副粘病毒Tianjin株全基因组测序及生物信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副粘病毒为有包膜的负链RNA病毒,是一类重要的人类和动物致病病毒,如尼帕病毒(Nipah virus)、亨德拉病毒(Hendra virus)、Menangle病毒等。1999年我们从因呼吸道感染而死亡的灵长类动物狨猴肺组织中分离到一株病毒,经过一系列研究初步证实该病毒可能是一株副粘病毒,暂时命名为副粘病毒Tianjin株。在病原鉴定过程中,我们曾经通过RT-PCR方法扩增得到该毒株一段长为375 bp的片段,并将测序结果发送到互联网BLAST服务器进行联配检索,发现其与仙台病毒HN基因同源性较高,但推导出的氨基酸序列还存在较大差异。更重要的是,仙台病毒是啮齿类动物致死性病原体,然而在普通棉耳狨猴呼吸道疾病流行期间,饲养在同一实验中心的各种实验用鼠无一例发病。而且血清学调查结果显示,动物中心工作人员都有此病毒的抗体;正常人群中对此病毒的抗体阳性率高达35%;患急性呼吸道感染的儿童抗体阳性率为19.28%,说明此病毒与人类关系密切,可能是仙台病毒发生了某些变异而跨越了种属界限,形成对啮齿类动物低致病性,而对灵长类动物乃至人类高致病性的毒株;或者是一株未被发现的能引起灵长类动物及人类呼吸道感染的新的副粘病毒。为进一步明确其来源和种系进化地位,阐明与人类疾病间的关系,我们从分子水平上对该病毒进行了较为深入的研究。
     首先,在第一部分工作中,我们在引物步移测序策略指导下对副粘病毒Tianjin株全基因组进行了测序。根据GenBank中已发表的仙台病毒全基因组序列,设计了13对引物,以鸡胚尿囊液中提取出的病毒总RNA为模板,扩增得到13个覆盖整个基因组的相互重叠片断,同时采用3’RACE和5’RACE法对Tianjin株基因组末端序列进行扩增,经克隆、测序、拼接,最后得到了Tianjin株的全基因组序列。结果表明,副粘病毒Tianjin株基因组由15,384个核苷酸组成,与已知仙台病毒基因组长度完全相同,遵循“六碱基原则”。从基因组的3’端至5’端依次排列着3’UTR,结构基因NP、P、M、F、HN和L编码区,以及5’UTR。P基因内同样包含了另外一重叠的开放阅读框,且存在着一个保守的RNA编辑位点(RNA editing site)3’-UUUUUCCC-5’。推测除了编码NP、P、M、F、HN和L六种病毒特异性结构蛋白外,另外还可能编码C、V、W等非结构蛋白。Tianjin株各结构基因的上下游均存在着保守的基因起始信号S和终止信号E,连接E和S的是一个保守的三核苷酸间隔区GAA或GGG。但是与已知仙台病毒相比,Tianjin株基因组结构中有两处明显不同,一是在HN基因和L基因间保守的S序列中有一个碱基发生突变(A8532G);二是L基因终止密码子突变(A15240C),导致预测的Tianjin株L蛋白比已知仙台病毒L蛋白多了一个氨基酸。比较巧合的是,仙台病毒BB1株也在该点出现同样的突变。这些突变有可能导致Tianjin株出现一些独特的生物学特性。
     在本文第二部分工作中,我们对测序得到的Tianjin株全基因组序列进行了较为全面的生物信息学分析。为了确定Tianjin株在副粘病毒科中的分类地位,我们将Tianjin株与副粘病毒科25株病毒全基因组序列进行了系统进化分析,进化树显示,Tianjin株与仙台病毒、人副流感病毒1型、人副流感病毒3型和牛副流感病毒3型位于同一个分支,且与仙台病毒亲缘关系最接近,说明Tianjin株在分类上属于副粘病毒科副粘病毒亚科呼吸道病毒属。进一步与GenBank中14株仙台病毒全基因组序列比较,进化树显示,Tianjin株不属于现有的三个分支,而是独立为一个分支,同源性分析同样支持这一结果,因此Tianjin株应被列为仙台病毒第四种基因型。
     另外,结构基因推导出的氨基酸序列同源性比较显示,P蛋白变异最大,虽然只有568 aa,却含有29个独特变异位点和35个与BB1共同具有的变异位点,与已知仙台病毒同源性仅为78.7%~91.9%。比较其他仙台病毒,也具有这样的特点,说明P蛋白有可能是仙台病毒的特异性抗原。六个蛋白中,同源性最高的是L蛋白,为96.0%~98.0%,其次是M蛋白,为93.1%~97.1%,说明二者较保守。氨基酸序列进化树分析显示,六种结构蛋白的进化树与基因组序列的进化树基本一致,仅有细微的不同,其中变化较大的是M蛋白。在M蛋白进化树中,Tianjin株与Ohita株和Hamamatsu株代表的分支最接近,同源性也最高,为97.1%,与BB1株同源性为96.6%。而在其他蛋白进化树中,Tianjin株均与BB1株亲缘关系最接近,同源性也最高。
     基因组末端序列分析表明,Tianjin株3’和5’末端分别含有55 nt和57 nt的前导区,且高度保守,与已知仙台病毒同源性分别为89.1%~98.2%和93.0%~96.5%。而且3’端最前12个核苷酸和5’端最后12个核苷酸互补配对,这些特点均与病毒复制和转录调控功能密切相关。
     除此以外,我们还分析了Tianjin株基因组序列中核苷酸变异位点的分布,以及预测的结构蛋白中氨基酸变异位点的意义。Tianjin株基因组全序列中共存在444个独特的和546个与BB1株共有的核苷酸变异位点,其中嘌呤-嘧啶之间的颠换突变分别占9.7%(43/444)和10.1%(55/546)。这些变异位点主要位于各个结构蛋白编码区,从而导致Tianjin株结构蛋白中存在着大量独特的氨基酸变异位点。这些变异位点的存在提示Tianjin株有可能在生物学特性、致病性、免疫原性、流行病学等方面与其他仙台病毒株具有很大的区别。关于这些变异位点与病毒生物学特性乃至致病性之间的关系,还有待将来采用反向遗传学技术构建重组病毒来证实。
     综上所述,本研究完成了副粘病毒Tianjin株基因组全长的序列测定,并且得到了可以长期保存的覆盖病毒基因组全长的cDNA分段克隆,这些克隆为病毒基因功能研究提供了材料,同时也为构建副粘病毒Tianjin株基因组全长cDNA克隆奠定了基础。另外,我们通过生物信息学方法对Tianjin株的分类地位、与已知仙台病毒的关系、以及各结构蛋白中变异位点的意义进行了探讨,希望为以后进一步深入研究该病毒的具体致病机制奠定一定的基础。
Members of the family Paramyxoviridae are pleomorphic enveloped virusespossessing a nonsegmented negative-strand RNA genome, such as Nipah virus,Hendra virus, and Menangle virus, which can cause fatal disease outbreaks in bothanimals and humans. In 1999, a strain of virus was isolated from the lungs ofcommon cotton-eared marmoset that died during an outbreak of disease in an animallaboratory. Virological and morphological analysis and sequence determination ofpart of the HN gene indicated that the virus responsible for the outbreak belonged tothe family Paramyxoviridae, designated temporarily paramyxovirus Tianjin strain.
     In our previous work, a fragment of 375 nt was amplified from viral RNA byRT-PCR and sequenced, then sequence similarity searches were conducted using theBLAST service at the National Center for Biotechnology Information (NCBI). Theresults showed that the fragment had higher homology with partial HN gene ofSendai viruses. But the deduced protein sequence showed high divergence amongthem. More importantly, Sendai virus usually causes outbreaks of lethal pneumonia inmouse colonies, whereas the experimental mice had not been suffering fromrespiratory disease during the epidemic in the same animal laboratory. In addition,ELISA tests demonstrated that the faculty in the animal laboratory had antibodyspecific to this virus, and 14 of 40 people who had never contacted with themarmosets had antibody to the virus. We also detected the sera of young childrenwith acute respiratory tract infection, and found that the positive rate of IgM to thevirus was 19.28%. These results suggested that the virus had a close relation tohuman, and may be a common respiratory virus in human and marmoset. In order tounderstand the genomic structure and taxonomic position of the strain, as well as therelationship with Sendai viruses, we determined the complete genome sequence ofTianjin strain and compared it with those of other paramyxoviruses withbioinformatics methods.
     In the first work of our study, the complete genome sequence of theparamyxovirus Tianjin strain had been determined. A total of 13 overlapping cDNAclones, covering the entire genome of Tianjin strain, were obtained by primer walkingRT-PCR. The sequences of the 3' and 5' termini of the viral genome were amplifiedby 3' and 5' RACE. Sequences compiled from these clones show that Tianjin strain is15,384 nt long. The genome size is identical to that of Sendai virus. The number15,384 is a multiple of 6, therefore, Tianjin strain conforms to the 'rule of six', whichplays an important role in the replication of paramyxoviruses. The genome of Tianjinstrain consists of six genes in the order 3'-NP-P/C-M-F-HN-L-5', coding for thenucleocapsid (NP), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and large (L) proteins, respectively. The P gene containsanother ORF, which is predicted to encode C protein. A putative RNA editing site isfound 942 nt downstream of the initiation codon (ATG) of the P protein (nt2785-2793). Sequence of the editing site of Tianjin strain, 3'-UUUUUCCC-5',conform well to the conserved sequence, UU(U/C)UCCC, found in all members ofthe subfamily Paramyxovirinae. The gene junctions contain highly conservedtranscription start and stop signal sequences and trinucleotide intergenic regionssimilar to those of Sendai viruses. The genomic structure of Tianjin strain divergesslightly from other Sendai viruses. Two significant nucleotide substitutions are found.One is in the gene start signal sequence between the HN and L ORFs and the other isin the stop codon of L protein, which results in the extended L gene mRNA. Theseunique substitutions indicate that Tianjin strain maybe has some novel features.
     In the second work, we analyzed the complete genome sequence and thededuced protein sequence of Tianjin strain with bioinformatics methods. Phylogeneticanalysis of genome sequences among Tianjin strain, and other members of the familyParamyxoviridae demonstrate that Tianjin strain, SeV, hPIV-1, hPIV-3 and bPIV-3are in one lineage, and Tianjin strain is most closely akin to Sendai virus. This resultsuggests that Tianjin strain should be assigned to the genus respirovirus within the subfamily Paramyxovirinae and is most likely a new genotype of Sendai virus.Consequently, the complete genome sequence of Tianjin strain was compared withthose of Sendai viruses from GenBank. Phylogenetic tree shows that Tianjin strainlocates a new branch and is more closely related to BB1 strain with 94.9% nucleotidehomology, which was submitted by Institute of Viral Disease Control and Prevention,Beijing in China.
     Sequence comparisons based on the predicted protein sequences indicate that Lprotein is the most conserved, having 96.0%~98.0% amino acid identity with otherSeVs. As the reported for other paramyxovirus P proteins, Tianjin strain P protein ispoorly conserved, sharing only 78.7%~91.9% amino acid identity with the knownSendai viruses. In addition, there are 29 unique substitutions and 35 commonsubstitutions with BB1 strain in P protein sequence of Tianjin strain. These resultsindicate P protein is maybe the specific protein of Sendai viruses. All of the treesbased on protein sequences are similar to that of complete genome sequence exceptM protein. In M phylogenetic tree, Tianjin strain is more closely related to the branchrepresented by Ohita and Hamamatsu strains than to BB1 strain.
     The 3' and 5' ends of Tianjin strain genome comprise the leader and trailerregions. The leader sequence is 55 nt long and the trailer sequence is 57 nt long. Theyare exactly complementary for the first 12 nt, which is similar to known Sendaiviruses. The nucleotide sequence comparisons among Tianjin strain and Sendaiviruses showed that the homologies of the leader and the trailer were 89.1%~98.2%,93.0%~96.5%, respectively. The result suggests that the leader and the trailersequences are highly conserved among Sendai viruses, which had been proved to beassociated with transcription and replication of the viral genome.
     In addition, we analyzed the distribution of the mutations in the genomesequence of Tianjin strain and the significance of amino acid substitutions. Tianjinstrain possesses 444 unique nucleotide variations and 546 common nucleotidevariations with BB1 strain in the entire genome sequence. These variations mainly distribute in the coding region of predicted protein, and result in a lot of amino acidsubstitutions in the protein sequences, which suggests that Tianjin strain maybe has asignificant difference in biological, pathological, immunological, or epidemiologicalcharacteristics from other Sendai viruses. To prove the relationship between thesubstitutions and viral biological properties or pathogenicity, generation ofrecombinant SeVs carrying the mutation by reverse genetic technology would benecessary.
     In our study, we showed the complete genome sequence of Tianjin strain anddemonstrated the taxonomic position of Tianjin strain and the relationship withSendai viruses, as well as the significance of amino acid substitutions in the predictedprotein sequences. These results might lay the foundation for the further research ofTianjin strain.
引文
[1] WHO/FAO/OIE. Consultation on Emerging Infectious Diseases. May 2004[EB/OL]. Available from http://www.who.Int/mediacentre/news/briefings/2004/mb3/en/.
    [2] Woolhouse ME, Gowtage-Swqueria S. Host range and emerging and reemerging pathogens [J]. Ernerg Infect Dis, 2005, 11(12): 1842-1846.
    [3] Marano N, Pappiaoanou M. Historical, new, and reemerging links between human and animal health [J]. Emerg Infect Dis, 2004, 10(12): 2065-2066.
    [4] 张国际,李晓眠,金孟珏,等.48只普通棉耳绒猴死亡病因的初步分析.天津医科大学学报,2000,6(2):208-209.
    [5] 石建党.普通棉耳狨猴死亡病毒病因及与人群关系的研究[D].天津:天津医科大学,2002:
    [6] Fauquet CM, Mayo MA, Maniloff J, et al. Virus Taxonomy. Ⅷth Report of the International Committee on Taxonomy of Viruses [M]. San Diego: Elsevier Academic Press, 2005.
    [7] Van Regenmorte MHV, Fauquet CM, Bishop DHL, et al. Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses [M]. New York, San Diego: Academic Press, 2000.
    [8] Kurath G, Batts WN, Ahne W, et al. Complete Genome Sequence of Fer-de-Lance Virus Reveals a Novel Gene in Reptilian Paramyxoviruses [J]. J Virol, 2004, 78(4): 2045-2056
    [9] Philippa JMJ, Boyle DB, Eaton BT, et al. The complete genome sequence of J virus reveals a unique genome structure in the family Paramyxoviridae [J]. J Virol, 2005, 79(16): 10690-10700
    [10] Tidona, CA, Kurz HW, Gelderblom HR, et al. Isolation and molecular characterization of a novel cytopathogenic paramyxovirus from tree shrews [J]. Virology, 1999, 258(2): 425-434.
    [11] Wang LF, Michalski WP, Yu M, et al. A Novel P/V/C Gene in a New Member of the Paramyxoviridae Family, Which Causes Lethal Infection in Humans, Horses, and Other Animals [J]. J Virol, 1998, 72(2): 1482-1490.
    [12] Chua KB, Bellini WJ, Rota PA, et al. Nipah virus: a recently emergent deadly paramyxovirus [J]. Science, 2000, 288(5470): 1432-1435.
    [13] Baker DG. Natural Pathogens of Laboratory Mice, Rats, and Rabbils and Their Effects on Research [J]. Clinical Microbiology Reviews, 1998, 11(2): 231-266.
    [14] 黄桢祥主编.医学病毒学基础及实验技术[M].北京:科学出版社,1990:696.
    [15] 闻玉梅,陆德源,何丽芳.现代医学微生物学[M].上海:上海医科大学出版社,1999:1023.
    [16] 金奇主编.医学分子病毒学[M].北京:科学出版社,2001:633.
    [17] Jonas AM. The mouse in biomedical research. Physiologist, 1984, 27(5): 330-346.
    [18] Yoshizaki M, Hironaka T, Iwasaki H, et al. Naked Sendai virus vector lacking all of the envelope-related genes: reduced cytopathogenicity and immunogenicity[J]. J Gene Med, 2006, 8(9): 1151-1159.
    [19] Iwadate Y, Inoue M, Saegusa T, et al. Recombinant Sendai Virus Vector Induces Complete Remission of Established Brain Tumors through Efficient Interleukin-2 Gene Transfer in Vaccinated Rats [J]. Clin Cancer Res, 2005, 11(10): 3821-3827.
    [20] Slobod KS, Shenep JL, Lujan-Zilbermann J, et al. Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults [J]. Vaccine, 2004, 22(23-24): 3182-3186.
    [21] Wang XL, Itoh M, Hotta H, et al. AProtease Activation Mutant, MVCES1, as a Safe and Potent Live Vaccine Derived from Currently Prevailing Sendai Virus[J]. J Virol, 1994, 68(5): 3369-3373.
    [22] Klenk HD, Garten W. Host cell proteases controlling virus pathogenicity [J].Trends Microbiol, 1994, 2(2): 39-43.
    [23] Hsu MC, Choppin PW. Analysis of Sendai virus mRNAs with cDNA clones of viral genes and sequences of biologically important regions of the fusion protein [J]. Proc. Nati. Acad. Sci. USA, 1984, 81(24): 7732-7736.
    [24] Tashiro M, McQueen NL, and Seto JT. Determinants of organ tropism of Sendai virus [J]. Frontiers in Bioscience, 1999,4: D642-645.
    [25] Shioda T, Iwasaki K, Shibuta H. Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins [J]. Nucleic Acids Research, 1986, 14(4):1545-1563.
    [26] Heminway BR, Yu Y, and Galinsky MS. Paramyxovirus mediated cell fusion requires co-expression of both the fusion and hemagglutininneuraminidase glycoproteins [J]. Virus Res, 1994, 31(1): 1-16.
    [27] Homann HE, Willenbrink W, Buchholz CJ, et al. Sendai Virus Protein-Protein Interactions Studied by a Protein-Blotting Protein-Overlay Technique: Mapping of Domains on NP Protein Required for Binding to P Protein [J]. J. Virol, 1991,65(3): 1304-1309.
    [28] Tuckis J, Smallwood S, Feller JA, et al. The C-terminal 88 amino acids of the Sendai virus P protein have multiple functions separable by mutation [J].Virology, 2002, 76(1): 68-77.
    [29] Curran J. A Role for the Sendai Virus P Protein Trimer in RNA Synthesis[J]. J.Virol, 1998, 72(5): 4274-4280.
    [30] Ogino T, Kobayashi M, Iwama M, et al. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA [J]. J Biol Chem, 2005, 280(6): 4429-4435.
    [31] Barik S, Rud EW, Luk D, et al. Nucleotide sequence analysis of the L gene of vescular stomatitis virus (New Jersey serotype): identification of conserved domains in L proteins of nonsegmented negative-strand RNA viruses [J].Virology, 1990, 175(1): 332-337.
    [32] Takimoto T, Murti KG, Bousse T, et al. Role of matrix and fusion proteins in budding of Sendai virus [J]. Virology, 2001, 75(23): 11384-11391.
    [33] Mottet G, Muller V, Roux L. Characterization of Sendai virus M protein mutants that can partially interfere with virus particle production. Journal of General [J]. Virology, 1999, 80(Pt 11), 2977-2986,
    [34] Sanderson CM, Wu HH, Nayak DP. Sendai virus M protein binds independently to either the F or the HN glycoprotein in vivo [J]. J. Virol, 1994, 68(1): 69-76.
    [35] Hausmann S, Jacques JP, and Kolakofsky D. Paramyxovirus RNA editing and the requirement for hexamer genome length [J]. RNA, 1996, 2(10): 1033-1045.
    [36] Kolakofsky D, Pelet T, Garcin D, et al. Paramyxovirus RNA Synthesis and the Requirement for Hexamer Genome Length: the Rule of Six Revisited [J]. J.Virol, 1998, 72(2): 891-899.
    [37] Giorgi C, Blumberg BM, Kolakofsky D. Sendai virus contains overlapping genes expressed from a single mRNA [J]. Cell, 1983, 35(3 Pt 2): 829-836.
    [38] Kato A, Cortese-Grogan C, Moyer SA, et al. Characterization of the amino acid residues of Sendai virus C protein that are critically involved in its interferon antagonism and RNA synthesis down-regulation [J]. Virology, 2004, 78(14):7443-7454.
    [39] Kato A, Ohnishi Y, Hishiyama M, et al. The amino-terminal half of Sendai virus C protein is not responsible for either counteracting the antiviral action of interferon's or down-regulating viral RNA synthesis [J]. J Virol, 2002, 76(14): 7114-7124.
    [40] Mohammad KH, Kato A, Muranaka M, et al. Versatility of the accessory C protein of sendai virus: contribution to virus assembly as an additional role [J].Journal of virology, 2000, 74 (12): 5619-5628.
    
    [41] Garcin D, Marq JB, Goodbourn S, et al. The amino-terminal extensions of the longer Sendai vrus C proteins modulate pY701-Statl and bulk stat1 levels independently of interferon signaling [J]. Virology, 2003, 77(4): 2321-2329.
    [42] Nagai Y, Kato A. Accessory genes of the Paramyxovidae, a large family of no segmented negative strand RNA viruses, as a focus of active investigation by reverse genetics [J]. Curr Topic Microbiol Immunol, 2004, 283: 197-248.Review.
    [43] Shioda T, Iwasaki K, Shibuta H. Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins [J]. Nucleic Acids Research, 1986, 14(4):1545-1563.
    [44] Kato A, Kiyotani K, Hasan MK, et al. Sendai Virus Gene Start Signals Are Not Equivalent in Reinitiation Capacity: Moderation at the Fusion Protein Gene [J].Journal of virology, 1999, 73(11): 9237-9246.
    [45] Vidal S, Curran J, Kolakofsky D. A stuttering model for paramyxovirus P mRNA editing [J]. The EMBO Journal, 1990, 9(6): 2017-2022.
    [46] Jacques JP, Hausmann S, Kolakofsky D. Paramyxovirus mRNA editing leads to G deletions as well as insertions [J]. The EMBO Journal, 1994, 13(22):5496-5503.
    [47] Curran J, Boeck R, Kolakofsky D. The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis by shuffling modules via mRNA editing [J]. EMBO J, 1991, 10(10): 3079-3085.
    [48] Kato A, Kiyotani K, Sakai Y, et al. Importance of the cysteine-rich carboxyl-terminal half of V protein for Sendai virus pathogenesis [J]. J. Virol,1997, 71(10): 7266-7272.
    [49] Andrejeva J, Childs KS, Young DF, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter [J]. Proc Natl Acad Sci USA, 2004, 101(49): 17264-17269.
    [50] Fujii Y, Sakaguchi T, Kiyotani K, et al. Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of a pathogenic field isolate from cDNA [J]. J Virol, 2002, 76(17): 8540-8547.
    [51] Lamb RA, Kolakofsky D. Paramyxoviridae: the viruses and their replication, Fields virology, 4th ed. Lippincott Williams and Wilkins, Philadelphia, Pa. 2001: 1305-1340.
    [52] Blumberg BM, Giorgi C, Kolakofsky D. N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro [J]. Cell, 1983, 32(2): 559-567.
    [53] 朱华.SARS冠状病毒PUMCO1株的分离鉴定、基因组序列分析及应用[D].北京:中国协和医科大学,2003:
    [54] Zabarovsky ER. Shot-gun sequencing strategy for long-range genome mapping: a pilot study [J]. Genomics, 1994, 21(13): 495-500.
    [55] Siegel AF, van den Engh G, Hood L, et al. Modeling the feasibility of whole genome shotgun sequencing using a pairwise end strategy [J]. Genomics, 2000, 68(3): 237-246.
    [56] Fleischmann RD, Adams MD, White HO, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae RD [J]. Science, 1995, 269(5223): 496-512.
    [57] 任林柱,王兴龙,李莉,等.口蹄疫病毒WFL株基因组全长cDNA的克隆及序列分析[J].中国预防兽医学报,2007,29(1),22-26.
    [58] Chang PC, Hsieh ML, Shien JH, et al. Complete nucleotide sequence of avian paramyxovirus type 6 isolated from Clucks [J]. Journal of General Virology, 2001, 82(Pt 9), 2157-2168.
    [59] 马佳.HCV湖北株全基因组克隆[D].武汉:中国科学院武汉病毒研究所,2005:
    [60] 樊峥,谈昕煜,阴彬,等.SARS冠状病毒PUMC2株全基因组cDNA分段克隆[J].中国医学科学院学报,2003,25(5):499-503.
    [61] Chumakov KM. PCR engineering of viral quasispecies: a new method to preserve and manipulate genetic diversity of RNA virus populations [J]. J Virol, 1996, 70(10): 7331-7334.
    
    [62] Lindberg AM, Polacek C, Johansson S. Amplification and cloning of complete enterovirus genomes by long distance PCR [J]. J Virol Methods, 1997, 65(2):191-199.
    [63] Tellier R, Bukh J, Emerson SU, et al. Long PCR and its application to hepatitis viruses: amplification of hepatitis A, hepatitis B, and hepatitis C virus genomes [J]. J Clin Microbiol, 1996, 34(12): 3085-3091.
    [64] Calain P, Roux L. The Rule of Six, a Basic Feature for Efficient Replication of Sendai Virus Defective Interfering RNA [J]. J. Virol, 1993, 67(8): 4822-4830.
    [65] Lamb RA, Lai CJ. Spliced and unspliced messenger RNAs synthesized from cloned influenza virus M DNA in an SV40 vector: expression of the influenza virus membrane protein (Ml) [J]. Virology, 1982, 123(2), 237-256.
    [66] Matsuoka Y, Curran J, Pelet T, et al. The P gene of human parainfluenza virus type 1 encodes P and C proteins but not a cysteine-rich V protein [J]. J Virol,1991, 65(6): 3406-3410.
    [67] Lamb RA, Kolakofsky D. Paramyxoviridae: the viruses and their replication [J]. Field's virology, 2001, 1(4): 1305-1340.
    [68] Gupta KC, Kingsbury DW. Complete sequences of the intergenic and mRNA start signals in the Sendai virus genome: homologies with the genome of vesicular stomatitis virus [J]. Nucleic Acids Research, 1984, 12(9): 3829-3841.
    [69] Horikami SM, Smallwood S, and Moyer SA. The Sendai virus V protein interacts with the NP protein to regulate viral genome RNA replication [J].Virology, 1996, 222(2): 383-390.
    [70] Kato A, Kiyotani K, Sakai Y, et al. Importance of the V protein for determining in vitro phenotypes and in vivo pathogenicity of Sendai virus [J]. EMBO Journal,1997, 16(3): 578-587.
    
    [71] Joseph Curran, Ronald Boeck and Daniel Kolakofsky. The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis [J]. The EMBO Journal, 1991, 10(10): 3079-3085.
    [72] 胡建红,中西真人,齐义鹏.非编码序列对仙台病毒HN基因表达的调控作用,中国科学(C辑),1999,29(3):232-239.
    [73] 陈力学.生物信息学在基因组研究中的应用[J].国外医学临床生物化学与检验学分册,2003,24(6):339-340.
    [74] 伍欣星,赵旻主编.生物信息学基础与临床医学应用[M].北京:科学出版社,2005:3.
    [75] Rost B, Honig B, Valencia A. Bioinformatics in structural genomics [J]. Bioinformatics, 2002, 18(7): 897-898
    [76] Wang XL, Itoh M, Hotta H, et al. A protease activation mutant, MVCES1, as a safe and potent live vaccine derived from currently prevailing Sendai virus [J]. J Virol, 1994, 68(5): 3369-3373.
    [77] 杨宇,任鲁风,张辉,等.仙台病毒BB1株基因组cDNA序列测定及比较分析[J].病毒学报,2006,22(2):96-100.
    [78] Fujii Y, Sakaguchi T, Kiyotani K, et al. Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of a pathogenic field isolate from cDNA [J]. Virology, 2002, 76(17): 8540-8547.
    [79] Fujii Y, Kiyotani K, Yoshida T, et al. Conserved and non-conserved regions in the Sendal virus genome: evolution of a gene possessing overlapping reading frames [J]. Virus Genes, 2001, 22(1): 47-52.
    [80] Sakaguchi T, Toyoda T, Gotoh B, et al. Newcastle disease virus evolution. Ⅰ. Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene [J]. Virology, 1989, 169(2): 260-272.
    [81] Itoh M, Isegawa Y, Hotta H, et al. Isolation of an avirulent mutant of Sendai virus with two amino acid mutations from a highly virulent field strain through adaptation to LLC-MK2 cells [J]. J. Gen. Virol, 1997, 78(Pt 12): 3207-3215.
    [82] Brown, EG. Increased virulence of a mouse-adapted variant of influenza A/FM/1/47 virus is controlled by mutations in genome segments 4, 5, 7, and 8 [J]. Journal of Virology, 1990, 64(9): 4523-4533.
    [83] Cao JX, Haolin N, Wills MR, et al. Passage of Japanese encephalitis virus in HeLa cells results in attenuation of virulence in mice [J]. Journal of General Virology, 1995, 76(Pt 11): 2757-2764.
    [84] Sawyer LSW, Wrin MT, Crawford ML, et al. Neutralization sensitivity of human immunodeficiency virus type 1 is determined in part by the cell in which the virus is propagated [J]. Journal of Virology, 1994, 68(3): 1342-1349.
    [85] Graff J, Normann A, Feinstone SM, et al. Nucleotide sequence of wild-type hepatitis A virus GBM in comparison with two cell culture-adapted variants [J].Journal of Virology, 1994, 68(1): 548-554.
    [86] Rubin SA, Waltrip RW, Bautista JR, et al. Borna disease virus in mice: host-specific difference in disease expression [J]. Journal of Virology, 1993,67(1): 548-552.
    [87] Errington W, Emmerson PT. Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein [J]. Gen Virol, 1998, 78(Pt 9): 2335-2339.
    [88] Myers TM, Moyer SA. An ammo-terminal domain of the Sendai virus nucleocapsid protein is required for template function in viral RNA synthesis [J].Journal of Virology, 1997, 71(2): 918-924.
    [89] Cevik B, Kaesberg J, Smallwood S, et al. Mapping the phosphoprotein binding site on Sendai virus NP protein assembled into nucleocapsids [J]. Virology, 2004,325(2): 216-224.
    [90] Curran J, Boeck R, Kolakofsky D. The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis by shuffling modules via mRNA editing [J]. EMBO J, 1991, 10(10): 3079-3085.
    [91] Smallwood S, Ryan KW, and Moyer SA. Deletion analysis defines a carboxyl-proximal region of Sendai virus P protein that binds to the polymerase L protein [J]. Virology, 1994, 202(1): 154-163.
    [92] Curran J, Pelet T, and Kolakofsky D. An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation [J].Virology, 1994, 202(2): 875-884.
    [93] Ryan KW, and Kingsbury DW. Carboxyl-terminal region of Sendai virus P protein is required for binding to viral nucleocapsids [J]. Virology, 1988, 167(1):106-112.
    [94] Ryan KW, Morgan EM, and Portner A. Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain [J].Virology, 1991, 180(1): 126-134.
    [95] Ryan KW, and Portner A. Separate domains of Sendai virus P protein are required for binding to viral nucleocapsids [J]. Virology, 1990, 174(2): 515-521.
    [96] Curran J, Marq JB, Kolakofsky D. An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication [J]. J. Virol, 1995, 69(2):849-855.
    [97] Curran J, Boeck R, Lin MN, et al. Paramyxovirus phosphoproteins form homotrimers as determined by an epitope dilution assay, via predicted coiled coils [J]. Virology, 1995, 214(1): 139-149.
    [98] Tuckis J, Smallwood S, Feller JA, et al. The C-terminal 88 amino acids of the Sendai virus P protein have multiple functions separable by mutation [J].Virology, 2002, 76(1): 68-77.
    [99] Huang C, Kiyotani K, Fujii Y, et al. Involvement of the zinc-binding capacity of Sendai virus V protein in viral pathogenesis [J]. Virology, 2000, 74(17): 7834-7841.
    [100] David E, Sue A. The phosphoprotein (P) binding site resides in the N terminus of the L polymerase subunit of Sendai virus [J]. J Virol, 2002, 76(6): 3078-3083.
    [101] Poch O, Blumberg BM, Bougueleret L, et al. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains [J]. Journal of General Virology,1990, 71(Pt 5): 1153-1162.
    [102] Feller JA, Smallwood S, Horikami SM, et al. Mutations in conserved domains IV and VI of the large (L) subunit of the sendai virus RNA polymerase give a spectrum of defective RNA synthesis phenotypes [J]. Virology, 2000, 269(2):426-439.
    [103] Chandrika R, Horikami SM, Smallwood S, et al. Mutations in conserved domain I of the Sendai virus L polymerase protein uncouple transcription and replication [J]. Virology, 1995,213(2): 352-363.
    [104] Cortese CK, Feller JA, Moyer SA. Mutations in domain V of the Sendai virus L polymerase protein uncouple transcription and replication and differentially affect replication in vitro and in vivo [J]. Virology, 2000, 277(2): 387-396.
    [105] Smallwood S, Easson CD, Feller JA, et al. Mutations in conserved domain II of the large (L) subunit of the Sendai virus RNA polymerase abolish RNA synthesis [J]. Virology, 1999, 262(2): 375-383.
    [106] Smallwood S, Hovel T, Neubert WJ, et al. Different substitutions at conserved amino acids in domains II and III in the Sendai L RNA polymerase protein inactivate viral RNA synthesis [J]. Virology, 2002, 304(1): 135-145.
    [107] Sakaguchi T, Uchiyama T, Huang C, et al. Alteration of Sendai virus morphogenesis and nucleocapsid incorporation due to mutation of cysteine residues of the matrix protein [J]. Virology, 2002, 76(4): 1682-1690.
    [108] Itoh M, Tan DM, Hayashi T, et al. Pneumopathogenicity of a Sendai virus protease activation mutant, TCs, which is sensitive to trypsin and chymotrypsin [J]. J Virol, 1990, 64(11): 5660-5664.
    [109] Tashiro M, Seto JT, Choosakul S, et al. Changes in specific cleavability of the Sendai virus fusion protein: implications for pathogenicity in mice [J]. J Gen Virol, 1992, 73(Pt 6): 1575-1579
    [110] Tashiro M, Seto JT, Choosakul S, et al. Budding site of Sendai virus in polarized epithelial cells is one of the determinants for tropism and pathogenicity in mice [J]. Virology, 1992, 187(2): 413-422.
    [111] Tashiro M, Mcqueen NL, Seto JT, et al. Involvement of the Mutated M Protein in Altered Budding Polarity of a Pantropic Mutant, Fl-R, of Sendai Virus [J]. J Virol, 1996, 70(9): 5990-5997.
    [112] Tashiro M, Yamakawa M, Tobita K, Altered Budding Site of a Pantropic Mutant of Sendai Virus, Fl-R, in Polarized Epithelial Cells [J]. J Virol, 1990,64(10): 4672-4677.
    [113] Mottet OG, Iseni F, Pelet T, et al. Suppression of the Sendai virus M protein through a novel siRNA approach inhibits viral particle production but does not affect viral RNA synthesis [J]. J Virol, 2007, 81(6): 2861-2868.
    [114] Ludwig K, Baljinnyam B, Herrmann A, et al. The 3D structure of the fusion primed Sendai F-protein determined by electron cryomicroscopy [J]. The EMBO Journal, 2003, 22(15): 3761-3771.
    [115] Tashiro M, Homma M. Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs [J]. Infect. Immun, 1983, 39(2):879-888.
    [116] Tashiro M, Homma M. Evidence of proteolytic activation of Sendai virus in mouse lung [J]. Arch Virol, 1983, 77(2-4): 127-137.
    [117] Kido H, Yokogoshi Y, Sakai K, et al. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells: a possible activator of the viral fusion glycoprotein [J]. J. Biol. Chem, 1992, 267(19):13573-13579.
    [118] Tashiro M, Yokogoshi Y, Tobita K, et al. Tryptase Clara, an Activating Protease for Sendai Virus in Rat Lungs, Is Involved in Pneumopathogenicity [J].J Virol, 1992, 66(12): 7211-7216.
    [119] Tashiro M, Yamakawa M, Tobita K, et al. Organ Tropism of Sendai Virus in Mice: Proteolytic Activation of the Fusion Glycoprotein in Mouse Organs and Budding Site at the Bronchial Epithelium [J]. J Virol, 1990, 64(8): 3627-3634.
    [120] Okada H, Seto JT, McQueen NL, et al. Determinants of pantropism of the F1-R mutant of Sendaiv virus: specific mutations involved are in the F and M genes [J]. Arch. Virol, 1998, 143(12), 2342-2352.
    [121] Rodriguez-Boulan E, Sabatini DD. Asymmetric budding of viruses in epithelial monolayers: a model system for study of epithelial polarity [J]. Proc. Natl. Acad. Sci. USA, 1978, 75(10): 5071-5075.
    [122] Hou XG, Suquilanda E, Kacsinta AZA, et al. Mutations in Sendai virus variant F1-R that correlate with plaque formation in the absence of trypsin [J]. Med Microbiol Immunol, 2005, 194(3): 129-136..
    [123] Segawa H, Yamashita T, Kawakita M, et al. Functional analysis of the individual oligosaccharide chains of Sendai virus fusion protein [J]. J Biochem, 2000, 128: 65-72.
    [124] Schrnid A, Spielhofer P, Cattaneo R, et al. Subacute sclerosing panencephalitis is typically characterized by alterations in the fusion protein cytoplasmic domain of the persisting measles virus. Virology, 1992, 188(2): 910-915.
    [125] Cattaneo R, Rose JK. Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease [J]. J Virol, 1993, 67(3): 1493-1502.
    [126] 任桂杰,王志玉,李士保.副粘病毒F蛋白HR1和HR2在特异性膜融合中的作用[J].中华微生物学和免疫学杂志,2005,25(10):828-832.
    [127] West DS, Sheehan MS, Segeleon PK. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion [J]. J Virol, 2005, 79(3): 1543-1551.
    [128] McGinnes LW, Sergel T, Chen H, et al. Mutational analysis of the membrane proximal heptad repeat of the Newcastle disease virus fusion protein [J]. Virology, 2001, 289: 343-352.
    [129] Ghosh JK, Peisajovich SG, Ovadia M, et al. Structure-Function Study of a Heptad Repeat Positioned Near the Transmembrane Domain of Sendai Virus Fusion Protein Which Blocks Virus-Cell Fusion [J]. The Journal of Biological Chemistry, 1998, 273(42): 27182-27190.
    [130] Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol, 1978, 47:45-148.
    [131] Tamura T, Yamashita T, Segawa H, Taira H. N-linked oligosaccharide chains of Sendai virus fusion protein determine the interaction with endoplasmic reticulum molecular chaperones [J]. FEBS Lett, 2002, 513(2-3): 153-158.
    [132] Takimoto T, Taylor GL, Connaris HC, et al. Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus cell membrane fusion [J]. J. Virol, 2002, 76(24): 13028-13033.
    [133] Bousse T, Takimoto T, Gorman WL, et al. Region on the hemagglutinin-neuraminidase of human parainfluenza virus type-1 and Sendai virus important for membrane fusion [J]. Virology, 1994, 204(2): 506-514.
    [134] Thompson SD, Laver WG, Murti KG, et al. Isolation of a Biologically Active Soluble Form of the Hemagglutinin-Neuraminidase Protein of Sendai Virus [J].J. Virol, 1988, 62(12): 4653-4660.
    [135] Zaitsev V, Itzstein MV, Groves D, et al. Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion [J]. J. Virol, 2004, 78(8): 3733-3741.
    [136] Bousse T, Takimoto T. Mutation at Residue 523 Creates a Second Receptor Binding Site on Human Parainfluenza Virus Type 1 Hemagglutinin-Neuraminidase Protein [J]. J. Virol, 2006, 80(18): 9009-9016.
    [137] Jorgensen ED, Collins PL, and Lomedico PT. Cloning and nucleotide sequence of Newcastle disease virus hemagglutinin-neuraminidase mRNA: identification of a putative sialic acid binding site [J]. Virology, 1987, 156(1): 12-24.
    [138] Mirza, AM, Deng R, and Iorio RM. Site-directed mutagenesis of a conserved hexapeptide in the paramyxovims hemagglutinin-neuraminidase glycoprotein: effects on antigenic structure and function [J]. J. Virol, 1994, 68(8): 5093-5099.
    [139] Takimoto T, Bousse T, Coronel EC, et al. Cytoplasmic domain of Sendai virus HN protein contains a specific sequence required for its incorporation into virions [J]. J Virol, 1998, 72(12): 9747-9754.
    [140] Tanabayashi K, and Compans RW. Functional interaction of paramyxovirus glycoproteins: identification of a domain in Sendai virus HN which promotes cell fusion [J]. J. Virol, 1996, 70(9): 6112-6118.
    [141] Segawa H, InakawaA, Yamashita T, et al. Functional analysis of individual oligosaccharide chains of Sendai virus hemagglutinin-neuraminidase protein [J]. Virology, 2003, 67(3): 592-598.
    [142] Tapparel C, Roux L. The efficiency of Sendai virus genome replication: the importance of the RNA primary sequence independent of terminal complementarity [J]. Virology, 1996, 225(1): 163-171.
    [143] Calain P, Roux L. Functional characterisation of the genomic and antigenomic promoter of the Sendai virus [J]. Virology, 1995, 211(1): 163-173.
    [144] Tapparel C, Maurice D, Roux L. The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)_3 is essential for replication [J]. J Virol, 1998, 72(4): 3117-3128,
    [145] Harty RN, Palese P. Mutations within Noncoding Terminal Sequences of Model RNAs of Sendai Virus: Influence on Reporter Gene .Expression [J]. J Virol, 1995, 69(8): 5128-5131.
    [146] Banerjee, AK, Barik S, and De BP. Gene expression of nonsegmented negative strand RNA viruses [J]. Pharmacol. Ther, 1991, 51(1): 47-70.
    [147] 曾江勇,郭建宏,刘在新.负链RNA病毒的反向遗传技术[J].动物医学进展,2006,27(9):35-39.
    [148] Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, et al. Protection against Respiratory Syncytial Virus by a Recombinant Newcastle Disease Virus Vector [J]. J. Virol, 2006, 80(3): 1130-1139.
    [149] Nakaya T, Cros J, Park MS, et al. Recombinant Newcastle disease virus as a vaccine vector [J]. J Virol, 2001, 75(23): 11868-11873.
    [150] Tao T, Skiadopoulos MH, Davoodi F, et al. Construction of a live-attenuated-bivalent vaccine virus against human parainfluenza virus (PIV) types 1 and 2 using a recombinant P1V3 backbone [J]. Vaccine, 2001, 19(27):3620-3631.
    [151] Masaki I, Yonemitsu Y, Komori K, et al. Recombinant Sendai virus mediated gene transfer to vasculature: a new class of efficient gene transfer vector to the vascular system [J]. FASEB J, 2001, 15(7): 1294 -1296.
    [152] Shiotani A, Fukumura M, Maeda M, et al. Skeletal muscle regeneration after insulin-like growth factor I gene transfer by recombinant Sendai virus vector [J] . Gene Ther, 2001, 8(14): 1043-1050.
    [153] Yonemitsu Y, Kitson C, Ferrari S, et al. Efficient gene transfer to airway epithelium using recombinant Sendai virus [J]. Nat Biotechnol, 2000, 18(9):970-973.
    [154] Ikeda Y, Yonemitsu Y, Sakamoto T, et al. Recombinant Sendai virus mediated gene transfer into adult rat retinal tissue: efficient gene transfer by brief exposure [J]. Exp Eye Res, 2002, 75(1): 39-48.
    [155] Hirata T, Iida A, Shiraki-Iida T, et al. An improved method for recovery of F-defective Sendai virus expressing foreign genes from cloned cDNA [J]. J Virol Meth, 2002, 104(2): 125-133.
    [156] Inoue M, Tokusumi Y, Ban H, et al. A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell to cell spreading [J]. J Virol, 2003, 77 (11): 6419-6429.
    [157] Bernloehr C, Bossow S, Ungerechts G, et al. Efficient propagation of single gene deleted recombinant Sendai virus vectors [J]. Virus Res, 2004, 99(2):193-197.
    [158] Welliver RC. Respiratory syncytial virus and other respiratory virus [J]. Pediatr Infect Dis J, 2003, 22(2 Suppl): S6-S10.
    [159] Shay DK, Holman RC, Roosevelt GE, et al. Bronchiditis-associated mortality and estimates of respiratory syncytial virus-associated deaths among US children, 1979-1997 [J]. J Infect Dis, 2001, 183(1): 16-22.
    [160] Crowe JE Jr. Respiratory syncytial virus vaccine development [J]. Vaccine,2001,20(Suppl):S32-S37.
    [161] Bernard NF, David MK, Peter MH, et al. Fundamental Viology [M]. 3~(rd) edition. Lippincott-Raven Publishers, 1996.
    [162] Nagai Y. Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding [J]. Rev Med Virol, 1999, 9(2): 83-99
    [163] 侯云德著. 分子病毒学[M]. 北京: 学苑出版社, 1990:286.
    [164] Fukuhara N, Huang C, Kiyotani K, et al. Mutational analysis of the Sendai virus V protein: importance of the conserved residues for Zn binding, virus pathogenesis and efficient RNA editing [J]. Virology, 2002, 299(2): 172-181.
    [165] Bousse TL, Taylor G, Krishnamurthy S, et al. Biological significance of the second receptor binding site of Newcastle disease virus hemagglutinin-neuraminidase protein [J]. J. Virol, 2004, 78(23): 13351-13355.
    [166] Thompson SD, Portner A. Localization of functional sites on the hemagglutinin-neuraminidase glycoprotein of Sendai virus by sequence analysis of antigenic and temperature-sensitive mutants [J]. Virology, 1987, 160(1): 1-8.
    [167] Kho CL, Tan WS, Tey BT, et al. Newcastle disease virus nucleocapsid protein: self-assembly and length-determination domains. J Gen Virol, 2003, 84(Pt 8):2163-2168.