基于新型PEG衍生物共聚改性聚乳酸的骨再生材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨组织工程为广大骨病患者提供了新的途径和希望。其中组织再生支架材料的设计是骨组织工程成功的关键,通常要求它满足一定的力学强度、可控的降解性能和合理的表面诱导细胞增殖分化及组织再生。然而,目前很少有材料能同时具备以上性能。本研究的目的是设计一种新型的骨组织工程材料,使其集可控降解性能、一定的力学强度、适当的亲水性能及可功能化的表面等性能于一身。基于PEG衍生物聚(乙二醇-co-均苯四甲酸酐)亚胺(PAPI)与D,L-丙交(D,L-LA)酯共聚,制备了一系性能可调的PAPI-PDLLA新型共聚物。采用核磁共振(NMR)、傅立叶变换红外光谱仪(FTIR)、凝胶色谱-十八角激光散射仪(GPC-MALLS)、紫外可见光谱仪(UV)、示差扫描量热仪(DSC)、X光电子能谱(XPS)、扫描电镜(SEM)、原子力显微镜(AFM)等对共聚物的化学物理性能进行了表征;详细考察了PAPI-PDLLA共聚物的亲/疏水性、体外生物降解性能、力学性能(拉伸性能和压缩性能),以及降解过程中的力学性能变化;对PAPI-PDLLA共聚物的表面进行了氨基和羟基功能化研究;最后,评价了PAPI-PDLLA共聚物及表面功能化材料的体外细胞生物相容性。研究的主要内容和结论如下:
     1.较低分子量的氨基封端的PEG(ATPEG,Mr:900)与均苯四甲酸酐(PMDA)通过高温缩聚反应合成出新型PEG衍生物P(ATPGE-co-PMDA)(PAPI)。在合成条件的优化实验中,考察了单体比例、温度、反应时间等对聚合物分子量的影响和反应过程中酰亚胺化的程度等;该衍生物通过苯酰亚胺环连接,酰亚胺环的引入为开环功能接枝提供了条件,研究了丁二胺、乙醇胺与PAPI中酰亚胺环反应的能力;对所有合成的材料结构进行了表征。
     ①FTIR、1H NMR、13C NMR、GPC-MALLA和UV检测结果表明,ATPEG与PMDA成功聚合,ATPEG的微过量使得合成的PAPI端部具有氨基。当二者的摩尔比ATPEG/PMDA=1.05时,在设定的梯度高温温度下反应完成后,酰亚胺化基本完全,所获得的聚合物分子量较大,聚合物分散系数较低。热重分析表明PAPI相对于PEG的热稳定性增强。
     ②FTIR表明,PAPI中酰亚胺环在室温无催化剂下成功与丁二胺和乙醇胺反应,可能为接枝功能基团提供反应位点。
     ③在与丁二胺反应时,发生了交联,快速产生了凝胶,该凝胶具有一定的力学强度和多孔性,有望应用于药物释放或组织工程领域。
     2.PAPI和辛酸亚锡共引发体系引发D,L-丙交酯开环,合成了一系列PAPI-PDLLA共聚物,研究了PAPI/D,L-丙交酯、反应温度、反应时间等对PAPI-PDLLA共聚物分子量的影响,并表征了其化学结构和热性能。
     ①FTIR、1H NMR、13C NMR和GPC-MALLS的结果表明,PAPI的端氨基和辛酸亚锡共引发体系成功引发丙交酯开环,制备了PAPI-PDLLA共聚物,最佳反应时间为36小时,反应温度为150℃。
     ②通过调节PAPI与D,L-丙交酯的物料比,可以制备一系列不同分子量和性能的共聚物,通过1H NMR计算了接枝的聚乳酸的量;随着PAPI/D,L-丙交酯比例的增加,接枝的聚乳酸分子量下降。
     ③DSC结果表明,PAPI-PDLLA共聚物只有一个玻璃化转变温度,这表明两相热相容性良好,随着PAPI所占比例的增加,玻璃化温度下降。热重分析结果表明,PAPI-PDLLA出现两个明显分解温度,首先是PDLLA嵌段分解,然后是PAPI的分解,通过热重分析可以得出两嵌段的质量比。
     3.研究了PAPI-PDLLA共聚物的亲/疏水性能和降解性能。亲/疏水性能采用材料表面静态水接触角和整体吸水率两种方法来评价;通过失重率、分子量变化、pH值变化和降解后样品表面形貌的变化等来评价材料的降解性能。
     ①亲/疏水性能测试结果表明,PAPI-PDLLA共聚物的静态水接触角均小于PDLLA,吸水率都大于PDLLA,且随着共聚物中亲水嵌段PAPI比重的增加,亲水性能增加。
     ②PAPI-PDLLA共聚物的体外降解实验表明,PAPI-PDLLA系列样品在降解前五周的失重、分子量下降及pH值变化相对于PDLLA对照组都要快些,但在整个降解过程中发现,PDLLA由于降解过程中酸性积累导致的自催化作用引起了陡降现象,而在PAPI-PDLLA系列材料中,降解速率较为可控,降解的失重率的自然对数与时间经拟合,发现符合假一级动力学模型Mnmolecular,没有陡降现象产生。这是由于亲水嵌段PAPI的引入,加速了降解的酸性小分子的扩散,没有导致材料明显的自催化降解作用。通过降解后的扫描电镜显示,PDLLA会产生局部不均匀降解,而PAPI-PDLLA共聚物的降解表面较为均一。因此,相对于PDLLA,材料的降解可控性能提高。
     4.采用拉伸和压缩测试考察了材料的力学性能。结果表明,共聚物都具有一定的拉伸强度和压缩强度,并且强度随着PAPI/D,L-丙交酯的物料比减少而增加,而断裂伸长率随着PAPI/D,L-丙交酯的物料比的增加而显著增加。合成的共聚物拉伸模量在48-280MPa之间。压缩模量在108-780MPa之间,与松质骨的压缩模量较为匹配。随着材料的降解,材料的力学强度逐渐损失,且随着PAPI在共聚物中占的比重提高,力学损失加速,PAPD4/15(即PAPI-PDLLA中PAPI/D,L-LA=4/15)降解四周后,拉伸性能几乎全部损失,而PAPD4/25仅损失了20%左右。
     5.采用湿法化学法,在PAPI-PDLLA共聚物膜表面引入了氨基和羟基,采用XPS、比色法、AFM等方法定性定量表征了材料表面接枝的氨基和羟基。在无催化剂、常温等反应条件下,在材料表面易引入氨基和羟基,这为后续的材料表面活性分子接枝提供了基础。PAPD4/15-BDA材料表面接枝的氨基密度达3.41×10~(-6)mol/cm~2。当接枝氨基和羟基后,材料表面相对于反应前变得粗糙。
     6.采用大鼠乳鼠成骨细胞为种子细胞评价了PAPI及PAPI-PDLLA的细胞毒性。从成骨细胞形态、粘附、铺展、增殖、分化和矿化等几个方面系统的比较了PAPI-PDLLA及功能化表面与PDLLA的细胞相容性。
     ①采用PAPI浸泡液及PAPI和PAPI-PDLLA降解可能产生的最大量的PMDA的浸泡液用于培养成骨细胞,发现成骨细胞在上述培养液中培养均体现正常形态,PAPI及含PMA的培养液并不影响细胞的形态与增殖,这说明了PAPI及PAPI-PDLLA无明显细胞毒性。
     ②与PDLLA相比,适当的引入PAPI促进了成骨细胞的粘附与铺展,而过多的PAPI不利于细胞的粘附;功能化的PAPI-PDLLA膜表面也有利于细胞的粘附与铺展,氨基功能化的表面细胞粘附最为明显。
     ③相对于PDLLA,适当PAPI含量的PAPI-PDLLA膜有利于细胞增殖,而氨基和羟基功能化的表面使细胞增殖更为显著。
     ④成骨细胞在材料表面的分化和矿化能力采用碱性磷酸酶、无机钙分泌和胶原分泌等指标来衡量。结果表明,细胞在氨基功能化的PAPI-PDLLA膜表面的分化矿化能力略优于PAPI-PDLLA,而在PAPI-PDLLA膜上的分化矿化能力要优于PDLLA。
Bone tissue engineering brings new hope for many patients suffering bone diseasesas it will provide a new way to treat trauma, fracture or defect. The design of boneregeneration material is a key factor for the success of bone tissue regeneration. Thematerial should meet with several basic demands such as certain mechanical strength,controllable biodegradation and reasonable surface properties. However, there are fewmaterials suitable for bone tissue engineering. The aim of this study is to design andsynthetic a novel bone tissue engineering material, which can integrate the advantagesof certain mechanical property, controllable degradation, hydrophilicity and feasiblesurface functional modification. Based on a novel PEG derivate-poly (amino terminatedpolyethylene glycol-co-pyromellitic dianhydride) imide (PAPI) copolymerization withD,L-lactide (D,L-LA), a series of PAPI-PDLLA copolymer with adjustable propertieswere synthesized. The structure of the copolymers was characterized by nuclearmagnetic resonance spectrometer (NMR), Fourier transform infraredspectrometer(FTIR), Ultraviolet-visible spectrometer (UV), Gel permeationchromatography with multi-angle laser light scattering (GPC-MALLS), Differentialscanning calorimeter (DSC), Scanning electron microscopy (SEM), Atomic forcemicroscope (AFM), and X-ray photoelectron spectrometer(XPS). Then, thehydrophilicity/hydrophobicity and biodegradation of PAPI-PDLLA copolymers weresystemically examined. And the mechanical property and mechanical property duringdegradation of the copolymer were evaluated by tensile testing and compression testing.Furthermore, amino groups and hydroxyl groups were grafted on the surface ofcopolymers. Finally, the cell biocompatibility of the copolymers was evaluated. Themain works and conclusions of this study were listed as follows:
     1. A novel PEG derivate PAPI was synthesized by polycondensation ofamino-terminated polyethylene glycol (ATPEG) and PMDA. The reaction conditionwas optimized. An extensive effort was expended in investigating the effects of themolar ratios of monomers, reactive time and temperature on the molecular weight. Theimide process was monitored during the reaction. The introduced imide rings in thepolymer provided reactive sites to graft functional groups. The possibility of PAPIreaction with BDA and EtA was evaluated. The structure of PAPI was characterized.
     ①FTIR,~1H NMR,~(13)C NMR, GPC-MALLS and UV demonstrated that thepolymerization of ATPEG and PMDA was successful. When the molar ratio of ATPEGand PMDA is1.05, the molecular weight of the polymer reached higher and all theamides in the polymer turned imides almost completely after reaction at the set gradienttemperature and time. Thermal gravity (TG) analysis suggested that the thermal stabilityof PAPI improved compared with PEG.
     ②FTIR verified that the imide rings of PAPI were successfully reacted with BDAand EtA without catalysis under room temperature, that means imide rings in PAPI canprovide reactive site for grafting functional groups.
     ③A gel was generated quickly when BDA added into PAPI solution. The gelshowed multi-pore and certain mechanical strength, having promising to apply in drugdelivery and tissue engineering.
     2. PAPI-PDLLA copolymers were prepared by the melt ring-openingpolymerization of D,L-lactide under the co-initiated system of PAPI and Sn (Oct)2.Effects have been done to understanding the reaction mechanism, the dosage, thetemperature and the reaction time towards the molecular weight. The structure andthermal property of copolymers were analyzed.
     ①FTIR,~1H NMR,~(13)C NMR and GPC indicated that PAPI-PDLLA copolymerswere obtained successfully under the co-initiator of PAPI-NH2and Sn (Oct)2. Theoptimization condition of the ring-opening copolymerization was that the reaction wasperformed under vacuum condition at150℃for36h.
     ②A series of PAPI-PDLLA copolymer with different molecular weight wereprepared by varying the ratio of PAPI/D, L-lactide. The molecular weight of the graftedPDLLA in the copolymer was calculated by1HNMR. The PAPI-PDLLA copolymerswith different components and molecular weight have different physicochemicalproperties, which can be adjusted for the best application in bone tissue regeneration.
     ③The data of DSC shown that the PAPI-PDLLA copolymers exhibited only a glasstransition temperature (Tg), and Tg decreased with the increased of feed ratio ofPAPI/D,L-lactide. The TG curve presented that the copolymers have two decomposedtemperature: The first turning point indicated PDLLA segment decomposed, then, PAPIdecomposed. Therefore, according the TG records, the weight ratio of the two segmentsin the copolymers can be calculated.
     3. The hydrophilicity/hydrophobility and biodegradation property of PAPI-PDLLAcopolymers were evaluated. Both of the static contact angle and water absorption were used to estimate the hydrophilic/hydrophobic ability of the PAPI-PDLLA copolymers.While in vitro biodegradation of PAPI-PDLLA copolymers was investigated by weightloss ratio, molecular weight changing, pH and the surface morphology variation duringdegradation.
     ①Water absorption of PAPI-PDLLA copolymers was more than PDLLA controlsand the static water contact angle was smaller than PDLLA controls. The reason is thehydrophilic PAPI segment into PAPI-PDLLA could bind more water molecular.Therefore, the hydrophilicity of PAPI-PDLLA copolymers is better than PDLLA.Meanwhile, the hydrophilicity of PAPI-PDLLA copolymers is elevating by theincreasing the feed ratio of PAPI segment in copolymers.
     ②Hydrolytic degradation of PAPI-PDLLA copolymers was lasted for12weeks.The data illustrated that the degradation of PAPI-PDLLA copolymers during the first5weeks was more rapidly than PDLLA controls. However, the weight loss, molecularweight and pH values PDLLA controls degraded significantly after degradation4-6week due to the degraded acid substances accumulation leading to acid catalyzedauto-accelerating degradation. During the whole degradation process, the PAPI-PDLLAcopolymers exhibited more controllable degradation and the degradation speed ofPAPI-PDLLA can be fitted by Mnmolecular model. The reason is the hydrophilicsegment PAPI in copolymers can accelerate the acidic material diffusion during thePDLLA segment degradation without resulting in acid auto-catalyzed degradation. Thesurface morphology of PAPI-PDLLA copolymers also showed more uniformdegradation than PDLLA.
     4. The mechanical property of the copolymers was tested by tensile andcompression experiments. The results illustrated the materials exhibited certain tensilestrength and compression strength and the strength raised with the feed ratio ofPAPI/D,L-lactide decrease. The tensile modulus of copolymers was adjusted in therange of48.8to280MPa, and the compression modulus in the range of108to780MPa,which is much match with the cancellous bone. During the degradation, the mechanicalproperty of the materials is loss and the speed is rapid with the feed ratio of PAPIincreasing. After degradation for4weeks, the mechanical property of PAPD4/15istotally loss, but PAPI4/25is only loss about its25%.
     5. The surface of PAPI-PDLLA member was grafted functional groups-aminogroups and hydroxyl groups by wetting chemistry. The grafted amino groups andhydroxyl groups were characterized qualitatively and quantitatively by XPS, colorimetric method, and AFM The surface amino group density of PAPI-PDLLAcopolymer reached3.41×10~(-6)mol/cm~2for PAPD4/15-BDA material by colorimetricmethod. The surface morphology of the PAPI-PDLLA copolymer became rough afterreaction with BDA and EtA.
     6. The cytocompatibility of PAPI precursor and PAPI-PDLLA copolymers wasstudied by empolying primary SD rat osteoblasts as the model cells and PDLLA ascontrol. The osteoblasts morphology, attachment and spreading, proliferation,differentiation and mineralization ability were detected to evaluate the cytocompatibilityof PAPI-PDLLA copolymers. The results are following:
     ①Osteoblasts cultured in the PAPI soaking culture medium shown no apparentdifferences in cell morphologies and cell proliferation compared to black controls. Andosteoblasts cultured in PMA dissolved medium also exhibited normal morphology anddid not affect cell proliferation. The amounts of PMA were based on the maximumamounts that could be released from0.2g of completely degraded polymer. All theresults indicated that the PAPI and PAPI-PDLLA are no cytotoxicity.
     ②Compared to PDLLA, a certain amount of PAPI introduced into PAPI-PDLLAcopolymers could promote osteoblasts adhesion and spreading, but a large of PAPI inthe PAPI-PDLLA such as PAPD4/15was unfavorable for cell adhesion and spreadingbecause the hydrophilicity of the material is too strong leading to detriment of celladhesion. The functional surface of the copolymers is benefit for cell adhesion andspreading. The cell adhesion on amino group functional surface had significantimprovement contrast to other samples.
     ③A certain amount of PAPI introduced into PAPI-PDLLA copolymers (i.e.PAPD4/20) and their functional surface are favor to osteoblasts proliferation.
     ④PAPI-PDLLA copolymers member and the amino and hydroxyl groupsfunctional surfaces stimulated osteoblasts differentiation and mineralization, whichwere reflected by the production of ALP, mineralization and the expression of collagen.And the order of priority of the copolymers for differentiation and mineralization isPAPD-NH2, PAPD-OH, PAPD4/20, and PDLLA.
引文
[1] Langer R, Vacanti JP. Tissue engineering [J]. Science,1993,260(5110):920-926.
    [2] Cortesini R, Stem cell, tissue engineering and organogenesis in transplantation[J]. TransplImmunol.2005,15(2):81-89.
    [3] Langer R, Cima, LG, Tamada JA et al. Future directions in biomaterials [J]. Biomaterials,1990,11(9):738-745.
    [4] Williams JM, Adewunmi A, Schek RM et al. Bone tissue engineering using polycaprolactonescaffolds fabricated via selective laser sintering [J]. Biomaterials,2005,26(23):4817–27.
    [5] Burg KJ, Holder WD Jr, Culberson CR et al. Comparative study of seeding methods forthree-dimensional polymeric scaffolds [J]. J Biomed Mater Res,2000,51(4):642-649.
    [6] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices [J].Biomaterials,2000,21(23):2335-2346.
    [7] Fu K, Klibanov AM, Langer R. Protein stability in controlled-release systems [J]. NatBiotechnol.2000,18(1):24-25.
    [8] Luck M, Pistel KF, Li YX et al. Plasma protein adsorption on biodegradable microspheresconsisting of poly(D,L-lactide-co-glycolide), poly(L-lactide) or ABA triblock copolymerscontaining poly(oxyethylene). Influence of production method and polymer composition [J]. JControlled Release,1998,55(2-3):107-120.
    [9] Williams DF. On the mechanisms of biocompatibility [J]. Biomaterials,2008,29(20):2941-2953.
    [10] Helmus MN, Gibbons DF and Cebon D. Biocompatibility: Meeting a key FunctionalRequirement of Next-Generation Medical Devices [J]. Toxical Pathol,2008,36(1):70-80.
    [11] Calvert JW, Weiss LE, Sundine MJ. New frontiers in bone tissue engineering [J]. Clin PlastSurg.2003,30(4):641-648.
    [12] Puppi D, Chiellini F, Piras AM et al. Polymeric materials for bone and cartilage repair [J].Prog Polym Sci.2010,35(4):403-440.
    [13] Yaszemski MJ, Payne RG, Hayes WC et al. Evolution of bone transplantation: molecular,cellular and tissue strategies to engineer human bone [J]. Biomaterials,1996,17(2):175–85.
    [14] Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering [J]. Tissue Eng2003,9:45–64.
    [15] G pferich A, Peter SJ, Lucke A et al. Modulation of marrow stromal cell function usingpoly(D,L-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces [J]. J BiomedMater Res.1999,46(3):390-398.
    [16] Meyer U, Meyer Th, Handschel J et al. Fundamentals of tissue engineering and regenerativemedicine [M]. ISBN:978-3-540-77754-0.
    [17] Lee SH, Kim BS, Kim SH et al. Elastic biodegradable poly(glycolide-co-caprolactone)scaffold for tissue engineering [J]. J Biomed Mater Res.2003,66(1):29-37.
    [18] Wang SG, Cui WJ, Bei JZ. Bulk and surface modification of polylactide [J]. Anal BioanalChem.2005,381(3):547-556.
    [19] Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci.2010,35(3):338-356.
    [20] Luo YF, Wang YL, Niu XF et al. Synthesis, Characterization and Biodegradation ofButanediamine-Grafted Poly(DL-Lactic acid)[J]. Eur Polym J,2007,43(9):3856-3864.
    [21]罗彦凤,王素军,牛旭峰等. RGDS和胶原改性(DL-乳酸)的合成与表征[J].高分子材料与工程.2008,24(5):44-47+51.
    [22] Niu XF, Luo YF, Li YG et al. Design of bioinspired polymeric materials based onpoly(D,L-lactic acid) modifications towards improving its cytocompatibility [J]. J BiomedMater Res. Part A,2008,84(4):908-916.
    [23] Luo YF, Wang SJ, Niu XF et al. Synthesis and characterization of a novel bioinspiredmaterial-collagen-grafted poly(DL-lactic acid)[J]. J Functional Mater,2008,39(1):142-146.
    [24] Kiss é, Bertóti I, Vargha-Butler EI. XPS and wettability characterization of modifiedpoly(lactic acid) and poly(lactic/glycolic acid films [J]. J Colloid Interface Sci,2002,245(1):91-98.
    [25] Atthof B, Hilborn J. Protein adsorption onto polyester surfaces: is there a need for surfaceactivation?[J]. J BiomedMater Res Part B Appl Biomater,2007,80(1):121–30.
    [26] Yang J, Shi GX, Wang SG et al. Fabrication and surface modification of macroporouspoly(l-lactic acid) and poly(l-lactic-co-glycolic acid)(70/30) cell scaffolds for human skinfibroblast cell culture [J]. J Biomed Mater Res,2002,62(3):438–446.
    [27] Kulinski Z, Piorkowska E, Gadzinowska K et al. Plasticization of poly(l-lactide) withpoly(propylene glycol)[J]. Biomacromol,2006,7(7):2128–35.
    [28] Labrecque LV, Kumar RA, Dave V et al. Citrate esters as plasticizers for poly(lactic acid)[J].J Appl Polym Sci,1997,66(8):1507-13
    [29] Ljungberg N, Andersson T, Wesslén B. Film extrusion and film weld ability of poly(lacticacid) plasticized with triacetine and tributyl citrate [J]. J Appl Polym Sci,2003,88(4):3239-47.
    [30] Ljungberg N, Colombini D, Wesslén B. Plasticization of poly(lactic acid) with oligomericmalonate esteramides: dynamic mechanical and thermal film properties [J]. J Appl Polym Sci2005,96(4):992-1002.
    [31] Sheth M, Kumar RA, Davé V et al. Biodegradable polymer blends of poly(lactic acid) andpoly(ethylene glycol)[J]. J Appl Polym Sci,1997,66(8):1495–505.
    [32] Yokoyama M. Block copolymers as drug carriers [J]. Crit Rev Drug Carr Sys,1992,9(3-4):213-248.
    [33] Ratner BD. Surface modification of polymers: chemical, biological and surface analyticalchallenges [J]. Biosens Bioelectron,1995,10(9-10):797–804.
    [34] Burg KJL, Holder Jr WD, Culberson CR, et al. Parameters affecting cellular adhesion topolylactide films [J]. J Biomater Sci Polym Ed,1999,10(2):147–61.
    [35] Desai NP, Hubbell JA. Biological Responses to Polyethylene Oxide Modified PolyethyleneTerephthalate Surfaces [J]. J Biomed Mater Res,1991,25:829-43.
    [36] Xu XL, Zhong W, Zhou SF, et al. Electrospun PEG-PLA nanofibrous membrane for sustainedrelease of hydrophilic antibiotics [J]. J Appl Polym Sci,2010,118:588-595.
    [37] Jain AK, Goyal AK, Mishra N, et al. PEG-PLA-PEG block copolymeric nanoparticles for oralimmunization against hepatitis B [J]. Inter J Pharm,2010,387:253-262.
    [38] Metters AT, Anseth KS, Bowman CN. Fundamental studies of a novel, biodegradablePEG-b-PLA hydrogel [J]. Polymer,2000,41:3993-4004.
    [39] Liu HZ, Zhang JW. Research progress in toughening modification of poly(lactic acid)[J].2011,49(15):1051-1083.
    [40] Lee SH, Kim SH, Han YK et al. Synthesis and characterization of poly(ethyleneoxide)/polylactide/poly(ethylene oxide) triblock copolymer [J]. J Polym Sci Polym Chem,2002,40(15):2545–2555.
    [41] Luo WJ, Li SM, Bei JZ et al. Synthesis and characterization of poly(l-lactide)–poly(ethyleneglycol) multiblock copolymers [J]. J Appl Polym Sci,2002,84(9):1729–1736.
    [42] Li YX, Kissel T. Characteristics and in vitro degradation of star-block copolymers consistingof l-lactide, glycolide and branched multi-arm poly(ethylene oxide)[J]. Polymer,1998,39(18):4421–7.
    [43] Du YJ, Lemstra PJ, Nijenhuis NJ, et al. ABA type copolymers of lactide with poly(ethyleneglycol) kinetic, mechanic and model studies [J].Macromol,1995,28:2124-2132.
    [44] Rovshanden JM, Farnia SMF. Synthesis and characterization of novel ABA triblockcopolymers from L-lactide, glycolide and PEG [J]. J Appl Polym Sci,1999,74(8):2004-2009.
    [45]宋谋道,朱吉亮,张帮华等.聚乙二醇改性聚乳酸的研究[J].高分子学报,1998,4(4):454-458.
    [46] Yamaoka T, Takahashi Y, Ohta T et al, Synthesis and properties of multiblock copolymersconsisting of poly(L-lactic acid) and poly(oxypropylene-co-oxyethylene) prepared by directpolycondensation[J]. J Polym Sci: Part A: Polym Chem,1999,37(10):1513-1521.
    [47] Huh KM, Bae YH. Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid)alternating multiblock copolymers[J]. Polymer,1999,40(22):6147-3155.
    [48] Cannizzaro SM, Padera RF, Langer R, et al. A novel biotinylated degradable polymer forcell-interactive applications [J]. Biotechnol Bioeng.1998,58(5):529-535.
    [49] Wachem PBV, Beugeling T, Feijen J, et al. Interaction of cultured human endothelial cellswith polymeric surfaces of different wettabilities [J]. Biomaterials,1985,6(6):403-408.
    [50] Cai Q, Wan YQ, Wang SG, Bei JZ. Synthesis and characterization of biodegradablepolylactide-grafted dextran and its application as compatilizer [J]. Biomaterials,2003,24(20):3555–3562.
    [51] Kimura Y, Shirotani K, Yamane H, et al. Copolymerization of3-(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione and L-lactide: a facile synthetic method for functionalizedbioabsorbable polymer [J].Polymer,1993,34(8):1741-1748.
    [52] Cao XB, Wang YL, Pan J. Study on modifying poly(D,L-lactide) with maleic anhydride:synthesis kinetics and in vitro degradation. Proceeding of the First International Conferenceon Biomaterials[C]. Beijing,2001,423-426.
    [53]罗丙红,全大萍,廖凯荣等.聚乳酸与乙烯基吡咯烷酮接枝共聚的研究[J].中山大学学报,2001,9(5):62-64.
    [54] Rasal RM, Hirt DE. Toughness decrease of PLA–PHBHHx blend films upon surface-confinedphotopolymerization [J]. J Biomed Mater Res Part A,2008,88(4):1079–86.
    [55] Hiljanen-Vainio M, Varpomaa P, Sepp l J, T rm l P. Modification of poly(l-lactides) byblending: mechanical and hydrolytic behavior [J]. Macromol Chem Phys,1996,197(4):1503–23.
    [56] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials [J]. MacromolBiosci,2004,4(9):835–864.
    [57] Grijpma DW, Nijenhuis AJ, VanWijk PGT, et al. High impact strength as-polymerized PLLA[J]. Polym Bull,1992,29(5):571-578.
    [58] Haynes D, Abayasinghe NK, Harrison GM, et al. In situ copolyesters containingpoly(L-lactide) and poly(hydroxyalkanoate) units [J]. Biomacromol,2007,8(4):1131-1137.
    [59] Haynes D, Naskar AK, Singh A, et al. Poly(L-lactic acid) with segmented perfluoropolyetherenchainment [J]. Macromol,2007,40(26):9354-9360.
    [60] Schreck KM, Hillmyer MA. Block copolymers and melt blends of polylactide with NodaxTMmicrobial polyesters: preparation and mechanical properties [J]. J Biotechnol,2007,132:287-295.
    [61] Helminen AO, Korhonen H, Sepp l JV. Cross-linked poly(ε-caprolactone/D,L-lactide)copolymers with elastic properties [J]. Macromol Chem Phys,2002,203(18):2630-2639.
    [62] Frick EM, Hillmyer MA. Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: new thermoplastic elastomers containingbiodegradable segments [J]. Macromol Rap Commun,2000,21(18):1317-1322.
    [63] Wang SG, Wan YQ, Cai Q et al. Molecular design of synthetic biodegradable polymers as cellscaffold materials [J]. Chem Re Chin Univ,2004,20(2):191-194.
    [64] Janorkar AV, Metters AT, Hirt DE. Modification of poly(lactic acid) films: enhancedwettability from surface-confined photografting and increased degradation rate due to anartifact of the photografting process [J]. Macromol,2004,37(24):9151-9159.
    [65] Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide)[J]. ApplMicrobiol Biotechnol,2006,72(2):244-251.
    [66] Bergsma JE, De Bruijn WC, Rozema FR et al. Late degradation tissue response topoly(l-lactide) bone plates and screws [J]. Biomaterials,1995,16(1):25-31.
    [67] Grijpma DW, Pennings AJ.(Co)polymers of l-lactide.1. Synthesis, thermal properties andhydrolytic degradation [J]. Macromol Chem Phys,1994,195(5):1633-1647.
    [68] Grijpma DW, Pennings AJ.(Co)polymers of l-lactide.2. Mechanical properties [J]. MacromolChem Phys,1994,195(5):1649-1663.
    [69] Cai Q, Bei J, Wang S. Synthesis and degradation of a tri-component copolymer derived fromglycolide, l-lactide, and epsilon-caprolactone [J]. J Biomater Sci Polym Ed,2000,11(3):273-288.
    [70] Ohya Y, Maruhashi S, Ouchi T. Graft polymerization of l-lactide on pullulan through thetrimethylsilyl protection method and degradation of the graft copolymers. Macromolecules1998,31:4662–5.
    [71] Tasaka F, Ohya Y, Ouchi T. One-pot synthesis of novel branched polylactide through thecopolymerization of lactide with mevalonolactone [J]. Macromol Rapid Commun,2001,22(11):820-824.
    [72] Tasaka F, Miyazaki H, Ohya Y et al. Synthesis of comb-type biodegradable polylactidethrough depsipeptide–lactide copolymer containing serine residues [J]. Macromol,1999,32(19):6386-6389.
    [73] Mooney DJ, Breuer MD, Mcnamara K et al. Fabricating tubular devices from polymers oflactic and glycolic acid for tissue engineering [J].Tissue Eng1995,1(2):107–118.
    [74] Arvanitoyannis I, Nakayama A, Kawasaki N, et al. Novel star-shaped polylactide withglycerol using stannous octoate or tetrapheny tin as catalyst:1. Synthesis, characterization andstudy of their biodegradability [J]. Polymer,1995,36(15):2947-2956.
    [75]张国栋,冯新德.端基含葡氨糖衍生物的聚乳酸的合成与表征[J].高分子学报,1998,4:509-512.
    [76]崔福斋,郑传林.仿生材料[M].北京:化学工业出版社.2004:3-7.
    [77] Shin H, Jo S, Mikos AG. Biomimeticmaterials for tissue engineering [J]. Biomaterials2003,24:4353-4364.
    [78] Niu XF, Wang YL, Luo YF, et al. Arg-Gly-Asp (RGD) modified biomimetic polymericmaterials [J]. J Mater Sci Technol.2005,21(4):571-576.
    [79] Sanchez C, Arribart H, Guille MMG. Biomimetism and bioinspiration as tools for the designof innovative materials and systems [J]. Nat Mater.2005,4:277-283.
    [80] Langer R, Tirrell DA. Designing materials for biology and medicine [J]. Nature,2004,428:487-492.
    [81] Humphries MJ, Akiyama SK, Komoriya A et al. Identification of an alternatively spliced sitein human plasma fibronectin that mediates cell type-specific adhesion [J]. J Cell Biol1986,103(6):2637-2647.
    [82] Drotleff S, Lungwitz U, Breunig M, et al. Biomimetic polymers in pharmaceutical andbiomedical sciences [J]. Eur J Pharm Biopharm,2004,58:385-407.
    [83] Kimura Y, Shirotani K, Yamane H, et al. Copolymerization of3-(S)-[(benzyloxycarbony)methyl]-1,4-dioxane-2,5-dione and L-lactide: a ficial synthethic method for functionalizedbioabsorbable polymer[J]. Polymer1993(34):1741–1748.
    [84] Barrera DA, Zylstra E, Lansbury PT, et al. Synthesis and RGD peptide modification of a newbiodegradable copolymer: poly(lactic acid-co-lysine)[J]. JACS,1993,115:11010-11011.
    [85] Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial[J]. Journal ofBiomedical Materials Research,1997,35:513-523.
    [86]牛旭峰.聚(D,L-乳酸)基仿生细胞外基质的骨组织工程基质材料研究[D].重庆.重庆大学博士论文,2006.
    [87] Saito N, Okada T, Horiuchi H, et al. Biodegradable poly-D,L-lactic acid-polyethylene glycolblock copolymers as a BMP delivery system for inducing bone [J]. J Bone Joint Surg Am,2001,83:S92-S98.
    [88] Suzuki A, Terai H, Toyoda H, et al. A biodegradable delivery system for antibiotics andrecombirant human bone morphogenetic protein-2: a potential treatment for infected bonedefects [J]. J Orthop Res,2006,24:327-332.
    [89] Wan YQ, Chen WN, Yang J, et al. Biodegradable poly(L-lactide)-poly(ethylene glycol)multiblock copolymer: synthesis and evaluation of cells affinity[J]. Biomaterials,2003,24:2195-2261.
    [90] Yu GH, Shen JC. Synthesis and characterization of cholesterol-poly(ethyleneglycol)-poly(D,L-lactic acid) copolymers for promoting osteoblast attactment andproliferation[J]. J Mater Sci: Mater Med,2006,17:899-909.
    [91] Cowan CM, Aalami OO, Shi YY, et al. Bone morphogenetic protein2and retinoic acidaccelerate in vivo bone formation, osteoclast recruitment, and bone turnover [J]. Tissue Eng,2005,11:645-658.
    [92] Yoneda M, Terai H, Imai Y, et al. Repair of an intercalated long bone defect with a syntheticbiodegradable bone-inducing implant [J], Biomaterials,2005,26:5145-5152.
    [93] Kim SE, Park JH, Cho YW, et al. Porous chitosan scaffold containing microspheres loadedwith transforming growth factor-betal: implications for cartilage tissue engineering [J]. JPeriodontol.2006,77:1184-1193.
    [94] Boyan BD, Lohmann CH, Somers A, et al. Potential of porous poly-D,L-lactide-co-glycolideparticles as a carrier for recombinant human bone morphogenetic protein-2duringosteoinduction in vivo [J]. J Biomed Mater Res,1999,46:51-59.
    [95] Hoque ME, Hutmacher DW, Feng W, et al. Fabrication using a rapid prototyping system andin vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering [J]. J BiomaterSci-Polym Edition.2005,16(12):1595-1610.
    [96]张育敏,李宝兴,李冀等.聚乳酸-骨基质明胶多孔复合材料制备及骨诱导活性研究[J].中国修复重建外科杂志,2007,21:135-139.
    [97]杨媛.交联型生物可控降解骨组织修复材料的制备及应用[D].广州.暨南大学.2007:6.
    [98] Veld in't PJA, Dijkstra PJ, Feijen J. Synthesis of biodegradable polyesteramides with pendantfunctional groups [J]. Die Makro Chemie.1992,193:2713-2730.
    [99] Ankola DD, Ravi Kumar MNV, Chiellini F et al. Multiblock copolymers of Lactic acid andethylene glycol containing periodic side-chain carboxyl groups: synthesis, characterization,and nanoparticle preparation [J].Macromol.2009,42(19):7388-7395.
    [100] Mao XL, Peng H, Ling JQ, et al. Enhanced human bone marrow stromal cell affinity formodified poly(L-lactide) surfaces by the upregulation of adhesion molecular genes [J].Biomaterials.2009,30(36):6903-6911.
    [101] Harris JM, Laboratory synthesis of polyethylene glycol derivatives [J]. J Macromol Sci PolymRev.1985,25(3),325-373.
    [102] Gravert DJ, Janda KD. Organic synthesis on soluble polymer supports: liqiud-phasemethodologies [J]. Chem Rev.1997,97,489-509.
    [103] Janda KD, Han H, Combinatorial chemistry: A liquid-phase approach [M]. Methods Enzymol.1996,267,234-247.
    [104] Veronese FM, Pasut G, PEGylation, successful approach to drug delivery [J]. Drug DiscoveryToday2005,10(21),1451-1458.
    [105] Yamaoka T, Tabata Y, Ikada Y. Fate of water-soluble polymers administered via differentroutes [J]. J Pharm Sci.1995,84(3):349-354.
    [106] Peppas NA, Keys KB, Lugo MT, et al. Poly(ethylene glycol)-containing hydrogels in drugdelivery[J]. J Control Release.1999,62(1-2):81-87.
    [107] Lee JH, Lee HB, Andrade JD. Blood compatibility of polyethylene oxide surface [J]. ProgPolym Sci.1995,20(95):1043-1079.
    [108] Alcantar NA, Aydil ES, Israelachvili JN. Polyethylene glycol-coated biocompatible surfaces[J]. J Biomed Mater Res,2000,51(3):341-351.
    [109] Zhu JM. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering[J].Biomaterials,2010,31(17):4639-4656.
    [110] Fu Y, Xu KD, Zheng XX, et al.3D cell entrapment in crosslinked thiolatedgelatin-poly(ethylene glycol) diacrylate hydrogel [J]. Biomaterials,2012,33(1):48-58.
    [111] Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for3D cell culture [J].Biotechnol Bioeng,2009,103(4):655-663.
    [112] Tessmar JK, Gopferich AM. Customized PEG-Derived Copolymers for tissue engineeringapplication [J]. Macromol Biosci2007,7(1),23-39.
    [113] Ji CD, Annabi N, Hosseinkhani M, et al. Fabrication of poly-DL-lactide/polyethylene glycolscaffolds using gas foaming technique[J]. Acta Biomaterialia,2012,8(12):570-578.
    [114] Chan-Park MB, Zhu AP, Shen JY, et al. Novel photopolymerizable biodegradable triblockpolymers for tissue engineering scaffolds: synthesis and characterization [J]. Macromol Biosci,2004,4(7):665-673.
    [115] Kim K, Yu M, Zong X, et al. Control of degradation rate and hydrophilicity in electrospunnon-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications[J]. Biomaterials2003,24,4977-4985.
    [116] Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold viaelectrospinning of PLGA and PLA-PEG block copolymers [J]. J Controlled Release2003,89,341-353.
    [117] Hou YP, Schoener CA, Regan KR, et al. Photo-cross-linked PDMAS star-PEG hydrogels:synthesis, characterization, and potential application for tissue engineering scaffolds [J].Biomacromol.2010,11,648-656.
    [118] Phelps EA, Enemchukuw NO, Sulchek TA, et al. Maleimide cross-linked bioactive PEGhydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and insitu delivery [J]. Adv Mater.2012,24(1):64-70.
    [119] Nederberg F, Trang V, Pratt RC. New ground for organic catalysis: a ring-openingpolymerization approach to hydrogels [J]. Biomacromolecules,2007,8(11):3294-3297.
    [120] Verdianz Th, Simburger H, Liska R. Surface modification of imide containing polymers Ⅰ:Catalytic groups [J]. European Polymer Journal,2006,42:638-654.
    [121] Vlierberghe SV, Sirova M, Rossmann P, et al. Surface modification of polyimide sheets forregenerative medicine application [J]. Biomacromolecues,2010,11,2731-2739.
    [122] Scheirs J, Bigger SW, Delatychi O. Characterizing the solid-stat thermal oxidation ofpoly(ethylene oxide) powder[J]. Polymer,1991,32(11):2014-2019.
    [123] Qiu WL, Luo YJ, Chen FT, et al. Morphology and size control of inorganic particles inpolyimide hybrids by using SiO2-TiO2mixed oxide [J]. Polymer,2003,44(19):5821-5826.
    [124] Liu QP, Gao LX, Gao ZW, et al. Preparation and characterization of polyimide/silicananocomposite spheres [J].Mater Lett,2007,61:4456-4458.
    [125]路庆华,王宗光,孙立民,刘勇.聚酰亚胺的热亚胺化动力学研究[J].上海交通大学学报.1997,31,148-150.
    [126] Tesoro G. Advances in Polyimide Science and Technology [J]. J Polym Sci Polym Chem,1993,31(13):3501.
    [127] Park SK, Ha WS. Direct polymerization of aromatic diacid dimethyl esters with aromaticdiamines:Ⅰ. Analysis of reaction mechanism [J]. Polymer,1997,38(20):5001-5013.
    [128] Lauver RW. Kinetics of imidization and crosslinking in PMR polyimde resin [J]. J Polym SciPolym Chem Edition,1979,17(8):2529-2539.
    [129]卢红斌,何天白.聚酰亚胺反应动力学研究进展.高分子材料科学与工程[J].2000,16,9-12.
    [130] Mathisen RJ, Yoo JK, Sung CSP. Dye labeling technique for monitoring the cure ofpolyimides and polyureas-model compound studies [J]. Macromol,1987,20(6):1414-1416.
    [131] Pyun E, Mathisen RJ, Sook C, et al. Kinetics and Mechanisms for Thermal Imidization of aPolyamic Acid Studied by Ultraviolet-Visible Spectroscopy[J]. Macromolecules,1989,22(3),1174-1183.
    [132] Lee KW, Kowalczyk SP, Shaw JM. Surface modification of BPDA-PDA polyimide[J].Launguir,1991,7(11):2450-2453.
    [133] Lee KW, Kowalczyk SP, Shaw JM, Surface modification of PMDA-ODApolyimde-surface-structure adhesion relationship [J]. Macromolecules,1990,23(7):2097-2100.
    [134] Shao L, Chung TS, Goh SH, et al. Transport properties of cross-linked polyimide membranesinduced by different generations of diaminobutane(DAB) dendrimers[J]. J Member Sci,2005,256(1-2):46-56.
    [135] Powell CE, Duthie XJ, Kentish SE,et al. Reversible diamine cross-linking of polyimidemembranes[J]. J Member Sci,2007,291(1-2):199-209.
    [136] Albrecht W,Seifert B, Weigel Th, et al. Amination of poly(ether imide) memberanes using di-and multivalent amines [J]. Macromol Chem Phys,2003,204(3),510-521.
    [137] Chen XH, McCarthy SP, Gross RA. Synthesis and Charaterization of L-Lactide-EthyleneOxide Multiblock Copolymers [J]. Macromolecules,1997,30(15),4295-4301.
    [138] Jain JP, Kumar N. Self assembly of amphiphilic (PEG)3-PLA copolymer as polymersomes:preparation, charaterization, and their evaluation as drug carrier[J]. Biomacromolecules,2010,11,1027-1035.
    [139] Garric X, Garreau H, Vert M. Behaviors of keratinocytes and fibroblasts on films ofPLA50-PEG-PLA50triblock copolymers with various PLA segment lengths[J]. J Mater Sci:Mater Med,2008,19:1645-1651.
    [140] Wan YQ, Chen WN, Yang J, et al. Biodegradable poly(L-lactide)-poly(ethylene glycol)multiblock copolymer: synthesis and evaluation of cell affinity[J]. Biomaterials,2003,24:2195-2203.
    [141] Tessmart J, Mikos A, Gopferich A. The use of poly(ethylene glycol)-block-poly(lactide acid)derived copolymers for the rapid creation of biomimetic surface[J].Biomaterials,2003,24,4475-4486.
    [142] Kissel Th, Li YX, Unger F. ABA-triblock copolymers from biodegradable polyester A-blocksand hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogeldelivery systems for proteins[J]. Adv Drug Deliv Rev,2002,54:99-134.
    [143] Jiang Z, Hao J, You Y, Liu Y, et al. Biodegradable and thermo-sensitive hydrogels ofpoly(ethylene glycol)-poly(ε-caprolactone-co-glycolide)-poly(ethylene glycol) aqueoussolutions [J]. J Biomed Mater Res A,2008,87:45-51.
    [144] Clapper JD, Skele JM, Mullins RF, Guymon CA. Development and characterization ofphotopolymerizable biodegradable materials from PEG-PLA-PEG block macromonomers [J].Polymer,2007,48:6554.
    [145]罗彦凤.聚(D,L-乳酸)的改性及体外降解和细胞相容性研究[D].重庆.重庆大学博士学位论文.2003.
    [146] Duda A, Penczek S, Kowalski A, et al. Polymerization of ε-caprolactone and L,L-diactideinitiated with stannous octoate and stannous butoxide-a comparison [J]. Macromol Symp.2000,153(1),41-53.
    [147] Kowalshi A, Libiszowski J, Biela T, et al. Kinetics and mechanism of cyclic esterspolymerization initiated with Tin(Ⅱ) octoate. Polymerization of ε-Caprolactone andL,L-Lactide co-initiated with primary amines[J]. Macromol,2005,38:8170-8176.
    [148] Albertsson A-C, Varma IK. Recent development in ring opening polymerization of lactonesfor biomedical applications [J]. Biomacromolecules,2003,4:1466-1486.
    [149] Storey RF, Sherman JW. Kinetics and mechanism of the stannous octoate-catalyzed bulkpolymerization of ε-Caprolactone [J]. Macromol,2002,35:1504-1512.
    [150]王丹,张颂培,张晓玲.丙交酯开环聚合催化体系的研究进展.应用化工.2010,39(8):1244-1246.]
    [151] Zhang X, MacDonald DA, Goosen MFA. Mechanism of lactide polymerization in thepresence of stannous octoate: the effect of hydroxy and carboxylic acid substances [J]. JPolym Sci Pol Chem,1994,32:2965-2970.
    [152] Kricheldorf HR, Kreiser-Saunders I, Boettcher C. Polylactones:31. Sn(II)octoate-initiatedpolymerization of L-lactide: a mechanistic study [J]. Polymer,1995,36(6):1253-1259.
    [153] Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactones48. SnOct2-initiatedpolymerizations of lactide: a mechanistic study [J]. Macromol,2000,33:702-709.
    [154] Kowalshi A, Libiszowski J, Biela T, et al. Kinetics and Mechanism of Cyclic EstersPolymerization Initiated with Tin(Ⅱ) Octoate. Polymerization of ε-Caprolactone andL,L-Lactide Co-initiated with Primary Amines [J]. Macromol,2005,38,8170-8176.
    [155] Cai Q, Zhao Y, Bei J, et al. Synthesis and properties of star-shaped polylactide attacted topoly(amidoamine) dendrimer [J]. Biomacromol,2003,4(3),828-834.
    [156]阮长顺.新型骨修复材料可降解哌嗪基聚氨酯脲的研究[D].重庆.重庆大学博士学位论文.2011.
    [157] Nair LS, Laurencin CT, Biodegradable polymers as biomaterials [J]. Prog Polym Sci,2007,32:762-789.
    [158] Teramoto N, Urata K, Ozawa K, et al. Biodegradation of aliphatic polyester compositesreinforced by abaca fiber [J]. Polym Degrad Stabil,2004,86(3):401-409.
    [159] Auras R, Harte B, Selke S. A overview of polylactides as packaging materials [J]. MacromolBiosci.2004,4(9):835-864.
    [160] Deshayes G, Delcourt C, Verbruggen I, et al. Novel polyesteramide-based di-and triblockcopolymers: from thermo-mechanical properties to hydrolytic degradation [J]. Eur Polym J,2011,47(1):98-110.
    [161] Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactide [J]. JAppl Biomater,1993,4:13-17.
    [162] Rozema FR, Bergsam JE, Bos RR, et al. Late degradation simulation of poly(L-lactide)[J]. JMater Sci: Mater Med,1994,5:575-581.
    [163] Gazzetti P, Laaaerini G. Degradation products of poly(ester-ether-ester)block copolymers donot alter endothelial metabolism in vitro [J]. J Mater Sci: Mater Med,1995,6:824-828.
    [164]黄美娜.可预防骨不连的骨修复用新型形状记忆聚氨酯脲的研究[D].重庆.重庆大学博士学位论文.2010.
    [165] ASTMD638-10.2010. Standard test method for tensile properties of plastics[S]. USA.
    [166] Li SM, Rashkov I, Espartero JL, et al. Synthesis, characterization, and hydrolytic degradationof PLA/PEG/PLA triblock copolymers with long poly(L-lactic acid) blocks [J]. Macromol.1996,29:57-62.
    [167] Rashkow I, Manolova N, Li SM, et al. Synthesis, characterization, and hydrolytic degradationof PLA/PEO/PLA triblock copolymers with short poly(L-lactide acid) chains [J].Macromol.1996,29:50-56.
    [168] Vogler EA, Structure and reactivity of water at biomaterial surface [J]. Adv Colloid InterfaceSci,1998,74(1-3),69-117.
    [169] Cook AD, Hrkach JS, Gao NN, et al. Characterization and development ofRGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial [J].J Biomed Mater Rese,1997,35(4):513-523.
    [170]王远亮.生物材料——生物学与材料科学交叉[M].北京:科学出版社,2009.
    [171] Chol K, Kuhn JL, Ciarelli MJ. The elastic moduli of human subchondral, trabecular, andcortical bone tissue and the size-dependency of cortical bone modulus [J]. J Biomechanics,1990,23(11):1103-1113.
    [172] Jiao YP, Cui FZ. Surface modification of polyester biomaterials for tissue engineering [J].Biomed Mater,2007,2:R24-R37.
    [173]蔡开勇,林松柏,姚康德.组织工程相关生物材料表面工程的研究进展.化学进展[J],2001,13(1):56-64.
    [174] Harris JM. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications[M],New York: Plenum Press;1992.
    [175] Garric X, Garreau H, Vert M, et al. Behaviors of keratinocytes and fibroblasts on films ofPLA50-PEO-PLA50triblock copolymers with various PLA segment lengths [J]. J Mater Sci:Mater Med,2008,19:1645-1651.
    [176] Wan YQ, Chen WN, Yang J, et al. Biodegradable poly(L-lactide)-poly(ethylene glycol)multiblock copolymer: synthesis and evaluation of cell affinity [J]. Biomaterials,2003,24:2195-2203.
    [177]糜丽,潘君,赵明媚等.一种可促进成骨细胞黏附和生长的聚乙二醇接枝聚乳酸材料[J].材料导报.2008,8:139-141.
    [178]赵明媚,潘君,李永刚等.一种可阻止非特异性蛋白质吸附的新型聚乳酸材料—聚乙二醇接枝聚乳酸[J].高分子材料与工程.2007,3.
    [179] Liu XH, Ma PX. Polymeric scaffolds for bone tissue engineering [J]. Ann Biomed Eng2004,32:477-486.
    [180] Croll TI, O’Connor AJ, Stevens GW, et al. Controllable surface modification ofpoly(lactic-co-glycolic acid)(PLGA) by hydrolysis or aminolysis I: physical, chemical, andtheoretical aspects[J]. Biomacromol,2004,5:463–73.
    [181] Zhu YB, Gao CY, He T, et al. Endothelium regeneration on luminal surface of polyurethanevascular scaffold modified with diamine and covalently grafted with gelatin [J]. Biomaterials2004,25:423–30.
    [182] Henry AC, Tutt TJ, Galloway M, et al. Surface modification of poly(methyl methacrylate)used in the fabrication of microanalytical devices [J]. Anal Chem,2000,72:5331–5337.
    [183] Vlierberghe SV, Sirova M, Rossman P, et al. Surface modification of polyimide sheets forregenerative medicine applications [J]. Biomacromol,2010,11:2731-2739.
    [184] Albrecht W, Seifert B, Weigel T, et al. Amination of poly(ether imide) membranes using di-and multivalent amines [J]. Macromol Chem Phys,2003,204:510-521.
    [185] Thevenot P, Hu W, Tang LP. Surface chemistry influences implant biocompatibility [J].Current topics in medicinal chemistry,2008,8:270-280.
    [186] Benesch J, Svedhem S, Svensson SC, et al. Protein adsorption to oligo(ethylene glycol)self-assembled monolayers: experiments with fibrinogen, heparinized plasma, and serum [J]. JBiomater Sci Polym Ed.2001,12(6):581-97.
    [187] Evans-Nguyen, KM, Tolles LR, Gorkun OV, et al. Interactions of thrombin with fibrinogenadsorbed on methyl-, hydroxyl-, amine-, and carboxyl-terminated self-assembled monolayers[J].Biochemistry.2005,44(47):15561-15568.
    [188] Williams DF, The Williams Dictionary of Biomaterials,1999, ISBN0-85323-921-5.
    [189]愈耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社.
    [190]杨晓芳,奚廷裴.生物材料生物相容性评价研究进展[J].生物医学工程杂志,2001,18(1):123-128.
    [191] Sevastianov VI. Biocopatibile biomaterials: current status and future perspectives [J]. TrendsBiomater Artif Organs,2002,15(2):20-30.
    [192] Piolettl DP, Takei H, Lin T, et al. The effects of calcium phosphate cement particels onosteoblast fucntion [J]. Biomaterials,2000,21(6):1103-1107.
    [193]贺亚敏,黄培林,吕晓迎.几种医用材料的细胞生物相容性评价的实验研究.东南大学学报(医学版)[J].2003,22(2):75-79.
    [194] Gregory CA, Gunn WG, Peister A, Prockop DJ. An alizarin red-based assay of mineralizationby adherent cells in culture: comparison with cetylpyridinium chloride extraction [J]. AnalBiochem.2004,329:77-84.
    [195] Sittichockechaiwut A, Scutt AM, Ryan AJ. Use of rapidly mineralizing osteoblasts and shortperiods of mechanical loading to accelerate matrix maturation in3D scaffolds[J].Bone,2009,44:822-829.
    [196] Tullberg-Reinert H, Jundt G. In situ measurement of collagen synthesis by humanbbone cellswith a sirius red-based colorimetric microassay: effects of transforming growth factor beta2and ascorbic acid2-phosphate [J]. Histochem Cell Biol,1999,112:271–276.
    [197]林福春.力生长因子E肽(MGF-Ct24E)与应力作用对成骨细胞基因表达影响的基因芯片分析[D].重庆.重庆大学.2011.
    [198] Ishiyama M, Tominaga H, Shiga M, et al.A combioned assay of cell viability and in vitrocytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet [J].Biol Pharm Bull,1996,19(11):1518-1520.
    [199] Yoshimura K, Tanimoto A, Abe T, et al. Shiga toxin1and2induce apoptosis in the amnioticcell line WISH [J]. J Soc Gynecol Investig,2002,9(1):22-26.
    [200] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application toproliferation and cytotoxicity assay [J]. J Immunol Meth,1983,65(1-2):55-63.
    [201] Attawia MA, Uhrich KE, Botchwey E. In Vitro bone biocompatibility of poly(anhydride-co-imides) containing pyromellitymidoalanine[J]. J Orthop Res,1996,14:445-454.
    [202] Vlierberghe SV, Sirova M, Rossmann P, et al. Surface modification of polyimide sheets forregenerative medicine application [J]. Biomacromol,2010,11:2731-2739.
    [203] Pathak CP, Sawhney AS, Quinn CP, et al. Polyimide-polyethylene glycol block copolymers:Synthesis, characterization, and initial evaluation as a biomaterial [J]. J Biomater Sci PolymerEdn,1994,6:313-323.
    [204] Horbett TA, Waldburger JJ, Ratner BD, et al. Cell adhesion to a series ofhydrophilic-hydrophobic copolymers studied with a spinning disc apparatus [J]. J BiomedMater Res,1988,22(5):383-404.
    [205] Ostrovidova GU, Zamyslov EV, Makeev AV. Some aspects of the adhesion compatibility ofhydrophobic and hydrophilic medicinal materials [J]. Rus J Appl Chem,2004,77(10):1736-1738.
    [206] Bonakdar S, Orang F, Rafienia M, et al. Comparison of the effect of hydrophilicity onbiocompatibility and platelet adhesion of two different kinds of biomaterials[J]. Iran J PharmSci.2008,4(1):37-44.
    [207] Guan JJ, Gao CY, Feng LX, et al. Surface modification of polyurethane for promotion of celladhesion and growth1: surface photo-grafting with N,N-dimethylaminoethy methacrylate andcytocompatibility of the modified surface[J]. J Mater Sci: Mater Med,2001,12(5):447-452.
    [208] Curtis ASG, Forrester JV, Clark P. Substrate hydroxylation and cell adhesion [J]. J Cell Sci,1986,86:9-24.
    [209] Lee JH, Park JW, Lee HB. Cell adhesion and growth on polymer surfaces with hydroxylgroups prepared by water vapour plasma treatment [J]. Biomaterials,1991,12(5):443-448.