毛细管电泳及其电化学发光在食品和生物检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要涉及毛细管电泳电化学检测、电化学发光探针的制作及应用以及毛细管电泳与三联吡啶钌电化学发光检测联用技术的一些应用,共包括四个部分。
     1.本文首次采用毛细管电泳微型检测器测定了市售无糖口香糖中的木糖醇、山梨醇,该法分析速度快、微型便捷。
     2.合成了灵敏的三联吡啶钌的电化学发光探针,并将此探针结合金纳米放大技术以及生物竞争机制应用到溶菌酶的检测,最后该方法成功地应用到生物品的检测,该方法具有极高的灵敏度以及选择性。
     3.合成三联吡啶钌标记的DNA链,并将该方法用于环境中汞离子的检测。
     4.首次应用毛细管电泳与电化学发光联用测定了人体尿液中的肌氨酸并且考察其含量与前列腺癌的关系,为人体的代谢组学以及前列腺癌早期诊断提供新的检测平台。
This thesis is focused on the application of high performanc capillaryelectrophoresis, synthesis and application of electrochemiluminescence probe. We alsodo some work with the combination of capillary electrophoresis andelectrochemiluminescence detection. It consists of the following four sections.
     1. A miniaturized capillary electrophoresis with electrochemical detection (CE-ECD)system for the separation and determination of xylitol、sorbitol in three commercialsugar-free gums was developed. Factors influencing the separation and detectionprocesses were examined and optimized. These two analytes have been separatedwithin 10min at a separation voltage of 4 kV in 70 mmol/L NaOH running buffer.Highly linear response was obtained at the range of 5.0×10~(-5)~10-2 mol/L and5.0×10~(-5)~5.0×10-2 mol/L with the detection limits (S/N=3) of 5.0×10~(-6) mol/L and2.5×10~(-6) mol/L for xylitol and sorbitol, respectively (r>0.9997). The proposed methodwas successfully applied to determine the gum samples with the RSD and averagerecoveries of 3.68%、4.51% and 98.1 %、91.1% for xylitol and sorbitol, respectively ( n= 10) .
     2. A novel Ru(bpy)2(dcbpy)NHS labeling/aptamer based biosensor combined with goldnanoparticles amplification for the determination of lysozyme withelectrochemiluminescence (ECL) method is presented. In this work, aptamer, ECLprobe, gold nanoparticles amplification and competition assay are the main protocolsemployed in ECL detection. Thanks to all those protocols used, an original biosensorcoupled with aptamer and Ru(bpy)2(dcbpy)NHS is prepared, high selectivity andsensitivity are the main advantages over other traditional Ru(bpy)32+ biosensors. All theelectrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM)characterization illustrate that this biosensor is fabricated successfully. Finally, thebiosensor was applied to displacement assay in different concentrations of lysozymesolution and a ultrasensitive ECL signal was obtained. The ECL intensity decreasedproportional to the lysozyme concentration over the range from 1.0×10-13 mol/L to1.0×10-8 mol/L with detection limit of 1.0×10-13 mol/L. This strategy for the aptasensoropens a rapid, selective and sensitive route for lysozyme and other potential proteindetections.
     3. A novel sensitive electrogenerated chemiluminescence (ECL) method for thedetection of Hg2+ based on deoxyribonucleic acid (DNA) hybridization was developed.A probe based on Ru(bpy)2(dcbpy) was synthesized in our laboratory and this probe wasapplied to label DNA and then this DNA-ester probe was fabricated on the surface ofgold electrodes to detect Hg2+ in the environment. We synthesized two kind of DNAprobes to determine Hg2+. A detection limit of 5.0×10-8 mol/L (S/N=3) was achieved.This Ru(bpy)2(dcbpy)NHS label system is a simple and sensitive method,which couldbe further expand the application of ECL in environment.
     4. The analysis of sarcosine is of clinical importance in characterizing prostate cancer development. In this paper a rapid and reliable determination method for sarcosine inhuman urine based on capillary electrophoresis-electrochemiluminescence detection isdescribed. The conditions affecting separation and detection were systematicallyinvestigated. Finally, End-column detection of sarcosine in 5 mM Ru(bpy)32+ solution atapplied voltage of 1.20 V and 10 s electrokinetic injection time at 10 kV was performed.Under these conditions, this method was validated for stability, precision, linearity andaccuracy. Excellent linearity was obtained in the range of 0.25×10~(-3) mol/L-10~(-5) mol/L.The R.S.D. values of ECL intensity and migration time were 3.41% and 1.43% for 10-4mol/L sarcosine, respectively. A detection limit of 5×10~(-6) mol/L (S/N=3) was achieved.The proposed method was applied satisfactorily to the determination of standardsarcosine in buffer within 10 min. Finally, this method was applied to determinesarcosine in real urine sample of normal people and cancer patients successfully. As weexpected, this strategy can be used as a potential diagnoses method for prostate cancer.
引文
[1] Rose D J, Jorgenson J W. Characterization and automation of sample introduction methods for capillary zone electrophoresis [J]. Anal. Chem., 1988, 60: 642-648.
    [2] Hjerten S. High-performance electrophoresis: the electrophoretic counterpart of high-performance liquid chromatography [J]. J Chromatogr., 1983, 270: 1-6.
    [3] Hjerten S, Zhu M D. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing [J]. J Chromatogr., 1985, 346: 265-270.
    [4] Chen Y, Holtje J.–V., Schwarz U. Preparation of highly condensed polyacrylamide gel-filled capillaries [J]. J. Chromatogr. A, 1994, 680: 63-71.
    [5] Zhu A, Chen Y. High-voltage capillary zone electrophoresis of red blood cells [J]. J. Chromatogr., 1989, 470: 251-260.
    [6] a)Terabe S, Otsuka K, Ichkawa K, et al. Electrokinetic separations with micellar solutions and open–tubular capillaries [J]. Anal. Chem., 1984, 56: 111–113. b) Hjerten S, Llao J, Yao K. Theoretical and experimental study of high–performance electrophoretic mobilization of isoelectrically focused protein zone [J]. J. Chromatogr. A, 1987, 387: 127–138. c) Cohen A, Karget B. High–performance sodium dodecyl sulfate polyacrylamide gel of peptides and proteins [J]. J. Chromatogra. A, 1987, 397: 409–417. d) Jorgenson J W, Lukace K D. Zone electrophoresis in open–tubular glass capillary [J]. Anal. Chem., 1981, 53: 1298–1302.
    [7]林柄承.毛细管电泳导论.北京,科学出版社, 1996, 1-30
    [8] Nashabeh W, Elrassi Z. Capillary zone electrophoresis of proteins with hydrophilic fused-silica capillaries [J]. J. Chromatogr., 1991, 559: 367-383
    [9] Schmalzing D, Piggee C.A, Foret F, Carrilho E, Karger B L. Characterization and performance of a neutral hydrophilic coating for the capillary electrophoreticseparation of biopolymers [J]. J. Chromatogr. A, 1993, 652: 149-159
    [10] Lux J A, Hausig U, Schomburg G.. Production of windows in fused silica capillaries for in-column detection of UV-absorption or fluorescence in capillary electrophoresis or HPLC [J]. J. High Resolut. Chrom., 1990, 13: 373-374.
    [11] McCormick R M. Polyimide stripping device for producing detection windows on fused-silica tubing used in capillary electrophoresis [J]. Anal. Chem., 1991, 63: 750-752.
    [12] Thomas Kappes, Peter C. Hauser.Recent Developments in Electrochemical Detection Methods for Capillary Electrophoresis [J]. Electroanalysis, 2000, 12: 165-170.
    [13] Simpson D C, Smith R D. Combining capillary electrophoresis with mass, spectrometry for applications in proteomics [J]. Electrophoresis, 2005, 26: 1291–1305
    [14] Ojima N, Shingaki T, Yamamoto T, Masujima T. Droplet electrocoupling between capillary electrophoresis and matrix assisted laser desorption/ionization-time offlight-mass spectroscopy and its application [J]. Electrophoresis, 2001, 22: 3478-3482
    [15] Huang X J, Fang Z L. Chemiluminescence detection in capillary electrophoresis [J]. Anal. Chim. Acta, 2000, 414: 1-14
    [16] Staller T D, Sepaniak M J. Chemiluminescence detection in capillary electrophoresis [J]. Electrophoresis, 1997, 18: 2291-2296
    [17] Zhang H Q, Li X F, Le X C. Tunable aptamer capillary electrophoresis and its application to protein analysis [J]. J.Am.Chem.Soc., 2008, 130: 34-35.
    [18] Mendonsa S D, Bowser M T, Leigh A M. In Vitro Evolution of Functional DNA Using Capillary Electrophoresis [J]. J. Am. Chem. Soc., 2004, 126: 20-21.
    [19] Baena B, Cifuentes A, Barbas C. Analysis of carboxylic acids in biological fluids by capillary electrophoresis [J]. Electrophoresis., 2005, 26(13):2622-36.
    [20] Kenney B F. Determination of organic acids in food samples by capillary electrophoresis [J]. J. Chromatogr. 1991, 546: 423-430.
    [21] Jones W R, Jandik P. Controlled changes of selectivity in the separation of ions by capillary electrophoresis [J]. J. Chromatogr., 1991, 546: 445-458.
    [22] Tokel N E, Bard A J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine) ruthenium(II) dichloride [J]. J. Am. Chem. Soc., 1972, 94, (8): 2862-2863.
    [23] Bard A J. Electrogenerated Chemiluminescence, Marcel Dekker: New York, 2004; Chap. 1.
    [24] Richter M M. Electrochemiluminescence (ECL) [J]. Chem. Rev., 2004, 104: 3003-3036.
    [25] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence [J]. TrAC-Trends Anal. Chem., 1999, 18: 47-62.
    [26] Lee W Y. Tris (2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science [J]. Mikrochim. Acta, 1997, 127, (1-2): 19-39.
    [27] Pyati R, Richter M M. ECL—Electrochemical luminescence [J]. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2007, 103: 12-78.
    [28] Xu G. B, Pang H L, Xu B, Dong S J, Wong K Y. Enhancing the electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium(II) by ionic surfactants [J]. Analyst, 2005, 130, (4): 541-544.
    [29] Wei H, Wang E K. Solid-state electrochemiluminescence of tris(2,2'-biypyridyl) ruthenium [J]. TrAC-Trends Anal. Chem., 2008, 27, (5): 447-459.
    [30] Blackburn G F, Shah H P, Kenten J H, Leland J, Kamin R A, Link J, Peterman J,Powell M J, Shah A, Talley D B, Tyagi S K, Wilkins E, Wu T G, Massey R J. Electrochemiluminescence Detection for Development of Immunoassays and DNA Probe Assays for Clinical Diagnostics [J]. Clin. Chem., 1991, 37, (9): 1534-1539.
    [31] Leland J K, Powell M J. Electrogenerated Chemiluminescence: An Oxidative-Reduction Type ECL Reaction Sequence using Tripropyl Amine [J]. J. Electrochem. Soc., 1990, 137, (10): 3127-3131.
    [32] Yin X B, Dong S J, Wang E K. Analytical applications of the electrochemiluminescence of tris (2,2'-bipyridyl) ruthenium and its derivatives [J]. TrAC-Trends Anal. Chem., 2004, 23, (6): 432-441.
    [33] Du Y, Wei H, Kang J Z, Yan J L, Yin X B, Yang X R, Wang E K. Microchip capillary electrophoresis with solid-state electrochemiluminescence detector [J]. Anal. Chem., 2005, 77, (24): 7993-7997.
    [34] Wei H, Du Y, Kang J Z, Wang E K. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2'-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation [J]. Electrochem. Commun., 2007, 9, (7): 1474-1479.
    [35] Dennany L, Forster R J, Rusling J F. Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films [J]. J. Am. Chem. Soc. 2003, 125, (17): 5213-5218.
    [36] Sun X P, Du Y, Dong S J, Wang E K. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection [J]. Anal. Chem., 2005, 77, (24): 8166-8169.
    [37] Martin A F, Nieman T A. Chemiluminescence biosensors using tris(2,2'-bipyridyl)ruthenium(II) and dehydrogenases immobilized in cation exchange polymers [J]. Biosens. Bioelectron., 1997, 12, (6): 479-489.
    [38] Li J G., Yan Q Y, Gao Y L, Ju H X. Electrogenerated chemiluminescence detection of amino acids based on precolumn derivatization coupled with capillary electrophoresis separation [J]. Anal. Chem., 2006, 78, (8): 2694-2699.
    [39] Wei H, Wang E K. Electrochemiluminescence-based DNA detection using guanine oxidation at electrostatic self-assembly of Ru(bpy)32+-doped silica nanoparticles on indium tin oxide electrode [J]. Chem. Lett. 2007, 36, (2): 210-211.
    [40] Miao W J, Bard A J. Electrogenerated chemluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using Tris(2,2'-bipyridyl)ruthenium(II) labels [J]. Anal. Chem., 2003, 75, (21): 5825-5834.
    [41] Miao W J, Bard A J. Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)32+]-containing microspheres [J]. Anal. Chem., 2004, 76, (18): 5379-5386.
    [42] Knight A W. A review of recent trends in analytical applications of Electrogenerated chemiluminescence [J]. Trends in Anal. Chem., 1999, 18: 47-62
    [43] Lee W Y. Tris(2,2/-bipyridine)ruthenium(II) Electrogenerated chemilumin escence in analytical science [J]. Mikrochim. Acta., 1997, 127: 19-39.
    [44] Gerardi R D, Barnett N W, Lewis S W. Analytical applications of tris(2,2/-bipyridine)ruthenium(II) as a chemiluminescent reagent [J]. Anal. Chim. Acta., 1999, 378: 1-412.
    [45] Yin X B, Qiu H B, Sun X, Yan J L, Liu J, Wang E K. 4-(Dimethylamino) Butyric Acid Labeling for Electrochemiluminescence Detection of Biological Substances by Increasing Sensitivity with Gold Nanoparticle Amplification [J]. Anal. Chem., 2005, 77, (11): 3525-3530.
    [46] Miao W, Bard A J. Electrogenerated chemiluminescence. 80. C-reactive proteindetermination at high amplification with [Ru(bpy)3]2+-Containing microspheres [J]. Anal. Chem., 2004, 76: 7109-7113
    [47] Luman C R, Castellano F N. in McCleverty, J. A.; Meyer, T. J. (Ed.), Comprehensive Coordination Chemsitry II, Vol. 1, Elsevier, Oxford, 2004, P25.
    [48] McCord P, Bard A J. Electrogenerated Chemiluminescence. 54. Electrogenerated Chemiluminescence of Ruthenium(II) 4,4'-Diphenyl-2,2'-Bipyridine and Ruthenium(II) 4,7-Diphenyl-1,10-Phenanthroline Systems in Aqueous and Acetonitrile Solutions [J]. J. Electroanal. Chem., 1991, 318, (1-2): 91-99.
    [49] Wang P, Zhu G. Y. The efficient syntheses of three novel bridging phenanthroline ligands and their binuclear ruthenium(II) complexes [J]. Synth. Commun., 2000, 30, (22): 4057-4064.
    [50] Shen Y B, Sullivan B P. A Versatile Preparative Route to 5-Substituted-1,10-Phenanthroline Ligands Via 1,10-Phenanthroline 5,6-Epoxide [J]. Inorg.Chem., 1995, 34, (25): 6235-6236.
    [51] Liu J, Yan J, Yang X, Wang E K. Miniaturized Tris(2,2‘-bipyridyl)ruthenium(II) Electrochemiluminescence Detection Cell for Capillary Electrophoresis and Flow Injection Analysis [J]. Anal. Chem., 2003, 75: 3637–3642.
    [52] Yang J, Huang Y, Wang X B, Becker F F, Gascoyne P R C. Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation [J]. Anal. Chem., 1999, 71: 911-918
    [53] Yan J, Yang X, Wang E. Fabrication of a Poly(dimethylsiloxane)-Based Electrochemiluminescence Detection Cell for Capillary Electrophoresis [J]. Anal. Chem., 2005, 77: 5385–5388
    [54] Chiang M T, Whang C W. Tris(2,2′-bipyridyl)ruthenium(III)-based electrochemiluminescence detector with indium/tin oxide working electrode forcapillary electrophoresis [J]. J. Chromatogr., A, 2001, 934: 59–66.
    [55] Hendrickson H P, Anderson P, Wang X, Pittman Z, Bobbitt D R. Compositional analysis of small peptides using capillary electrophoresis and Ru(bpy)33+-based chemiluminescence detection [J]. Microchem. J., 2000, 65: 189–195.
    [56] Bobbitt D R, Jackson W A, Hendrickson H P. Chemiluminescent detection of amines and amino acids using in situ generated Ru(bpy)33+ following separation by capillary electrophoresis [J]. Talanta, 1998, 46: 565–572.
    [57] Wang X, Bobbitt D R. Electrochemically generated Ru(bpy)33+-based chemiluminescence detection in micellar electrokinetic chromatography [J]. Talanta, 2000, 53: 337–345.
    [58] Wang X, Bobbitt D R. In situ cell for electrochemically generated Ru(bpy)33+-based chemiluminescence detection in capillary electrophoresis [J]. Anal. Chim. Acta, 1999, 383: 213–220.
    [59] Arora A, Eijkel J C T, Morf W E, Manz A. A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device [J]. Anal. Chem.,2001, 73: 3282–3288.
    [60] Gerardi R D, Barnett N W, Lewis S W. Analytical applications of tris(2,2-bipyridyl)ruthenium(III) as a chemiluminescent reagent [J]. Anal. Chim. Acta, 1999, 378: 1–41.
    [61] Perez-Ruiz T, Martinez-Lozano C, Tomas V, Martin J. Flow injection chemiluminescent determination of N-nitrosodimethylamine using photogenerated tris(2,2′-bipyridyl) ruthenium (III) [J]. Anal. Chim. Acta, 2005, 541: 67–72.
    [62] Li J G., Yan Q Y, Gao Y L, Ju H X. Electrogenerated chemiluminescence detection of amino acids based on precolumn derivatization coupled with capillary electrophoresis separation [J]. Anal. Chem., 2006, 78, (8): 2694-2699.
    [63] Niina N, Kodamatani H, Uozumi K, Kokufu Y, Saito K, Yamazaki S. Simultaneous Detection of Monoethanolamine, Diethanolamine, and Triethanolamine by HPLC with a Chemiluminescence Reaction and Online Derivatization to Tertiary Amine [J]. Anal. Sci., 2005, 21: 497–500.
    [64] Uchikura K. Determination of Aromatic and Branched-Chain Amino Acids in Plasma by HPLC with Electrogenerated Ru(bpy)33+Chemiluminescence Detection [J]. Chem. Pharm. Bull., 2003, 51: 1092–1094.
    [65] Greenway G. M, Nelstrop L J, Port S N. Tris(2,2-bipyridyl)ruthenium (II) chemiluminescence in a microflow injection system for codeine determination [J]. Anal. Chim. Acta, 2000, 405: 43–50.
    [66] Perez-Ruiz T, Martinez-Lozano C, Tomas V, Martin J. Flow injection chemiluminescent method for the successive determination of -cysteine and -cystine using photogenerated tris(2,2-bipyridyl) ruthenium (III) [J]. Talanta, 2002, 58: 987–994.
    [67] Jinshun P, Mitoma Y, Zhao C, Hifumi E, Taizo U, Egashira N. Determination of Amino Acids and Peptides by Flow-Through Detector on the Basis of Electrochemiluminescence of Tis(2,2'-bipyridine)ruthenium(II) Complex from a Au Electrode Modified with Albumin or Lysozyme [J]. ITE Lett. Batteries New Technol. Med., 2003, 4: 606–609.
    [68] Greenway G. M, Dolman S J L. Analysis of tricyclic antidepressants using electrogenerated chemiluminescence [J]. Analyst, 1999, 124: 759–762.
    [69] Townshend A, Ruengsitagoon W, Thongpooon C, Liawruagrath S. Flow injection chemiluminescence determination of tetracycline [J]. Anal. Chim. Acta, 2005, 541: 103–109.
    [70] Wang Y, He Z. Ru(bipy)32+—CO2—SO2—KClO3体系化学发光法测定空气中的二氧化硫[J]. Fenxi Kexue Xuebao, 2002, 18: 453–456.
    [71] Wu F, He Z, Meng H, Luo Q, Zeng Y.三邻菲咯啉合亚钌—亚硫酸根—过二硫酸钾化学发光法测定空气中的二氧化硫[J]. Fenxi Huaxue, 2000, 28: 709–711.
    [72] Guo L, Xie Z, Lin X, Liu X, Zhang W, Chen G.. Flow injection chemiluminescent determination of tetracycline using a tris(2,2-bipyridine)ruthenium(II)-cerium(IV) sulphate system [J]. Luminescence, 2004, 19: 64–68.
    [73] Guo L, Xie Z, Bian X, Lin X, Zhang W, Liu X, Chen G. Determination of oxytetracycline by flow injection with chemiluminescence detection [J]. Luminescence, 2005, 20: 129–134.
    [74] Aly F A, Al-Tamimi S A, Alwarthan A. Chemiluminescence determination of some fluoroquinolone derivatives in pharmaceutical formulations and biological fluids using [Ru(bipy)32+]–Ce(IV) system [J]. Talanta, 2001, 53: 885–893.
    [75] Francis P S, Adcock J L. Chemiluminescence methods for the determination of ofloxacin [J]. Anal. Chim. Acta, 2005, 541: 3–12.
    [76] Xu G., Dong S. Electrochemiluminescent Detection of Chlorpromazine by Selective Preconcentration at a Lauric Acid-Modified Carbon Paste Electrode Using Tris(2,2‘-bipyridine)ruthenium(II) [J]. Anal. Chem., 2000, 72: 5308–5312.
    [1]王关斌,王成福.功能性甜味剂-木糖醇[J].中国食物与营养, 2005, 10: 28-29
    [2]任鸿均.木糖醇的生产新技术及其应用[J].化工科技市场, 2005, 2: 1-6
    [3] Corradini C, Canali G, Cogliandro E, Nicoletti I. Separation of alditols of interest in food products by high-performance anion-exchange chromatography with pulsed amperometric detection [J]. J. Chromatogr. A, 1997, 791: 343-349
    [4] Cataldi T R I., Centonze D, Margiotta G. Separation and Pulsed Amperometric Detection of Alditols and Carbohydrates by Anion-Exchange Chromatography Using Alkaline Mobile Phases Modified with Ba(II), Sr(II), and Ca(II) Ions [J]. Anal. Chem. 1997, 69: 4842-4848
    [5] Cataldi T R I, Campa C, Casella I G, Bufo S A. Determination of Maltitol, Isomaltitol, and Lactitol by High-pH Anion-Exchange Chromatography with Pulsed Amperometric Detection [J]. J. Agric. Food Chem., 1999, 47: 157-163
    [6] Hanko V P, Rohrer J S. Determination of Carbohydrates, Sugar Alcohols, and Glycols in Cell Cultures and Fermentation Broths Using High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection [J]. Analytical Biochemistry, 2000, 283: 192-199
    [7] Pospí?ilováM, Polá?ek M, Jokl V. Separation and determination of sorbitol and xylitol in multi-component pharmaceutical formulations by capillary isotachophoresis [J]. J. Pharma. Biomed.Anal., 1998, 17: 387-392
    [8] HerrmannováM, K?ivánkováL, Barto? M, Vyt?as K [J]. Direct simultaneous determination of eight sweeteners in foods by capillary isotachophoresis. J. Sep. Sci., 2006, 29: 1132-1137
    [9]陈冠华,张利平,田益玲,王秀敏.毛细管区带电泳法分离发酵液中的木糖和木糖醇[J].色谱, 2001, 19( 6 ): 449-551
    [10] Saidman S B, Lobo-Casta?ón M J, Miranda-Ordieres A J, Tu?ón-Blanco P. Amperometric detection of -sorbitol with NAD+- -sorbitol dehydrogenase modified carbon paste electrode [J]. Analytica Chimica Acta, 2000, 424: 45-50
    [11] Chen M C, Huang H. Application of a nickel-microelectrode-incorporated end-column detector for capillary electrophoretic determination of alditols and alcohols [J]. Analytica Chimica Acta, 1997, 341: 83-90
    [12] Cataldi T R I, Centonze D, Casella I G, Desimoni E. Anion-exchange chromatography with electrochemical detection of alditols and sugars at a Cu2O–carbon composite electrode [J]. J. Chromatogr. A, 1997, 773: 115-121
    [13] Cataldi T R I, Centonze D. Nickel oxide dispersed in a graphite/poly(vinyl chloride) composite matrix for an electrocatalytic amperometric sensor of alditols in flow-injection analysis [J]. Analytica Chimica Acta, 1995, 307: 43-48
    [14] Soga T, Ross G A. Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis [J]. J. Chromatogra. A, 1999, 837: 231-239
    [15] Pospí?ilováM, Polá?ek M, ?afra J, Petri?ka I. Determination of mannitol and sorbitol in infusion solutions by capillary zone electrophoresis using on-column complexation with borate and indirect spectrophotometric detection [J]. J. Chromatogra. A, 2007, 1143: 258-263
    [16]甘宾宾,马彦,叶志云.反相高效液相色谱法测定山梨醇和甘露醇[J].化学世界, 1999, 2: 99-101
    [17]张发喜,戴柳英. HPLC法测定木糖醇注射液的含量及有关物质[J].海峡药学, 2005, 17(2): 67-69
    [18]施燕支,郭雪清,余启荣. HPLC示差折光分析法测定口香糖中的木糖醇等多种糖醇的含量[J].首都师范大学学报(自然科学版), 2005, 26(1): 61-62
    [19] Wan E C H, Yu J Z. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry [J]. J. Chromatogr. A, 2006, 1107: 175-182
    [20] Rogatsky E, Stein. D. Novel, highly robust method of carbohydrate pre-purification by two-dimensional liquid chromatography prior to liquid chromatography/mass spectrometry or gas chromatography/mass spectrometry [J]. J. Chromatogr. A, 2005, 1073: 11-16
    [21] Katayama M, Matsuda Y, Kobayashi K, Kaneko S, Ishikawa H. Simultaneous determination of glucose, 1,5-anhydrod-glucitol and related sugar alcohols in serum by high-performance liquid chromatography with benzoic acid derivatization [J]. Biomed. Chromatogr., 2006, 20: 440-445
    [22] Nojiri S, Taguchi N, Oishi M, Suzuki S. Determination of sugar alcohols in confectioneries by high-performance liquid chromatography after nitrobenzoylation [J]. J. Chromatogr. A, 2000, 893: 195-200
    [23] Paredes E, Maestre S E, Prats S, TodolíJ L. Simultaneous Determination of Carbohydrates, Carboxylic Acids, Alcohols, and Metals in Foods by High-Performance Liquid Chromatography Inductively Coupled Plasma Atomic Emission Spectrometry [J]. Anal. Chem., 2006, 78: 6774-6782
    [24] Shetty H U, Holloway H W, Rapoport S I. Capillary Gas Chromatography Combined with Ion Trap Detection for Quantitative Profiling of Polyols in Cerebrospinal Fluid and Plasma [J]. Analytical Biochemistry, 1995, 224: 279-285
    [25] Medeiros P M, Simoneit B R T. Analysis of sugars in environmental samples by gas chromatography–mass spectrometry [J]. J. Chromatogr. A, 2007, 1141: 271-278
    [26] Han N S, Robyt J F. Separation and detection of sugars and alditols on thin layerchromatograms [J]. Carbohydrate Research, 1998, 313: 135-137
    [27] Yamamoto A, Ohmi H, Matsunaga A, Ando K, Hayakawa K, Nishimura M Selective determination of Full-size image-sorbitol and Full-size image-mannitol in foodstuffs by ion chromatography with polarized photometric detection [J]. J. Chromatogr. A, 1998, 804: 305-309
    [28] Que A H, Novotny M V. Separation of Neutral Saccharide Mixtures with Capillary Electrochromatography Using Hydrophilic Monolithic Columns [J]. Anal. Chem., 2002, 74: 5184-5191
    [29] Prabhu S V, Baldwin R P. Constant potential amperometric detection of carbohydrates at a copper-based chemically modified electrode [J]. Anal. Chem., 1989, 61: 852-861
    [30] Chen G, Zhang L Y, Wang J. Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols [J]. Talanta, 2004, 64: 1018-1023
    [1] a) Jakubowski N, Lobinski R, Moens L. Metallobiomolecules. The basis of life, the challenge of atomic spectroscopy [J]. J. Anal. At. Spectrom., 2004, 19: 1-4; b) Haraguchi H. Metallomics as integrated biometal science [J]. J. Anal. At. Spectrom., 2004, 19: 5-14; c) Szpunar J. Metallomics: a new frontier in analytical chemistry [J]. Anal. Bioanal. Chem., 2004, 378: 54-56.
    [2] a) Ikariyama Y, Kunoh H, Aizawa M. Electrochemical luminescence-based homogeneous immunoassay [J]. Biochem. Biophys. Res. Commun., 1985, 128: 987-992; b) Eskola J, M?kinen P, Oksa L, Loikas K, Nauma M, Jiang Q H, H?kansson M, Suomi J, Kulmala S. Competitive immunoassay by hot electron-induced electrochemiluminescence detection and using a semiautomatic electrochemiluminometer [J]. J. Lumin., 2006, 118: 238-244; C) Zhang C X, Zhang H H, Feng M L. Homogeneous Electrogenerated Chemiluminescence Immunoassay Using a Luminol-Labeled Digoxin Hapten [J]. Anal. Lett., 2003, 36: 1103-1114; d) Miao W J, Bard A J. Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2'-bipyridyl)ruthenium(II) labels [J]. Anal. Chem., 2003, 75: 5825-5834; e) Zhou M, Roovers J, Robertson G. P, Grover C P. Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic labelfor electrochemiluminescence assays [J]. Anal. Chem., 2003, 75: 6708-6017.
    [3] a) Robertson D L, Joyce G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA [J]. Nature, 1990, 344: 467-468; b) Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990, 346: 818-822; c) Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249: 505-510.
    [4] a) Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip [J]. Anal. Chem., 2005, 77: 3437-3443; b) Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine [J]. J. Am. Chem. Soc., 2002, 124: 9678-9679; c) Herr J. K, Smith J E, Medley C D, Shangguan D, Tan W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells [J]. Anal. Chem., 2006, 78: 2918-2924; d) Huang C C, Huang Y F, Cao Z, Tan W H, Chang H T. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors [J]. Anal. Chem., 2005, 77: 5735-5741; e) Minunni M, Tombelli S, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein [J]. Bioelectrochemistry., 2005, 67: 135-141
    [5] a) Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA [J]. Science, 1994, 263: 1425-1429; b) Hesselberth J, Robertson M P, Jhaveri S, Ellington A D. In vitro selection of nucleic acids for diagnostic applications [J]. Rev. Mol.Biotechnol., 2000, 74: 15-25; c) Haller A A, Sarnow P. In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA?molecules [J]. Proc. Natl. Acad. Sci. U.S.A., 1997, 94: 8521-8526; d) Gebhardt K, Shokraei A, Babaie E, Lindquist B H. RNA Aptamers to S-Adenosylhomocysteine: Kinetic Properties, Divalent Cation Dependency, and Comparison with Anti-S-adenosyl homocysteine Antibody [J]. Biochemistry, 2000, 39: 7255-7265; e) Kawakami J, Imanaka H, Yokota Y, Sugimoto N. In vitro selection of aptamers that act with Zn2+ [J]. J. Inorg. Biochem., 2000, 82: 197-206.
    [6] a) Wang J, Jiang Y J, Zhou C S, Fang X H. Aptamer-Based ATP Assay Using a Luminescent Light Switching Complex [J]. Anal. Chem., 2005, 77: 3542-3546; b) Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine [J]. J. Am. Chem. Soc., 2002, 124: 9678-9679; c) Nutiu R, Yu J M Y, Li Y F. Signaling Aptamers for Monitoring Enzymatic Activity and for Inhibitor Screening [J]. Chem. BioChem., 2004, 5: 1139-1144; d) Nutiu R, Li Y. F. Structure-SwitchingSignaling Aptamers [J]. J. Am. Chem. Soc. 2003, 125, 4771-4778; e) Nutiu R, Li Y F. In Vitro Selection of Structure-Switching Signaling Aptamers [J]. Angew. Chem., 2005, 44: 1061-1065.
    [7] Li Y, Lee H J, Corn R M. Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging [J]. Nucleic. Acids. Res., 2006, 34: 6416-6424.
    [8] Basnar B, Elnathan R, Willner I. Following Aptamer? Thrombin Binding by Force Measurements [J]. Anal. Chem., 2006, 78: 3638-3642.
    [9] Liss M, Petersen B, Wolf H, Prohaska E. An aptamer-based quartz crystal protein biosensor [J]. Anal. Chem., 2002, 74: 4488-4495.
    [10] a) Baker B R, Lai R Y, Wood M S, Doctor E H, Heeger A J, Plaxco K W. An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids [J]. J. Am. Chem. Soc., 2006, 128: 3138-3139; b) Zou X L, Song S P, Zhang J, Pan D, Wang L H, Fan C H. A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP [J]. J. Am. Chem. Soc., 2007, 129: 1042-1043; c) Wu Z S, Guo M M, Zhang S B, Chen C R, Jiang J H, Shen G L, Yu R Q. Reusable Electrochemical Sensing Platform for Highly Sensitive Detection ofSmall Molecules Based on Structure-Switching Signaling Aptamers [J]. Anal. Chem., 2007, 79: 2933-2939; d) Shen L, Chen Z, Li Y H, Jing P, Xie S B, He S L, Shao Y H. A chronocoulometric aptamer sensor for adenosine monophosphate [J]. Chem. Commun., 2007, 2169-2171; e) Zayats M, Huang Y, Gill R, Ma C A. I. Willner, Label-Free and Reagentless Aptamer-Based Sensors for Small Molecules [J]. J. Am. Chem. Soc., 2006, 128: 13666-13667; f) Zayats M, Willner I. Electronic Aptamer-Based Sensors [J]. Angew. Chem. Int. Ed., 2007, 46: 6408-6418
    [11] Wang X Y, Zhou J M, Yun W, Xiao S S, Chang Z, He P G., Fang Y Z. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Anal. Chim. Acta., 2007, 598: 242-248; b) Gill R, Polsky R, Willner I. Pt Nanoparticles Functionalized with Nucleic Acid Act as Catalytic Labels for the Chemiluminescent Detection of DNA and Proteins [J]. Small, 2006, 2: 1037-1141
    [12] Noffsinger J B, Danielson N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) [J]. Anal. Chem., 1987, 59: 865-868.
    [13] Leland J K, Powell M J. Electrogenerated chemiluminescence: anoxidative-reduction type ECL reaction sequence using tripropyl amine [J]. J. Electrochem. Soc., 1990, 137: 3127-3131.
    [14] a) Blackburn G F, Shah H P, Kenten J H, Leland J, Kamin R A, Link J, Peterman J, Powell M J, Shah A, Talley D B, Tyagi S K, Wilkins E, Wu T G, Massey R J. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clin. Chem. 1991, 37, 1534-1539; b) Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence [J]. TRAC-Trends Anal. Chem., 1999, 18: 47-62; c) Wei H, Wang E K. [J]. Chem. Lett., 2007, 36: 210; d) Miao W J, Bard A J. Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres [J]. Anal. Chem., 2004, 76: 5379-5386; e) Greenway G M, Knight A W, Knight P J. Electrogenerated chemiluminescent determination of codeine and related alkaloids and pharmaceuticals with tris(2,2-bipyridine)ruthenium(II) [J]. Analyst, 1995, 120: 2549-2552.
    [15] a) Park S J, Kim D H, Park H J, Lee D N, Kim B H, Lee W.-Y.. Characterization of Electrochemiluminescent Ruthenium (II) Complexes Containing 2,2'-Bipyridyl and Related Ligands [J]. Anal.Sci., 2001, 17: 93-96; b) Massey R J, Powell M J, MiedP A, Feng P, Della C L, Dressick W J, Poonian M S. Patent, WO8706706, 1987, 253pp; c) Michel P E, DeRooij N F, Koudelka-Hep M, Fahnrich K A, O’Sullivan C K, Guilbault G. G.. Redox-cycling type electrochemiluminescence in aqueous medium. A new principle for the detection of proteins labeled with a ruthenium chelate [J]. J.Electroanal.Chem. 1999, 474: 192-194; d) Zhou M, Roovers J, Gilles P R, Chander P G.. Multilabeling Biomolecules at a Single Site. 1. Synthesis and Characterization of a Dendritic Label for Electrochemiluminescence Assays [J]. Anal.Chem., 2003, 75: 6708-6717; e) Zhou M, Roovers J. Patent US 2005059834, 2005, 14pp.
    [16] Baldrich E, Acero J L, Reekmans G., Laureyn W, O’Sullivan C K. Aptasensor Development: Elucidation of Critical Parameters for Optimal Aptamer Performance [J]. Anal. Chem., 2004, 76: 7053-7063.
    [17] Hansen J A, Wang J, Kawde A N, Xiang Y, Gothelf K V, Collins G.. Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor [J]. J. Am. Chem. Soc., 2006, 128: 2228-2229.
    [18] a) Nutiu R, Li Y F. Structure-Switching Signaling Aptamers [J]. J. Am. Chem. Soc., 2003, 125: 4771-4778; b) Pavlov V, Xiao Y, Shlyabovsky B, Willner I. Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection ofThrombin [J]. J. Am. Chem. Soc., 2004, 126: 11768-11769; C) Levy M, Cater S F, Ellington A D. Quantum-Dot Aptamer Beacons for the Detection of Proteins [J]. Chem. Bio. Chem., 2005, 6: 2163-2166; d) Xiao Y, Lubin A A, Heeger A J, Plaxco K W. Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor [J]. Angew. Chem. Int. Ed., 2005, 117: 5592-5595; e) Xu D K, Xu D W, Yu X B, Liu Z, He W, Ma Z. Label-Free Electrochemical Detection for Aptamer-Based Array Electrodes [J]. Anal. Chem., 2005, 76: 5107-5113.
    [19] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nat. Phys. Sci., 1973, 241: 20-22.
    [20] Sprintschnik G., Sprintschnik H W, Kirsch P P, Whitten D G.. Photochemical reactions in organized monolayer assemblies. 6. Preparation and photochemical reactivity of surfactant ruthenium(II) complexes in monolayer assemblies and at water-solid interfaces [J]. J. Am. Chem. Soc., 1977, 99: 4947-4954.
    [21] Beer P D, Szemes F, Balzani V, Sala C M, Drew M G. B, Dent S W, Maestri M. Anion Selective Recognition and Sensing by Novel Macrocyclic Transition Metal Receptor Systems. 1H NMR, Electrochemical, and Photophysical Investigations [J]. J. Am. Chem. Soc., 1997, 119: 11864-11875.
    [22] Zhou M, Robertson G. P, Roovers J. Comparative Study of Ruthenium(II)Tris(bipyridine) Derivatives for Electrochemiluminescence Application [J]. Inorg. Chem., 2005, 44: 8317-8325.
    [23] Launikonis A, Lay P A, Mau A W.-H, Sargeson A M, Sasse W H F. Light-Induced Electron-Transfer Reactions Involving the Tris(2,2'-Bipyridine)Ruthenium Dication and Related Complexes. 3. Improved Synthesis of 2,2'-Bipyridine-4,4'-Dicarboxylic Acid and Photoreduction of Water by Bis(2,2'-Bipyridine)(2,2'-Bipyridine-4,4'-Dicarboxylic Acid)Ruthenium(II) [J]. Aust. J. Chem., 1986, 39: 1053-1062.
    [24] a) Noffsinger J B, Danielson N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) [J]. Anal. Chem., 1987, 59: 865-868; b) Leland J K, Powell M J. Electrogenerated Chemiluminescence: An Oxidative-Reduction Type ECL Reaction Sequence Using Tripropyl Amine [J]. J. Electrochem. Soc., 1990, 137: 3127-3131; c) Kanoufi F, Zu Y B, Bard A J. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru(bpy)32+ System [J]. J. Phys. Chem. B, 2001, 105: 210-216; d) Zu Y B, Bard A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on theemission intensity [J]. Anal. Chem., 2000, 72: 3223-3232; e) He L, Cox K A, Danielson N D. Chemiluminescence Detection of Amino Acids, Peptides, and Proteins Using Tris-2,2'-Bipyridine Ruthenium (III) [J]. Anal.Lett., 1990, 23: 195-210.
    [25] a) Wang H, Zhang C X, Li Y, Qi H L. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes [J]. Anal. Chim. Acta., 2006, 575: 205-211; b) Lai R Y, Chiba M, Kitamura N, Bard A J. Electrogenerated chemiluminescence. 68. Detection of sodium ion with a ruthenium(II) complex with crown ether moiety at the 3,3'-positions on the 2,2'-bipyridine ligand [J]. Anal. Chem., 2002, 74: 551-553.
    [26] a) Jena B K, Raj C R. Amperometric L-Lactate Biosensor Based on Gold Nanoparticles [J]. Electroanalysis, 2007, 19: 816-822; b) Zhou X C, O'Shea S J, Li S F Y. Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides [J]. Chem. Commun., 2000, 953-954; c) Patolsky F, Ranjit K T, Lichtenstein A, Willner I. Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles [J]. Chem. Commun., 2000, 1025-1026; d) Liu T, Tang J, Zhao H Q, Deng Y P, Jiang L. Particle size effect ofthe DNA sensor amplified with gold nanoparticles [J]. Langmuir, 2002, 18: 5624-5626; e) Ito M, Tsukatani T, Fujihara H. Preparation and characterization of gold nanoparticles with a ruthenium- terpyridyl complex, and electropolymerization of their pyrrole-modified metal nanocomposites [J]. J. Mater. Chem., 2005, 15: 960-964.
    [27] Jie G. F, Liu B, Pan H C, Zhun J J, Chen H Y CdS Nanocrystal-Based Electrochemiluminescence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification [J]. Anal. Chem., 2007, 79: 5574-5581.
    [28] a) Miao W J, Choi J P, Bard A J. Electrogenerated chemiluminescence 69: the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited-a new route involving TPrA*+ cation radicals [J]. J. Am .Chem. Soc., 2002, 124: 14478-14485; b) Li F, Zu Y B. Effect of Nonionic Fluorosurfactant on the Electrogenerated Chemiluminescence of the Tris(2,2‘-bipyridine)ruthenium(II) /Tri-n-propylamine System: Lower Oxidation Potential and Higher Emission Intensity [J]. Anal. Chem., 2004, 76: 1768-1772.
    [29] a) Waguespack B L, Lillquist A, Townley J C, Bobbitt D R. Evaluation of a tertiary amine labeling protocol for peptides and proteins using Ru(bpy)33+-basedchemiluminescence detection [J]. Anal. Chim. Acta., 2001, 441: 231-241; b) Chen X, Sato M. Study of the Electrochemiluminescence Based on Tris(2,2′-bipyridine) Ruthenium(II) and Alcohols in a Flow Injection System*1 [J]. J. Anal. Sci., 1998, 58: 13-20; c) Hendrickson H P, Anderson P, Wang X, Pittman Z, Bobbitt D R. Compositional analysis of small peptides using capillary electrophoresis and Ru(bpy)33+-based chemiluminescence detection [J]. Microchem. J., 2000, 65: 189-195; d) Bolden M E, Danielson N D. Liquid chromatography of aromatic amines with photochemical derivatization and tris(bipyridine)ruthenium(III) chemiluminescence detection [J]. J. Chromatogr. A., 1998, 828: 421-430.
    [1] Mok W, Li Y F. Recent progress in nucleic acid aptamer-based biosensors and bioassays [J]. Sensors, 2008, 8: 7050-7084.
    [2]江丽,兰小鹏.功能性适体传感器应用研究进展[J].中国检验医学杂志, 2008, 31: 1406-1408.
    [3] Winkler W C., Breaker R R. Regulation of bacterial gene expression by riboswitches [J]. Annu. Rev. Microbiol., 2005, 59: 487-517.
    [4] Zamore P D, Haley B. Ribo-gnome: The big world of small RNAs [J]. Science, 2005, 309: 1519-1524.
    [5] Gilbert S D, Stoddard C D, Wise S J, Batey R T. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain [J]. J. Mol. Biol., 2006, 359: 754-768.
    [6] Osborne S E, Ellington A D. Nucleic acid selection and the challenge of combinatorial chemistry [J]. Chem. Rev., 1997, 97: 349-370.
    [7] Liu J W, Cao Z H, Lu Y. Functional nucleic acid sensors [J]. Chem. Rev., 2009, 109: 1948-1998.
    [8] Hermann T, Patel D J. Biochemistry - Adaptive recognition by nucleic acid aptamers [J]. Science, 2000, 287: 820-825.
    [9] Mairal T, Ozalp V C, Sanchez P L, Mir M, Katakis I, O'Sullivan C K. Aptamers: molecular tools for analytical applications [J]. Anal. Bioanal. Chem., 2008, 390: 989-1007.
    [10] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990, 346: 818-822.
    [11] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249:505-510.
    [12] Famulok M, Hartig J S, Mayer G.. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy [J]. Chem. Rev., 2007, 107: 3715-3743.
    [13] Li Y, Qi H L, Peng Y G, Yang J, Zhang C X. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine [J]. Electrochem. Commun., 2007, 9: 2571-2575.
    [14] Wang X Y, Zhou J M, Yun W, Xiao S S, Chang Z, He P G, Fang Y Z. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Analytica Chimica Acta, 2007, 598: 242-248.
    [15] Wang X Y, Yun W, Zhou J M, Dong P, He P G, Fang Y Z. Ru(bpy)32+-doped Silica Nanoparticle Aptasensor for Detection of Thrombin Based on Electrogenerated Chemiluminescence [J]. Chin. J. Chem., 2008, 26: 315.
    [16] Bruno J G, Kiel J L. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection [J]. Biosens. Bioelectron., 1999, 14: 457-464.
    [17] Bruno J G, Kiel J L. Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods [J]. Biotechniques, 2002, 32: 178-183.
    [18] Cao W D, Ferrance J P, Demas J, Landers J P. Quenching of the Electrochemiluminescence of Tris(2,2‘-bipyridine)ruthenium(II) by Ferrocene and Its Potential Application to Quantitative DNA Detection [J]. J. Am. Chem. Soc., 2006, 128: 7572-7578
    [19] Li Y, Qi H, Peng Y, Gao Q, Zhang C. Electrogenerated chemiluminescence aptamer-based method for the determination of thrombin incorporating quenching of tris(2,2-bipyridine)ruthenium by ferrocene [J]. ElectrochemistryCommunications, 2008, 10: 1322-1325
    [20] a)W. H. Organization, Environmental HealthCriteria 118: Inorganic Mercury, World Health Organization, Geneva, 1991; b) Sekowski J W, Malkas L H, Wei Y, Hickey R J. Toxicol. Mercuric Ion Inhibits the Activity and Fidelity of the Human Cell DNA Synthesome [J]. Appl. Pharmacol., 1997, 145: 268– 276.
    [21] Ono A, Togashi H. Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions [J]. Angew. Chem., 2004, 116: 4400– 4402; Angew. Chem. Int. Ed., 2004, 43: 4300– 4302.
    [22] a)Lee J.-S, Han M S, Mirkin C A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles [J]. Angew. Chem., Int. Ed., 2007, 46: 4093?4096;b) Xue X, Wang F, Liu X. One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates [J]. J. Am. Chem. Soc., 2008, 130: 3244–3245;c) Li D, Wieck- owska A, Willner I. Optical Analysis of Hg2+ Ions by Oligonucleotide-Gold-Nanoparticle Hybrids and DNA-Based Machines [J]. Angew. Chem. Int. Ed., 2008, 47: 3927– 3931
    [1] Sreekumar A, Poisson L M, Rajendiran T M, Khan A P. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression [J]. Nature, 2009, 457: 910-914.
    [2] Klampfl C W, Buchberger W, Turner M, Fritz J S. Determination of underivatized amino acids in beverage samples by capillary electrophoresis [J]. J. Chromatogr. A, 1998, 804: 349-355.
    [3] Lu X N, Chen Y. Chiral separation of amino acids derivatized with fluoresceine-5-isothiocyanate by capillary electrophoresis and laser-induced fluorescence detection using mixed selectors ofβ-cyclodextrin and sodium taurocholate [J]. J. Chromatogr. A, 2002, 955: 133–140.
    [4] Ivanov A R, Nazimov I V, Lobazov A P, Popkovich G B. Direct determination of amino acids and carbohydrates by high-performance capillary electrophoresis with refractometric detection [J]. J. Chromatogr. A, 2000, 894: 253-257.
    [5] Wang J, Pumera M. Dual Conductivity/Amperometric Detection System for Microchip Capillary Electrophoresis [J]. Anal. Chem., 2002, 74: 5919-5923.
    [6] Ren A S, Yuan H Y, Lv B Q, Zhou Z D, Xiao D. J. Anal. Chem., 2009, 64: 410-415
    [7] (a) SimóC, Rizzi A, Barbas C. Cifuentes, Chiral capillary electrophoresis-mass spectrometry of amino acids in foods [J]. Electrophoresis, 2005, 26: 1432-1441; (b)Wu L, Meurer E C, Cooks R G. Chiral Morphing and Enantiomeric Quantification in Mixtures by Mass Spectrometry [J]. Anal. Chem., 2004, 76: 663-671.
    [8] Ye J N, Baldwin R P. Determination of Amino Acids and Peptides by Capillary Electrophoresis and Electrochemical Detection at a Copper Electrode [J]. Anal.Chem., 1994, 66: 2669-2674.
    [9] Du Y, Wang E K. Capillary electrophoresis and microchip capillary electrophoresis with electrochemical and electrochemiluminescence detection [J]. J. Sep. Sci., 2007, 30: 875-890.
    [10] St. Claire, R. L.,III. Capillary Electrophoresis [J]. Anal. Chem., 1996, 68: 569R-586R.
    [11] Noffsinger J B, Danielson N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) [J]. Anal. Chem., 1987, 59: 865-868.
    [12] Leland J K, Powell M J. Electrogenerated chemiluminescence : an oxidative-reduction type ECL reaction sequence using tripropyl amine [J]. J. Electrochem. Soc., 1990, 137: 3127-3131.
    [13] (a) Blackburn G F, Shah H P, Kenten J H, Leland J, Kamin R A, Link J, Peterman J, Powell M J, Shah A, Talley D B, Tyagi S K, Wilkins E, Wu T G, Massey R J. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clin. Chem., 1991, 37: 1534-1539; (b) Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence [J]. TRAC-Trends Anal. Chem., 1999, 18: 47-62; (c) Wei H, Wang E K. Electrochemiluminescence-based DNA detection using guanine oxidation at electrostatic self-assembly of Ru(bpy)32+-doped silica nanoparticles on indium tin oxide electrode [J]. Chem. Lett., 2007, 36: 210-211; (d) Miao W J, Bard A J. Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres [J]. Anal. Chem., 2004, 76: 5379-5386; (e) Greenway G M, Knight A W, Knight P J. Electrogenerated chemiluminescent determination of codeine and related alkaloids andpharmaceuticals with tris(2,2-bipyridine)ruthenium(II) [J]. Analyst, 1995, 120: 2549-2552.
    [14] Dickson J A, Ferris M M, Milofsky R E. Tris (2,2-bipyridyl)ruthenium (III) as a chemiluminescent reagent for detection in capillary electrophresis [J]. J. High Resol. Chromatogr., 1997, 20: 643-646.
    [15] Zhang H Q, Wang Z W, Li X F, Le X C. Ultrasensitive Detection of Proteins by Amplification of Affinity Aptamers [J]. Angew. Chem. Int. Ed., 2006, 45: 1576-1580.
    [16] Li J G, Yan Q Y, Gao Y L, Ju H X. Electrogenerated Chemiluminescence Detection of Amino Acids Based on Precolumn Derivatization Coupled with Capillary Electrophoresis Separation [J]. Anal. Chem. 2006, 78, 2694-2699.
    [17] Li T, Li B L, Dong S J, Wang E K. Ionic Liquids as Selectors for the Enhanced Detection of Proteins [J]. Chem. Eur. J., 2007, 13: 8516-8521.
    [18] (a)Liu Y M, Cao J T, Zheng Y L, Chen Y H. Sensitive determination of norepinephrine, synephrine, and isoproterenol by capillary electrophoresis with indirect electrochemiluminescence detection [J]. J. Sep. Sci., 2008, 31: 2463-2469; (b) Lin M S, Wang J S, Lai C H. Electrochemiluminescent determination of nicotine based on tri(2,2′-bipyridyl) ruthenium (II) complex through flow injection analysis [J]. Electrochimica Acta, 2008, 53: 7775-7780
    [19] Ha PT, Hoogmartens J, Van A S. Recent advances in pharmaceutical applications of chiral capillary electrophoresis [J]. Electrophoresis, 2006, 41: 1-11
    [20] Zhou L L, Yuan J P, Wang E K.毛细管电泳-电化学/电化学发光及其微芯片技术[J]. Chin. J. Anal.Chem., 2009, 37: 53-56.
    [21] (a) Yin X B, Dong S J, Wang E K. Analytical applications of the electrochemiluminescence of tris (2,2′-bipyridyl) ruthenium and its derivatives [J].Trends Anal. Chem., 2004, 23: 432-441; (b) Gorman B A, Francis P S, Barnett N W. Tris (2, 29-bipyridyl) ruthenium (II) chemiluminescence [J]. Analyst, 2006, 131: 616-639; (c) Electrogenerated Chemiluminescence; Bard, A. J., Ed.; Dekker: New York, 2004; (d) Miao W J. Electrogenerated Chemiluminescence and Its Biorelated Applications [J]. Chem. Rev., 2008, 108: 2506-2553
    [22] (a) Yuan J P, Li T, Yin X B, Guo L, Jiang X Z, Jin W R, Yang X R, Wang . K. Characterization of Prolidase Activity Using Capillary Electrophoresis with Tris(2,2‘-bipyridyl)ruthenium(II) Electrochemiluminescence Detection and Application To Evaluate Collagen Degradation in Diabetes Mellitus [J]. Anal. Chem., 2006, 78: 2934-2938; (b) Zhang L, He Y, Ni B L, Chen Y T, Chen G. N.奋乃静和氟奋乃静的毛细管电泳柱端喷壁式安培检测[J]. Chin. J. Anal., Chem. 2005, 33: 392-394.
    [23] (a) Sun J Y, Xu X Y, Wang C Y, You T Y. Analysis of amphetamines in urine with liquid-liquid extraction by capillary electrophoresis with simultaneous electrochemical and electrochemiluminescence detection [J]. Electrophoresis, 2008, 29: 3999-4007; (b) Yin J Y, Xu Y H, Li J, Wang E K. Analysis of quinolizidine alkaloids in Sophora flavescens Ait. by capillary electrophoresis with tris(2,2’-bipyridyl) ruthenium (II)-based electrochemiluminescence detection [J]. Talanta, 2008, 75: 38-42
    [24] (a) Liu Y M, Cao J T, Tian W, Zheng Y L. Determination of levofloxacin and norfloxacin by capillary electrophoresis with electrochemiluminescence detection and applications in human urine [J]. Electrophoresis, 2008, 29: 3207-3212; (b) Zhang Z L, Li J J, Qu L B, Yang R. Determination of Pazufloxacin Mesylas by Capillary Electrophoresis with Electrochemiluminescence Detection [J]. Chin J. Anal. Chem., 2008, 36: 941-946.
    [25] (a) Kanoufi F, Zu Y B, Bard A J. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru(bpy)32+ System [J]. J. Phys. Chem. B, 2001, 105: 210-216; (b) Zu Y B, Bard A J. Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2‘)bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity [J]. Anal. Chem., 2000, 72: 3223-3232; (c) He L, Cox K A, Danielson N D. Chemiluminescence Detection of Amino Acids, Peptides, and Proteins Using Tris-2,2'-Bipyridine Ruthenium (III) [J]. Anal.Lett., 1990, 23: 195-210.
    [26] (a) Richter M M. Electrochemiluminescence (ECL) [J]. Chem. Rev., 2004, 104: 3003-3036; (b) Zhao X C, You T Y, Liu J F, Sun X P, Yan J L, Yang X R, Wang E K. Drug-human serum albumin binding studied by capillary electrophoresis with electrochemiluminescence detection [J]. Electrophoresis, 2004, 25: 3422-3426; (c) Gao Y, Tian Y L, Sun X H, Yin X B, Xiang Q, Ma G, Wang E K. Determination of ranitidine in urine by capillary electrophoresis-electrochemiluminescent detection [J]. J. Chromatogr. B., 2006, 832: 236-240.