetylene in UTSA-50a micropores is0.30g cm-3, which is among the high end for MOF materials. The enthalpy for acetylene reached a high value of39.4KJmol-1, which indicated that the high density of open metal sites and Lewis basic pyridyl sites do enhance the affinity between the MOF surface and acetylene molecules, presumably by Coulomb interactions and hydrogen bonding. The most remarkable feature of UTSA-50a is the significant high C2H2/CH4selectivity of68.0, which is the highest one ever reported. The results illustrated the power of collaborative immobilization of multiple functional sites and further realize both high acetylene capacity and selectivity. This research initiated an important design approach for highly effective gas sorption/separation MOF materials.
     A nanoscale MOF material EuFO (Eu2(FMA)2(OX)(H2O)4-4H2O; FMA=fumarate, OX=oxalate) with controllable size and morphology is realized whose morphology has been simulated based on the BFDH method, and the sensing properties of bacteria spores was researched in detail. The sizes and morphologies can be tuned by the molar ratio of surfactant and H2O molar ratio (W value), which resulted the EuFO evolution from large to micro crystals, and finally became nano crystals. Hexagonal nanoplates with size of100nm can be synthesized at W=15. The BFDH method calculation showed that there were three possible growing facets for EuFO crystals, they are{022},{004} and {111}, and the addition of surfactant makes different facets growth rates, which finally leads to different sizes and morphologies of EuFO crystals. The hexagonal nanoplates showed highly sensitive and selective sensing of bacteria spore. Luminescent lifetime showed that the DPA molecules are involved in the binding with Eu(III) which can significantly enforce the intramolecule energy transfer. It is foreseen that functional nanoscale MOF will establish the foundation for in vivo biosensors.
     A nanoscale MOF EuBDC (Eu2(BDC)3(H2O)2·(H2O)2; BDC=benzene-1,4-dicarboxylate) has been realized for sensing of nitroaromatic explosives. EuBDC nanorods with size of100nm can be synthesize by microemulsion method at W=15. The nanoscale EuBDC showed both highly sensitive and selective sensing of nitroaromatic explosives. Luminescent lifetime and UV-Vis showed that luminescence change of the nanoscale EuBDC was attributed to a competition of absorption of the light source energy, which decreased the probability of energy transferr from ligand to Eu(Ⅲ) and subsequently quenched the luminescence of Eu(Ⅲ). The results showed that size control of MOF materials is an important strategy to realize straightforward and high sensitive environmental and biological sensing.
引文
[1]M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi, Modular chemistry:Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Accounts of Chemical Research,2001,34 (4): 319-330.
    [2]M.P. Suh, Y.E. Cheon, E.Y. Lee, Syntheses and functions of porous metallosupramolecular networks, Coordination Chemistry Reviews,2008,252(8):1007-1026.
    [3]D. Bradshaw, J.B. Claridge, E.J. Cussen, T.J. Prior, M.J. Rosseinsky, Design, chirality, and flexibility in nanoporous molecule-based materials, Accounts of Chemical Research,2005, 38(4):273-282.
    [4]B. Chen, S. Xiang, G. Qian, Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules, Accounts of Chemical Research,2010(8),43:1115-1124.
    [5]O.K. Farha, J.T. Hupp, Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials, Accounts of Chemical Research,2010,43(8): 1166-1175.
    [6]G. Ferey, Hybrid porous solids:past, present, future, Chemical Society Reviews,2008,37(1): 191-214.
    [7]J.H. Rayner, H.M. Powell, Structure of Molecular Compounds.10. Crystal Structure of the Compound of Benzene with an Ammonia Nickel Cyanide Complex, Journal of the Chemical Society,1952,319-328.
    [8]C.H. Kim, T. Soma, S. Nishikiori, T. Iwamoto, A novel three-dimensional cyano-linked metal-complex host clathrate {Cd(imH)}{Cd(CN)(3)(imH)}{Cd(CN)(3)} center dot C6H6 (imH=imidazole):X-ray single crystal structure and solid state Cd-113 and H-2 NMR, Chemistry Letters,1996(1):89-90.
    [9]H. Kurihara, S. Nishikiori, T. Iwamoto, Three-dimensional cage-like polycyanopolycadmate network accommodating Werner complexes; The crystal structure of Cd(dien)(2) center dot Cd2(CN)(3)(dien)(2) center dot Cd8(CN)(19) center dot 3H(2)O (dien equals (H2N(CH2)(2))(2)NH, diethylenetriamine), Chemistry Letters,1997(1):61-62.
    [10]T. Soma, T. Iwamoto, A 3-Dimensional Warp-and Woof Structure Interwoven by a Couple of 2 Dimensional Network Layers in the Crystal Structure of Trans-CD(NH3)(2)(Ag(CN)(2))(2) (N), Chemistry Letters,1995(1):271-272.
    [11 T. Soma, T.K. Miyamoto, T. wamoto, Crystal structure of Cd{NH<(C2H4)(2)>>NC2H4NH2}(2){Ag(CN)(2)} (n)center dot n Ag(CN)(2):A cationic three-dimensional framework built of hetero-bridged octahedral Cd(II) and tetrahedral Ag+ accommodating anionic guest Ag(CN)(2)-, Chemistry Letters,1997:319-320.
    [12]B.F. Hoskins, R. Robson, Infinite Polymeric Frameworks Consisting of 3 Dimensionally Linked Rod-Like Segments, Journal of the American Chemical Society,1989,111 5962-5964.
    [13]H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature,1999,402(6759):276-279.
    [14]M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Luminescent metal-organic frameworks, Chemical Society Reviews,2009,38(5):1330-1352.
    [15]A.U. Czaja, N. Trukhan, U. Mueller, Industrial applications of metal-organic frameworks, Chemical Society Reviews,2009,38(5):1284-1293.
    [16]T. Dueren, Y.-S. Bae, R.Q. Snurr, Using molecular simulation to characterise metal-organic frameworks for adsorption applications, Chemical Society Reviews,2009,38(5):1237-1247.
    [17]S.S. Han, J.L. Mendoza-Cortes, W.A. Goddard, Ⅲ, Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks, Chemical Society Reviews,2009,38(5):1460-1476.
    [18]M. Kurmoo, Magnetic metal-organic frameworks, Chemical Society Reviews,2009,38(5): 1353-1379.
    [19]J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chemical Society Reviews,2009,38(5):1450-1459.
    [20]J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chemical Society Reviews,2009,38(5):1477-1504.
    [21]J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chemical Society Reviews,2009,38(5):1213-1214.
    [22]L. Ma, C. Abney, W. Lin, Enantioselective catalysis with homochiral metal-organic frameworks, Chemical Society Reviews,2009,38(5):1248-1256.
    [23]L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks, Chemical Society Reviews,2009,38(5):1294-1314.
    [24]S. Natarajan, P. Mahata, Metal-organic framework structures-how closely are they related to classical inorganic structures?, Chemical Society Reviews,2009,38(5):2304-2318.
    [25]J.J.I.V. Perry, J.A. Perman, M.J. Zaworotko, Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks, Chemical Society Reviews,2009,38(5):1400-1417.
    [26]G.K.H. Shimizu, R. Vaidhyanathan, J.M. Taylor, Phosphonate and sulfonate metal organic frameworks, Chemical Society Reviews,2009,38(5):1430-1449.
    [27]D.J. Tranchemontagne, J.L. Mendoza-Cortes, M. O'Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chemical Society Reviews,2009,38(5):1257-1283.
    [28]Z. Wang, S.M. Cohen, Postsynthetic modification of metal-organic frameworks, Chemical Society Reviews,2009,38(5):1315-1329.
    [29]D. Zacher, O. Shekhah, C. Woell, R.A. Fischer, Thin films of metal-organic frameworks, Chemical Society Reviews,2009,38(5):1418-1429.
    [30]A. Betard, R.A. Fischer, Metal-Organic Framework Thin Films:From Fundamentals to Applications, Chemical Reviews,2012,112(2):1055-1083.
    [31]S.M. Cohen, Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks, Chemical Reviews,2012,112(2):970-1000.
    [32]Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent Functional Metal-Organic Frameworks, Chemical Reviews,2012,112(2):1126-1162.
    [33]K.J. Gagnon, H.P. Perry, A. Clearfield, Conventional and Unconventional Metal-Organic Frameworks Based on Phosphonate Ligands:MOFs and UMOFs, Chemical Reviews,2012, 112(2):1034-1054.
    [34]R.B. Getman, Y.-S. Bae, C.E. Wilmer, R.Q. Snurr, Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks, Chemical Reviews,2012,112(2):703-723.
    [35]P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Metal-Organic Frameworks in Biomedicine, Chemical Reviews,2012,112(2) 1232-1268.
    [36]L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic Framework Materials as Chemical Sensors, Chemical Reviews,2012,112(2):1105-1125.
    [37]J.-R. Li, J. Sculley, H.-C. Zhou, Metal-Organic Frameworks for Separations, Chemical Reviews,2012,112(2):869-932.
    [38]M. O'Keeffe, O.M. Yaghi, Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets, Chemical Reviews,2012, 112(2):675-702.
    [39]N. Stock, S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs):Routes to Various MOF Topologies, Morphologies, and Composites, Chemical Reviews,2012,112(2) 933-969.
    [40]M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen Storage in Metal-Organic Frameworks, Chemical Reviews,2012,112(2):782-835.
    [41]K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Carbon Dioxide Capture in Metal-Organic Frameworks, Chemical Reviews,2012, 112(2):724-781.
    [42]C. Wang, T. Zhang, W. Lin, Rational Synthesis of Noncentrosymmetric Metal-Organic Frameworks for Second-Order Nonlinear Optics, Chemical Reviews,2012,112(2) 1084-1104.
    [43]H. Wu, Q. Gong, D.H. Olson, J. Li, Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks, Chemical Reviews,2012,112 (2): 836-868.
    [44]M. Yoon, R. Srirambalaji, K. Kim, Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis, Chemical Reviews,2012,112(2):1196-1231.
    [45]W. Zhang, R.-G. Xiong, Ferroelectric Metal-Organic Frameworks, Chemical Reviews,2012, 112(2):1163-1195.
    [46]H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal-Organic Frameworks, Chemical Reviews,2012,112(2):673-674.
    [47]J.R. Li, H.C. Zhou, Metal-Organic Hendecahedra Assembled from Dinuclear Paddlewheel Nodes and Mixtures of Ditopic Linkers with 120 and 90 degrees Bend Angles, Angewandte Chemie-International Edition,2009,48(45):8465-8468.
    [48]J.R. Li, H.C. Zhou, Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra, Nature Chemistry,2010,2(10):893-898.
    [49]J.-R. Li, A.A. Yakovenko, W. Lu, D.J. Timmons, W. Zhuang, D. Yuan, H.-C. Zhou, Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers, Journal of the American Chemical Society,2010,132(49):17599-17610.
    [50]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science,2002,295(5554):469-472.
    [51]S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material Cu3(TMA)(2)(H2O)(3) (n), Science,1999,283(5405): 1148-1150.
    [52]O.K. Farha, A.M. Shultz, A.A. Sarjeant, S.T. Nguyen, J.T. Hupp, Active-Site-Accessible, Porphyrinic Metal-Organic Framework Materials, Journal of the American Chemical Society, 2011,133(15):5652-5655.
    [53]O.K. Farha, C.E. Wilmer, I. Eryazici, B.G. Hauser, P.A. Parilla, K. O'Neill, A.A. Sarjeant, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, Designing Higher Surface Area Metal-Organic Frameworks:Are Triple Bonds Better Than Phenyls?, Journal of the American Chemical Society,2012,134(24):9860-9863.
    [54]O.K. Farha, A.O. Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nature Chemistry,2010,2(11): 944-948.
    [55]Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O'Keeffe, B. Chen, A Metal-Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature, Angewandte Chemie-International Edition, 2011,50(14):3178-3181.
    [56]Y. He, Z. Zhang, S. Xiang, F.R. Fronczek, R. Krishna, B. Chen, A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons, Chemical Communications,2012, 48(52):6493-6495.
    [57]Y. He, Z. Zhang, S. Xiang, F.R. Fronczek, R. Krishna, B. Chen, A Microporous Metal-Organic Framework for Highly Selective Separation of Acetylene, Ethylene, and Ethane from Methane at Room Temperature, Chemistry-a European Journal,2012,18 (2): 613-619.
    [58]Y. He, Z. Zhang, S. Xiang, H. Wu, F.R. Fronczek, W. Zhou, R. Krishna, M. O'Keeffe, B. Chen, High Separation Capacity and Selectivity of C2 Hydrocarbons over Methane within a Microporous Metal-Organic Framework at Room Temperature, Chemistry-a European Journal,2012,18 (7):1901-1904.
    [59]D. Sun, D.J. Collins, Y. Ke, J.-L. Zuo, H.-C. Zhou, Construction of open metal-organic frameworks based on predesigned carboxylate isomers:From achiral to chiral nets, Chemistry-a European Journal,2006,12 (14):3768-3776.
    [60]D. Sun, Y. Ke, D.J. Collins, G.A. Lorigan, H.-C. Zhou, Construction of robust open metal-organic frameworks with chiral channels and permanent porosity, Inorganic Chemistry, 2007,46 (7):2725-2734.
    [61]D. Sun, S. Ma, J.M. Simmons, J.-R. Li, D. Yuan, H.-C. Zhou, An unusual case of symmetry-preserving isomerism, Chemical Communications,2010,46 (8):1329-1331.
    [62]D.F. Sun, S.Q. Ma, Y.X. Ke, D.J. Collins, H.C. Zhou, An interweaving MOF with high hydrogen uptake, Journal of the American Chemical Society,2006,128 (12):3896-3897.
    [63]X. Lin, I. Telepeni, A.J. Blake, A. Dailly, C.M. Brown, J.M. Simmons, M. Zoppi, G.S. Walker, K.M. Thomas, T.J. Mays, P. Hubberstey, N.R. Champness, M. Schroeder, High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials:The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites, Journal of the American Chemical Society,2009,131 (6):2159-2171.
    [64]B. Chen, Y. Ji, M. Xue, F.R. Fronczek, E.J. Hurtado, J.U. Mondal, C. Liang, S. Dai, Metal-organic framework with rationally tuned micropores for selective adsorption of water over methanol, Inorganic Chemistry,2008,47 (13):5543-5545.
    [65]B. Chen, S. Ma, E.J. Hurtado, E.B. Lobkovsky, C. Liang, H. Zhu, S. Dai, Selective gas sorption within a dynamic metal-organic framework, Inorganic Chemistry,2007,46 (21): 8705-8709.
    [66]B. Chen, S. Ma, E.J. Hurtado, E.B. Lobkovsky, H.-C. Zhou, A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules, Inorganic Chemistry,2007,46 (21):8490-8492.
    [67]B. Chen, S. Ma, F. Zapata, F.R. Fronczek, E.B. Lobkovsky, H.-C. Zhou, Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules, Inorganic Chemistry,2007,46 (4):1233-1236.
    [68]B. Chen, S. Ma, F. Zapata, E.B. Lobkovsky, J. Yang, Hydrogen adsorption in an interpenetrated dynamic metal-organic framework, Inorganic Chemistry,2006,45 (15): 5718-5720.
    [69]H. Hayashi, A.P. Cote, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Zeolite a imidazolate frameworks, Nature Materials,2007,6 (7):501-506.
    [70]J.-B. Lin, R.-B. Lin, X.-N. Cheng, J.-P. Zhang, X.-M. Chen, Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide, Chemical Communications,2011,47 (32):9185-9187.
    [71]X.-L. Qi, R.-B. Lin, Q. Chen, J.-B. Lin, J.-P. Zhang, X.-M. Chen, A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide, Chemical Science,2011,2 (11):2214-2218.
    [72]J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal Azolate Frameworks:From Crystal Engineering to Functional Materials, Chemical Reviews,2012,112 (2):1001-1033.
    [73]A.-X. Zhu, R.-B. Lin, X.-L. Qi, Y. Liu, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)(2) and monoalkyl-substituted imidazoles and 1,2,4-triazoles:Efficient syntheses and properties, Microporous and Mesoporous Materials, 2012,157:42-49.
    [74]Y. Liu, J.F. Eubank, A.J. Cairns, J. Eckert, V.C. Kravtsov, R. Luebke, M. Eddaoudi, Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks:A porous MOF with soc topology and high hydrogen storage, Angewandte Chemie-International Edition,2007,46 (18):3278-3283.
    [75]F. Nouar, J.F. Eubank, T. Bousquet, L. Wojtas, M.J. Zaworotko, M. Eddaoudi, Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks, Journal of the American Chemical Society,2008,130 (6):1833.
    [76]S.-T. Zheng, J.J. Bu, T. Wu, C. Chou, P. Feng, X. Bu, Porous Indium-Organic Frameworks and Systematization of Structural Building Blocks, Angewandte Chemie-International Edition,2011,50 (38):8858-8862.
    [77]S.-T. Zheng, J.T. Bu, Y. Li, T. Wu, F. Zuo, P. Feng, X. Bu, Pore Space Partition and Charge Separation in Cage-within-Cage Indium Organic Frameworks with High CO2 Uptake, Journal of the American Chemical Society,2010,132 (48):17062-17064.
    [78]S. Xiang, W. Zhou, Z. Zhang, M.A. Green, Y. Liu, B. Chen, Open Metal Sites within Isostructural Metal-Organic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature, Angewandte Chemie-International Edition,2010,49 (27):4615-4618.
    [79]B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E.B. Lobkovsky, Luminescent open metal sites within a metal-organic framework for sensing small molecules, Advanced Materials,2007, 19(13):1693.
    [80]N. Snejko, C. Cascales, B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, C. Ruiz-Valero, M.A. Monge, From rational octahedron design to reticulation serendipity. A thermally stable rare earth polymeric disulfonate family with CdI2-like structure, bifunctional catalysis and optical properties, Chemical Communications,2002, (13):1366-1367.
    [81]Z.M. Wang, B. Zhang, H. Fujiwara, H. Kobayashi, M. Kurmoo, Mn-3(HCOO)(6):a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature, Chemical Communications,2004 (4):416-417.
    [82]J.-C.G. Buenzli, Lanthanide Luminescence for Biomedical Analyses and Imaging, Chemical Reviews,2010,110 (5):2729-2755.
    [83]S.V. Eliseeva, J.-C.G. Buenzli, Lanthanide luminescence for functional materials and bio-sciences, Chemical Society Reviews,2010,39 (1):189-227.
    [84]S.V. Eliseeva, D.N. Pleshkov, K.A. Lyssenko, L.S. Lepnev, J.-C.G. Buenzli, N.P. Kuzminat, Highly Luminescent and Triboluminescent Coordination Polymers Assembled from Lanthanide beta-Diketonates and Aromatic Bidentate O-Donor Ligands, Inorganic Chemistry, 2010,49 (20):9300-9311.
    [85]J.C.G. Bunzli, C. Piguet, Taking advantage of luminescent lanthanide ions, Chemical Society Reviews,2005,34 (12):1048-1077.
    [86]K. Binnemans, Lanthanide-Based Luminescent Hybrid Materials, Chemical Reviews,2009, 109 (9):4283-4374.
    [87]E.G. Moore, A.P.S. Samuel, K.N. Raymond, From Antenna to Assay:Lessons Learned in Lanthanide Luminescence, Accounts of Chemical Research,2009,42 (4):542-552.
    [88]N. Sabbatini, M. Guardigli, J.M. Lehn, Luminescent Lanthanide Complexes as Photochemical Supramolecular Devices, Coordination Chemistry Reviews,1993,123 (1-2): 201-228.
    [89]S.I. Weissman, Intramolecular energy transfer-The fluorescence of complexes of europium, Journal of Chemical Physics,1942,10 (4):214-217.
    [90]Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, B. Chen, A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer, Journal of the American Chemical Society,2012,134 (9):3979-3982.
    [91]P. Mahata, K.V. Ramya, S. Natarajan, Pillaring of CdC12-like layers in lanthanide metal-organic frameworks:Synthesis, structure, and photophysical properties, Chemistry-a European Journal,2008,14 (19):5839-5850.
    [92]J. Xu, W. Su, M. Hong, A Series of Lanthanide Secondary Building Units Based Metal-Organic Frameworks Constructed by Organic Pyridine-2,6-Dicarboxylate and Inorganic Sulfate, Crystal Growth & Design,2011,11 (1):337-346.
    [93]C. Daiguebonne, N. Kerbellec, O. Guillou, J.-C. Buenzli, F. Gumy, L. Catala, T. Mallah, N. Audebrand, Y. Gerault, K. Bernot, G. Calvez, Structural and luminescent properties of micro-and nanosized particles of lanthanide terephthalate coordination polymers, Inorganic Chemistry,2008,47 (9):3700-3708.
    [94]B.V. Harbuzaru, A. Corma, F. Rey, J.L. Jorda, D. Ananias, L.D. Carlos, J. Rocha, A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Self-Assembled Europium(III) Metal-Organic Framework, Angewandte Chemie-International Edition,2009, 48 (35):6476-6479.
    [95]B. Chen, L. Wang, F. Zapata, G. Qian, E.B. Lobkovsky, A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions, Journal of the American Chemical Society,2008,130 (21):6718-6719.
    [96]W.S. Liu, T.Q. Jiao, Y.Z. Li, Q.Z. Liu, M.Y. Tan, H. Wang, L.F. Wang, Lanthanide coordination polymers and their Ag+-modulated fluorescence, Journal of the American Chemical Society,2004,126 (8):2280-2281.
    [97]K.L. Wong, G.L. Law, Y.Y. Yang, W.T. Wong, A highly porous luminescent terbium-organic framework for reversible anion sensing, Advanced Materials,2006,18 (8): 1051.
    [98]B. Chen, L. Wang, Y. Xiao, F.R. Fronczek, M. Xue, Y. Cui, G. Qian, A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions, Angewandte Chemie-International Edition,2009,48 (3):500-503.
    [99]B. Zhao, X.Y. Chen, P. Cheng, D.Z. Liao, S.P. Yan, Z.H. Jiang, Coordination polymers containing 1D channels as selective luminescent probes, Journal of the American Chemical Society,2004,126 (47):15394-15395.
    [100]B. Zhao, X.-Y. Chen, Z. Chen, W. Shi, P. Cheng, S.-P. Yan, D.-Z. Liao, A porous 3D heterometal-organic framework containing both lanthanide and high-spin Fe(II) ions, Chemical Communications,2009, (21):3113-3115.
    [101]B. Zhao, X.Q. Zhao, Z. Chen, W. Shi, P. Cheng, S.P. Yan, D.Z. Liao, Structures and near-infrared luminescence of unique 4d-4f heterometal-organic frameworks (HMOF), CrystEngComm,2008,10 (9):1144-1146.
    [102]Y. Xiao, Y. Cui, Q. Zheng, S. Xiang, G. Qian, B. Chen, A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu(II) in aqueous solution, Chemical Communications,2010,46 (30):5503-5505.
    [103]W.-H. Zhu, Z.-M. Wang, S. Gao, Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de-and rehydration, Inorganic Chemistry,2007,46 (4):1337-1342.
    [104]H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J.F. Stoddart, O.M. Yaghi, Large-Pore Apertures in a Series of Metal-Organic Frameworks, Science,2012,336 (6084):1018-1023.
    [105]M.C. Das, H. Xu, S. Xiang, Z. Zhang, H.D. Arman, G. Qian, B. Chen, A New Approach to Construct a Doubly Interpenetrated Microporous Metal-Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules, Chemistry-a European Journal,2011,17 (28):7817-7822.
    [106]G. Beobide, W.-G. Wang, O. Castillo, A. Luque, P. Roman, G. Tagliabue, S. Galli, J.A.R. Navarro, Manganese(IT) pyrimidine-4,6-dicarboxylates:Synthetic, structural, magnetic, and adsorption insights, Inorganic Chemistry,2008,47 (12):5267-5277.
    [107]S.-S. Chen, M. Chen, S. Takamizawa, P. Wang, G.-C. Lv, W.-Y. Sun, Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property, Chemical Communications,2011,47 (17):4902-4904.
    [108]F. Debatin, A. Thomas, A. Kelling, N. Hedin, Z. Bacsik, I. Senkovska, S. Kaskel, M. Junginger, H. Mueller, U. Schilde, C. Jaeger, A. Friedrich, H.-J. Holdt, In Situ Synthesis of an Imidazolate-4-amide-5-imidate Ligand and Formation of a Microporous Zinc-Organic Framework with H-2-and CO2-Storage Ability, Angewandte Chemie-International Edition, 2010,49 (7):1258-1262.
    [109]A. Demessence, D.M. D'Alessandro, M.L. Foo, J.R. Long, Strong CO2 Binding in a Water-Stable, Triazolate-Bridged Metal-Organic Framework Functionalized with Ethylenediamine, Journal of the American Chemical Society,2009,131 (25):8784-+.
    [110]O.J. Garcia-Ricard, A.J. Hernandez-Maldonado, Cu-2(pyrazine-2,3-dicarboxylate)(2)(4,4 '-bipyridine) Porous Coordination Sorbents:Activation Temperature, Textural Properties, and CO2 Adsorption at Low Pressure Range, Journal of Physical Chemistry C,2010,114 (4):1827-1834.
    [111]R. Kitaura, R. Matsuda, Y. Kubota, S. Kitagawa, M. Takata, T.C. Kobayashi, M. Suzuki, Formation and characterization of crystalline molecular arrays of gas molecules in a 1-dimensional ultramicropore of a porous copper coordination polymer, Journal of Physical Chemistry B,2005,109 (49):23378-23385.
    [112]J. Lincke, D. Laessig, J. Moellmer, C. Reichenbach, A. Puls, A. Moeller, R. Glaeser, G. Kalies, R. Staudt, H. Krautscheid, A novel copper-based MOF material:Synthesis, characterization and adsorption studies, Microporous and Mesoporous Materials,2011,142 (1):62-69.
    [113]P. Pachfule, R. Das, P. Poddar, R. Banerjee, Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link, Crystal Growth & Design,2011,11 (4):1215-1222.
    [114]T.K. Prasad, D.H. Hong, M.P. Suh, High Gas Sorption and Metal-Ion Exchange of Microporous Metal-Organic Frameworks with Incorporated Imide Groups, Chemistry-a European Journal,2010,16(47):14043-14050.
    [115]J. An, S.J. Geib, N.L. Rosi, High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores, Journal of the American Chemical Society,2010,132 (1):38-+.
    [116]A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, Journal of the American Chemical Society, 2005,127(51):17998-17999.
    [117]Z. Zhao, Z. Li, Y.S. Lin, Adsorption and Diffusion of Carbon Dioxide on Metal-Organic Framework (MOF-5), Industrial & Engineering Chemistry Research,2009,48 (22): 10015-10020.
    [118]T.M. McDonald, D.M. D'Alessandro, R. Krishna, J.R. Long, Enhanced carbon dioxide capture upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri, Chemical Science,2011,2 (10):2022-2028.
    [119]R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, O.M. Yaghi, Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties, Journal of the American Chemical Society,2009,131 (11):3875-+.
    [120]H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, Science,2010,327 (5967):846-850.
    [121]J. An, O.K. Farha, J.T. Hupp, E. Pohl, J.I. Yeh, N.L. Rosi, Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework, Nature Communications, 2012,3:604.
    [122]S. Horike, D. Umeyama, M. Inukai, T. Itakura, S. Kitagawa, Coordination-Network-Based Ionic Plastic Crystal for Anhydrous Proton Conductivity, Journal of the American Chemical Society,2012,134 (18):7612-7615.
    [123]D.L. Rogow, G. Zapeda, C.H. Swanson, X. Fan, A.G. Oliver, S.R.J. Oliver, A Metal-Organic Framework Containing Cationic Inorganic Layers: Pb2F2[C2H4(SO3)2], Chemistry of Materials,2007,19 (19):4658-4662.
    [124]K. Sumida, D. Stuck, L. Mino, J.-D. Chai, E.D. Bloch, O. Zavorotynska, L.J. Murray, M. Dinca, S. Chavan, S. Bordiga, M. Head-Gordon, J.R. Long, Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal-Organic Frameworks, Journal of the American Chemical Society,2012.
    [125]L. Xu, Y.-U. Kwon, B. de Castro, L. Cunha-Silva, Novel Mn(II) Based Metal-Organic Frameworks Isolated in Ionic Liquids, Crystal Growth & Design,2013.
    [126]J. Yu, Y. Cui, C. Wu, Y. Yang, Z. Wang, M. O'Keeffe, B. Chen, G. Qian, Second-Order Nonlinear Optical Activity Induced by Ordered Dipolar Chromophores Confined in the Pores of an Anionic Metal-Organic Framework, Angewandte Chemie-International Edition, 2012,51 (42):10542-10545.
    [127]J. An, S.J. Geib, N.L. Rosi, Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework, Journal of the American Chemical Society,2009,131 (24): 8376-8377.
    [128]J. An, C.M. Shade, D.A. Chengelis-Czegan, S.p. Petoud, N.L. Rosi, Zinc-Adeninate Metal-Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations, Journal of the American Chemical Society,2011, 133 (5):1220-1223.
    [129]J. An, N.L. Rosi, Tuning MOF CO2 Adsorption Properties via Cation Exchange, Journal of the American Chemical Society,2010,132 (16):5578-5579.
    [130]S. Chen, J. Zhang, T. Wu, P. Feng, X. Bu, Multiroute Synthesis of Porous Anionic Frameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas Sorption Properties, Journal of the American Chemical Society,2009,131 (44):16027-16029.
    [131]J. Zhang, S. Chen, X. Bu, Multiple Functions of Ionic Liquids in the Synthesis of Three-Dimensional Low-Connectivity Homochiral and Achiral Frameworks, Angewandte Chemie International Edition,2008,47 (29):5434-5437.
    [132]J. Zhang, S. Chen, X. Bu, The first anionic four-connected boron imidazolate framework, Dalton Transactions,2010,39 (10):2487-2489.
    [133]J. Zhang, S. Chen, A. Zingiryan, X. Bu, Integrated Molecular Chirality, Absolute Helicity, and Intrinsic Chiral Topology in Three-Dimensional Open-Framework Materials, Journal of the American Chemical Society,2008,130 (51):17246-17247.
    [134]J. Zhang, R. Liu, P. Feng, X. Bu, Organic Cation and Chiral Anion Templated 3D Homochiral Open-Framework Materials with Unusual Square-Planar {M4(OH)} Units, Angewandte Chemie International Edition,2007,46 (44):8388-8391.
    [135]S.-T. Zheng, J.J. Bu, T. Wu, C. Chou, P. Feng, X. Bu, Porous Indium-Organic Frameworks and Systematization of Structural Building Blocks, Angewandte Chemie International Edition,2011,50 (38):8858-8862.
    [136]S.-T. Zheng, J.T. Bu, Y. Li, T. Wu, F. Zuo, P. Feng, X. Bu, Pore Space Partition and Charge Separation in Cage-within-Cage Indium-Organic Frameworks with High CO2 Uptake, Journal of the American Chemical Society,2010,132 (48):17062-17064.
    [137]S.-T. Zheng, F. Zuo, T. Wu, B. Irfanoglu, C. Chou, R.A. Nieto, P. Feng, X. Bu, Cooperative Assembly of Three-Ring-Based Zeolite-Type Metal-Organic Frameworks and Johnson-Type Dodecahedra, Angewandte Chemie International Edition,2011,50 (8): 1849-1852.
    [138]Q.G. Zhai, Q.P. Lin, T. Wu, L. Wang, S.T. Zheng, X.H. Bu, P.Y. Feng, High CO2 and H2 Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages, Chemistry of Materials,2012,24 (14):2624-2626.
    [139]M.H. Alkordi, J.A. Brant, L. Wojtas, V.C. Kravtsov, A.J. Cairns, M. Eddaoudi, Zeolite-like Metal-Organic Frameworks (ZMOFs) Based on the Directed Assembly of Finite Metal-Organic Cubes (MOCs), Journal of the American Chemical Society,2009,131 (49): 17753-17755.
    [140]M.H. Alkordi, Y. Liu, R.W. Larsen, J.F. Eubank, M. Eddaoudi, Zeolite-like Metal-Organic Frameworks as Platforms for Applications:On Metalloporphyrin-Based Catalysts, Journal of the American Chemical Society,2008,130 (38):12639-12641.
    [141]D.F. Sava, V.C. Kravtsov, F. Nouar, L. Wojtas, J.F. Eubank, M. Eddaoudi, Quest for Zeolite-like Metal-Organic Frameworks: On Pyrimidinecarboxylate Bis-Chelating Bridging Ligands, Journal of the American Chemical Society,2008,130 (12):3768-3770.
    [142]A. Schoedel, L. Wojtas, S.P. Kelley, R.D. Rogers, M. Eddaoudi, M.J. Zaworotko, Network Diversity through Decoration of Trigonal-Prismatic Nodes:Two-Step Crystal Engineering of Cationic Metal-Organic Materials, Angewandte Chemie International Edition,2011,50 (48):11421-11424.
    [143]Z. Zhang, L. Zhang, L. Wojtas, P. Nugent, M. Eddaoudi, M.J. Zaworotko, Templated Synthesis, Postsynthetic Metal Exchange, and Properties of a Porphyrin-Encapsulating Metal-Organic Material, Journal of the American Chemical Society,2011,134 (2): 924-927.
    [144]S. Yang, X. Lin, A.J. Blake, K.M. Thomas, P. Hubberstey, N.R. Champness, M. Schroder, Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials, Chemical Communications,2008, (46):6108-6110.
    [145]S. Yang, X. Lin, A.J. Blake, G.S. Walker, P. Hubberstey, N.R. Champness, M. Schroder, Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework, Nature Chemistry,2009,1 (6):487-493.
    [146]S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J.E. Parker, C.C. Tang, D.R. Allan, P.J. Rizkallah, P. Hubberstey, N.R. Champness, K. Mark Thomas, A.J. Blake, M. Schroder, A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide, Nat Mater, advance online publication 2012.
    [147]B.L. Chen, N.W. Ockwig, A.R. Millward, D.S. Contreras, O.M. Yaghi, High H2 adsorption in a microporous metal-organic framework with open metal sites, Angewandte Chemie-International Edition,2005,44 (30):4745-4749.
    [148]P.D.C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvag, Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework, Chemical Communications,2006, (9):959-961.
    149] A. Mallick, S. Saha, P. Pachfule, S. Roy, R. Banerjee, Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites, Journal of Materials Chemistry,2010,20 (41):9073-9080.
    [150]W. Zhou, H. Wu, T. Yildirim, Enhanced H2 Adsorption in Isostructural Metal-Organic Frameworks with Open Metal Sites:Strong Dependence of the Binding Strength on Metal Ions, Journal of the American Chemical Society,2008,130 (46):15268.
    [151]M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen Storage in Metal-Organic Frameworks, Chemical Reviews,2012,112 (2):782-835.
    [152]X.-S. Wang, S. Ma, P.M. Forster, D. Yuan, J. Eckert, J.J. Lopez, B.J. Murphy, J.B. Parise, H.-C. Zhou, Enhancing H2 uptake by "Close-Packing" alignment of open copper sites in metal-organic frameworks, Angewandte Chemie-International Edition,2008,47 (38): 7263-7266.
    [153]X.-S. Wang, S. Ma, K. Rauch, J.M. Simmons, D. Yuan, X. Wang, T. Yildirim, W.C. Cole, J.J. Lopez, A. de Meijere, H.-C. Zhou, Metal-organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes, Chemistry of Materials,2008,20 (9):3145-3152.
    [154]X. Lin, A.J. Blake, C. Wilson, X.Z. Sun, N.R. Champness, M.W. George, P. Hubberstey, R. Mokaya, M. Schroder, A porous framework polymer based on a zinc(II) 4,4 '-bipyridine-2,6,2',6'-tetracarboxylate:Synthesis, structure, and "zeolite-like" behaviors, Journal of the American Chemical Society,2006,128 (33):10745-10753.
    [155]X. Lin, N.R. Champness, M. Schroeder, Hydrogen, Methane and Carbon Dioxide Adsorption in Metal-Organic Framework Materials, in:M. Schroder (Ed.) Functional Metal-Organic Frameworks:Gas Storage, Separation and Catalysis,2010:35-76.
    [156]X. Lin, J. Jia, P. Hubberstey, M. Schroeder, N.R. Champness, Hydrogen storage in metal-organic frameworks, CrystEngComm,2007,9 (6):438-448.
    [157]Y. Yan, A.J. Blake, W. Lewis, S.A. Barnett, A. Dailly, N.R. Champness, M. Schroeder, Modifying Cage Structures in Metal-Organic Polyhedral Frameworks for H2 Storage, Chemistry-a European Journal,2011,17 (40):11162-11170.
    [158]Y. Yan, I. Telepeni, S. Yang, X. Lin, W. Kockelmann, A. Dailly, A.J. Blake, W. Lewis, G.S. Walker, D.R. Allan, S.A. Barnett, N.R. Champness, M. Schroder, Metal-Organic Polyhedral Frameworks:High H2 Adsorption Capacities and Neutron Powder Diffraction Studies, Journal of the American Chemical Society,2010,132 (12):4092-+.
    [159]Y. Yan, S. Yang, A.J. Blake, W. Lewis, E. Poirier, S.A. Barnett, N.R. Champness, M. Schroeder, A mesoporous metal-organic framework constructed from a nanosized C-3-symmetric linker and Cu-24(isophthalate)(24) cuboctahedra, Chemical Communications,2011,47 (36):9995-9997.
    [160]S. Xiang, W. Zhou, J.M. Gallegos, Y. Liu, B. Chen, Exceptionally High Acetylene Uptake in a Microporous Metal-Organic Framework with Open Metal Sites, Journal of the American Chemical Society,2009,131 (34):12415-12419.
    [161]S. Xiang, W. Zhou, Z. Zhang, M.A. Green, Y. Liu, B. Chen, Open Metal Sites within Isostructural Metal-Organic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature, Angewandte Chemie-International Edition,2010,49 (27):4615-4618.
    [162]Y. Hu, L. He, Y. Yin, Magnetically Responsive Photonic Nanochains, Angewandte Chemie-International Edition,2011,50 (16):3747-3750.
    [163]L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nature Materials,2003,2 (6):382-385.
    [164]T. Mokari, M. Zhang, P. Yang, Shape, size, and assembly control of PbTe nanocrystals, Journal of the American Chemical Society,2007,129 (32):9864-+.
    [165]X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals, Nature,2000,404 (6773):59-61.
    [166]Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, A Systematic Study of the Synthesis of Silver Nanoplates:Is Citrate a "Magic" Reagent?, Journal of the American Chemical Society,2011, 133(46):18931-18939.
    [167]X. Zhang, C. Dong, J.A. Zapien, S. Ismathullakhan, Z. Kang, J. Jie, X. Zhang, J.C. Chang, C.-S. Lee, S.-T. Lee, Polyhedral Organic Microcrystals:From Cubes to Rhombic Dodecahedra, Angewandte Chemie-International Edition,2009,48 (48):9121-9123.
    [168]A. Carne, C. Carbonell, I. Imaz, D. Maspoch, Nanoscale metal-organic materials, Chemical Society Reviews,2011,40 (1):291-305.
    [169]W. Lin, W.J. Rieter, K.M.L. Taylor, Modular Synthesis of Functional Nanoscale Coordination Polymers, Angewandte Chemie-International Edition,2009,48 (4):650-658.
    [170]A. Carne, C. Carbonell, I. Imaz, D. Maspoch, Nanoscale metal-organic materials, Chemical Society Reviews,2011,40 (1):291-305.
    [171]W. Lin, W.J. Rieter, K.M.L. Taylor, Modular Synthesis of Functional Nanoscale Coordination Polymers, Angewandte Chemie-International Edition,2009,48 (4):650-658.
    [172]L. Catala, F. Volatron, D. Brinzei, T. Mallah, Functional Coordination Nanoparticles, Inorganic Chemistry,2009,48 (8):3360-3370.
    [173]J.K.H. Hui, M.J. MacLachlan, Metal-containing nanofibers via coordination chemistry, Coordination Chemistry Reviews,2010,254 (19):2363-2390.
    [174]I. Imaz, J. Hernando, D. Ruiz-Molina, D. Maspoch, Metal-Organic Spheres as Functional Systems for Guest Encapsulation, Angewandte Chemie-International Edition,2009,48 (13): 2325-2329.
    [175]I. Imaz, D. Maspoch, C. Rodriguez-Blanco, J.M. Perez-Falcon, J. Campo, D. Ruiz-Molina, Valence-tautomeric metal-organic nanoparticles, Angewandte Chemie-International Edition, 2008,47(10):1857-1860.
    [176]I. Imaz, M. Rubio-Martinez, L. Garcia-Fernandez, F. Garcia, D. Ruiz-Molina, J. Hernando, V. Puntes, D. Maspoch, Coordination polymer particles as potential drug delivery systems, Chemical Communications,2010,46 (26):4737-4739.
    [177]I. Imaz, M. Rubio-Martinez, W.J. Saletra, D.B. Amabilino, D. Maspoch, Amino Acid Based Metal-Organic Nanofibers, Journal of the American Chemical Society,2009,131 (51): 18222.
    [178]K. Liu, H. You, G. Jia, Y. Zheng, Y. Huang, Y. Song, M. Yang, L. Zhang, H. Zhang, Hierarchically Nanostructured Coordination Polymer:Facile and Rapid Fabrication and Tunable Morphologies, Crystal Growth & Design,2010,10 (2):790-797.
    [179]S.K. Nune, P.K. Thallapally, A. Dohnalkova, C. Wang, J. Liu, G.J. Exarhos, Synthesis and properties of nano zeolitic imidazolate frameworks, Chemical Communications,2010,46 (27):4878-4880.
    [180]M. Oh, C.A. Mirkin, Chemically tailorable colloidal particles from infinite coordination polymers, Nature,2005,438 (7068):651-654.
    [181]W.J. Rieter, K.M. Pott, K.M.L. Taylor, W. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery, Journal of the American Chemical Society,2008, 130(35):11584-+.
    [182]X.P. Sun, S.J. Dong, E.K. Wang, Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature, Journal of the American Chemical Society,2005,127 (38):13102-13103.
    [183]X. Yan, P. Zhu, J. Fei, J. Li, Self-Assembly of Peptide-Inorganic Hybrid Spheres for Adaptive Encapsulation of Guests, Advanced Materials,2010,22 (11):1283.
    [184]X. Zhang, Z.-K. Chen, K.P. Loh, Coordination-Assisted Assembly of 1-D Nanostructured Light-Harvesting Antenna, Journal of the American Chemical Society,2009,131 (21): 7210.
    [185]M. Oh, C.A. Mirkin, Ion exchange as a way of controlling the chemical compositions of nano-and microparticles made from infinite coordination polymers, Angewandte Chemie-International Edition,2006,45 (33):5492-5494.
    [186]W. Cho, H.J. Lee, M. Oh, Growth-Controlled Formation of Porous Coordination Polymer Particles, Journal of the American Chemical Society,2008,130 (50):16943-16946.
    [187]W. Cho, Y.H. Lee, H.J. Lee, M. Oh, Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology, Chemical Communications,2009, (31):4756-4758.
    [188]S. Jung, M. Oh, Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles, Angewandte Chemie-International Edition,2008,47 (11):2049-2051.
    [189]R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, H. Kitagawa, Surface nano-architecture of a metal-organic framework, Nature Materials,2010,9 (7):565-571.
    [190]P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y.K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nature Materials,2010,9 (2):172-178.
    [191]张洪涛. 微乳聚合物新技术和应用.北京:化学工业出版社,2007
    [192]S. Wu, X. Shen, B. Cao, L. Lin, K. Shen, W. Liu, Shape- and size-controlled synthesis of coordination polymer {Cu(en)(2) KFe(CN)(6)} (n) nano/micro-crystals, Journal of Materials Science,2009,44 (23):6447-6450.
    [193]W.J. Rieter, K.M.L. Taylor, H. An, W. Lin, W. Lin, Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents, Journal of the American Chemical Society, 2006,128 (28):9024-9025.
    [194]K.M.L. Taylor, A. Jin, W. Lin, Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging, Angewandte Chemie-International Edition,2008,47 (40):7722-7725.
    [195]D. Tanaka, A. Henke, K. Albrecht, M. Moeller, K. Nakagawa, S. Kitagawa, J. Groll, Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics, Nature Chemistry,2010,2 (5):410-416.
    [196]Y. He, R. Krishna, B. Chen, Metal-organic frameworks with potential for energy-effiecient adsorptive separation of light hydrocarbons, Energy & Environmental Science,2012, 5(10):9107-9120.
    [197]Y. He, S. Xiang, Z. Zhang, S. Xiong, F. R. Fronczek, R. Krishna, M.O'Keeffe, B. Chen, A. microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas, Chemical Communications,2012,48(88):10856-10858.
    [198]Y. Hu, S. Xiang, W. Zhang, Z. Zhang, L.Wang, J. Bai, B. Chen, Chemical Communications, 2009, (48):7551-7553.
    [199]Z. Chen, S. Xiang, H. Arman, J. Monda, P. Li, D. Zhao, B. Chen, Three-dimensional pillar-layered copper(II) metal-organic framework with immobilized functional OH groups on pore furface for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature, Inorganic Chemistry,2011,50(8):3442-3446.
    [200]D. Tanaka, M.Higuchi, S. Horike, R. Matsuda, Y. Kinoshita, N. Yanai, S. Kitagawa, Chemstriy-An Ansian Journal,2008,3(8-9):1343-1349.
    [201]E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science, 2012,335(6076):1606-1610.
    [202]M. C. Das, H. Xu, Z. Wang, G. Srinnivas, W. Zhou, Y. F. Yue, V. N. Nesterov, G. Qian, B. Chen, Chemical Communications,2011,47(42):11715-11717.
    [203]Y. S. Xue, Y. He, S.B. Ren, Y. Yue, L. Zhou, Y.Z. Li, H. B. Du, X. Z. You, B. Chen, Journal of Materials Chemistry,2012,22(20):10195-10199.
    [204]Z. Zhang, S. Xiang, X. Rao, Q. Zheng, F. R. Fronczek, G. Qian, B. Chen, Chemical Communications,2010,46(38):7205-7207.