力生长因子的制备与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力生长因子(Mechano growth factor, MGF)是一种新发现的生长因子,由Igf-1基因剪接变异产生。该生长因子在拉伸刺激的骨骼肌或损伤的肌肉、神经等组织中表达被提高。进一步的研究表明:MGF及其E肽(MGF-Ct24E)具有促进肌肉肥大、修复损伤的功能,因而对相关疾病可能具有治疗作用。但迄今为止,该蛋白还没有进行理化性质和生物学功能的直接研究,原因在于尚未获得MGF蛋白样品。我们实验室在以往的研究中发现,MGF mRNA在拉伸刺激的成骨细胞中高表达,提示该因子也可能是骨组织中的力响应分子,并对成骨细胞的功能产生影响。这方面的研究目前还未见其他研究人员的报道。所以本课题首先开展MGF以及MGF-Ct24E的制备,并进一步研究它们对成骨细胞功能的影响。
     研究目的:构建适合中试化生产的MGF和MGF-Ct24E大肠杆菌表达系统,建立一套有效的蛋白纯化工艺,制备满足实验需要的蛋白样品。制备MGF特异性多克隆抗体,用于分析拉伸刺激后成骨细胞内MGF蛋白质的表达。构建携带Mgf和Igf-1基因的重组腺病毒。通过生长因子直接作用和基因转染,研究MGF及其E肽对成骨细胞增殖、迁移、分化的影响,并分析其相关机制。
     研究方法:以MGF DNA为模版,PCR扩增携带限制性内切酶位点和标签序列的截短型MGF(des(1-3)MGF)和MGF-Ct24E的重组序列,分别插入质粒pMAL-c2x并转化大肠杆菌BL21,发酵表达融合蛋白MBP/des(1-3)MGF和MBP/MGF-Ct24E,通过离子交换层析和金属亲和层析等技术纯化融合蛋白,经肠激酶酶切,rpHPLC去除MBP后,获纯净的des(1-3)MGF和MGF-Ct24E样品。质谱测定样品分子量,等电聚焦测定等电点进行鉴定。MGF-Ct24E作抗原免疫动物,制备MGF特异性抗体,并利用抗体进行western blot分析拉伸刺激下MGF在成骨细胞中的表达变化,免疫荧光细胞技术分析MGF在细胞内的分布特点。构建携带Mgf和Igf-1基因的腺病毒转染系统,感染成骨细胞株MC3T3-E1。通过多肽直接作用和基因转染研究MGF、MGF-Ct24E以及IGF-1对成骨细胞增殖、迁移、分化的影响,结合抑制剂PD98059、LY294002的使用,分析信号通路MAPK-Erk1/2和PI3K-Akt与MGF功能的关联。细胞增殖通过MTT法检测,流式细胞仪分析细胞周期;Millicell-PCF细胞培养小室分析多肽作用下细胞的迁移;碱性磷酸酶活性、胞外基质蛋白表达、钙沉积分析评价细胞分化。
     研究结果:
     1、将des(1-3)MGF、MGF-Ct24E的重组序列克隆入PMAL-c2x质粒,构成重组质粒pMGF和pMGF24E,重组质粒转化BL21,在IPTG的诱导下成功表达融合蛋白MBP/ des(1-3) MGF和MBP/MGF-Ct24E。
     2、补料分批发酵制备重组蛋白,工艺优化后确定采用M9-YE培养基,含天然有机氮源的补料液,37°C,30%溶氧发酵,0.2mM IPTG诱导蛋白表达。MBP/ des(1-3)MGF包含体占细菌总蛋白30%,MBP/MGF-Ct24E可溶蛋白占细菌总蛋白的35%。柱层析法可以获得纯度95%以上的融合蛋白,包含体复性率80%以上。融合蛋白经EK酶切,rpHPLC分离获得纯度达98%以上的目的蛋白des(1-3)MGF和MGF-Ct24E,质谱鉴定二者的分子量与理论值相符。
     3、MGF-Ct24E免疫4次获得含特异性抗体的兔血清,经纯化后的抗体,western blot鉴定具有抗MGF特异性。Western blot分析显示拉伸刺激成骨细胞6、12、24h,MGF的表达量分别是对照组的2.7、5.2、1.1倍。免疫荧光检测发现MGF具有核分布特性。
     4、构建了携带Mgf和Igf-1基因的重组腺病毒,成功感染成骨细胞MC3T3-E1,实现两种生长因子的高水平表达。
     5、MGF (des(1-3)MGF)、MGF-Ct24E、IGF-1三种多肽作用成骨细胞MC3T3-E1。分析细胞增殖和迁移发现,MGF-Ct24E和MGF具有比IGF-1更显著的促进细胞增殖的作用。三种生长因子都对成骨细胞有趋化作用,其中MGF最强,而MGF-Ct24E最弱。MGF-Ct24E和MGF的促增殖作用与其显著激活MAPK-Erk1/2途径有关,促迁移能力部分的与MAPK-Erk1/2和PI3K-Akt活化有关,其中PI3K-Akt处于主要地位。
     6、细胞分化检测发现,MGF-Ct24E和MGF具有延迟成骨细胞分化的作用。1nM的多肽处理,MGF-Ct24E和MGF在细胞分化早期降低了ALP活性,而IGF-1表现出促进作用,在分化晚期MGF-Ct24E对细胞的矿化也表现出抑制作用,而MGF没有这种效应。另外MGF-Ct24E和MGF抑制了Col1的表达,但提高了OPN的表达。MGF-Ct24E和MGF对成骨细胞分化的延迟效应与Erk1/2的激活有关,抑制Erk1/2活化,ALP的表达被逆转,而MGF和IGF-1激活Akt促进了细胞分化。进一步研究发现MGF-Ct24E和MGF对转录因子Cbfα-1的核转运有抑制作用,这可能是细胞分化受到抑制的原因之一。
     结论:本研究成功构建了MGF和MGF-Ct24E的大肠杆菌表达系统,并实现了发酵表达,建立了一套完整的重组蛋白纯化和复性工艺,证明MGF可以通过原核表达的方式获得。获得的MGF-Ct24E可以免疫动物获得抗MGF特异性抗体,利用该抗体通过western blot分析,在蛋白质水平证实拉伸刺激能够刺激成骨细胞表达MGF。通过细胞实验发现,MGF及其E肽具有显著的促进成骨细胞增殖的作用,但对分化表现出一定的延迟,这些功能与E肽显著激活MAPK-Erk1/2有关,而MGF还具有显著激活Akt的能力,Akt活化促进了细胞迁移并且是成骨细胞分化所必须的。
Mechano growth factor (MGF), a novel growth factor, is originated from alternative splicing of Igf-1 gene, which is mainly expressed in stretched skeletal muscle, damaged muscle and neuron. Further studies found that MGF and its E peptide (MGF-Ct24E) could promote muscle hypertrophy, repair damage, so as to play a role in treating relevant diseases. However, MGF was not obtained for the studies of the physicochemical property and biological function of MGF so far. Our previous studies concluded that MGF mRNA expressed highly in the cyclic stretched osteoblasts, which suggested that MGF might be a amechano-response molecule in bone and have influence on the function of osteoblasts. And in this study, we developed the technique of MGF and MGF-Ct24E preparation, and studied their effects on the function of osteoblasts.
     Objective: To construct efficiently expression systems for MGF and MGF-Ct24E producing on pilot scale. To establish optimal techniques to purify protein samples meeting the experimental needs. To prepare the specific anti-MGF polyclonal antibody for the analysis of MGF expression in the stretched osteoblasts. To construct recombined adenovirus containing Mgf or Igf-1 gene. To study the effects of MGF and MGF-Ct24E on the proliferation, migration and differentiation of osteoblasts, and to analyze its relevant mechanisms.
     Methods: Using MGF DNA as a template, the recombinat sequences of truncated MGF(des(1-3)MGF) and MGF-Ct24E carrying restriction endonuclease sites and tag sequences were amplified by PCR. Then, the sequences were inserted into plasmid pMAL-c2x and transform to E.coli BL21, expressing the fusion proteins of MBP/des(1-3)MGF and MBP/MGF-Ct24E by fermentation. These fusion proteins were purified through ion exchange chromatography, metal affinity chromatography, after enterokinase digestion, the MBP was removed by rpHPLC and the purified des(1-3)MGF and MGF-Ct24E samples were obtained. Molecular mass of samples were assayed by mass spectrometry, and isoelectric point was identified by isoelectric focusing. MGF specific antibodies were prepared through immuning animals with MGF-Ct24E as antigen. Western blot was introduced to analyze the MGF expression in cyclic stretched osteoblasts, while immunofluorescence was used to observe the distribution of MGF in cells. Adenovirus transfection system carrying Mgf and Igf-1 genes were constructed to infect MC3T3E1 osteoblast lines. The effects of MGF, MGF-Ct24E and IGF-1 on the proliferation, migration, differentiation of osteoblasts were studied by peptide treatment and gene transfection. With the inhibitors PD98059 and LY294002, the roles of MAPK-Erk1/2 and PI3K-Akt signaling pathways were studied. Cell proliferation and cell cycle were detected by MTT, flow cytometry respectively; cell migration was analyzed by Millicell-PCF cell culture chamber; cell differentiation was evaluated by alkaline phosphates activity, expression of extracellular matrix proteins and calcium deposition.
     Results:
     1. A prokaryotic expression system of des(1-3)MGF and MGF-Ct24E was constructed by cloning the recombination sequences into plasmid PMAL-c2x, after transforming E.coli BL21, fusion proteins MBP/des(1-3)MGF and MBP/MGF-Ct24E were successfully expressed by IPTG induction.
     2. The recombinant proteins were prepared by batch fermentation, after process optimization, the M9-YE medium, feeding liquid containing the natural organic nitrogen, 30% dissolved oxygen, 37°C and 0.2 mM IPTG were determined to produce recombination protein by fermentation. MBP/des(1-3)MGF inclusion body and MBP/MGF-Ct24E soluble protein accounted for 30%, 35% of total bacterial proteins, respectively. The fusion protein with purity above 95% could be obtained by column chromatography, the refolding rate of inclusion body above 80%. Purity of target proteins, des(1-3)MGF and MGF-Ct24E, were above 98% after EK digestation and rpHPLC separation. The molecular mass of these two proteins assayed by mass spectrometry was consistent with the theoretical values.
     3. Purified antibody was acquired from serum of rabbits immunized with MGF-Ct24E for 4 times, and anti-MGF specificity of which was identified by western blot. At the three time points (6 h, 12 h, 24 h) examined, the MGF level in the stretched osteoblasts groups was respectively 2.7, 5.2 and 1.1 fold higher than that in the control group. The subcellular distribution of MGF protein was revealed by immunofluorescence analysis to be restricted to the nucleus.
     4. Adenovirus carrying Mgf and Igf-1 genes was constructed and was successfully transfected into osteoblasts MC3T3-E1. These two growth factors were expressed higly.
     5. The osteoblasts MC3T3-E1 were treated with MGF(des(1-3)MGF), or MGF-Ct24E, or IGF-1. Cell proliferation and migration analysis showed that MGF-Ct24E and MGF had a more significant effect in promoting cell proliferation than that of IGF-1, while all these factors had chemotaxis to osteoblasts, of which MGF was the strongest, MGF-Ct24E the weakest. Proliferation was involved in activation of MAPK-Erk1/2 pathway by MGF-Ct24E and MGF, while migration was partly involved in the activation of MAPK-Erk1/2 and PI3K-Akt, of which PI3K-Akt was dominant.
     6. MGF-Ct24E and MGF delayed osteoblast differentiation. With 1nM peptide treatment, MGF-Ct24E and MGF decreased ALP activity at the early stage of osteoblast differentiation, while IGF-1 promoted differentiation; at the late stage, only MGF-Ct24E showed inhibition in osteoblast differentiation. In addition, MGF-Ct24E and MGF inhibited the Col1 expression, but increased the OPN expression. The effects of MGF-Ct24E and MGF on delayed osteoblast differentiation was associated with the activation of the Erk1/2. ALP expression was reversed by inhibiting Erk1/2 activation, however, the activation of Akt induced by MGF and IGF-1 promoted cell differentiation. Further study indicated that MGF-Ct24E and MGF inhibited nuclear transport of transcription factor Cbfα-1, which might be one of the reasons why cell differentiation was inhibited.
     Conclusion: This study successfully constructed E.coli expression system of MGF and MGF-Ct24E, achieved the fermentation expression, and established technology of recombinant protein purification and renaturation, which indicated that MGF could be obtained from prokaryotic expression. The MGF-Ct24E can be used to immune animals so as to obtain MGF specific antibody, western blot confirms that the stretch can stimulate the osteoblasts to express MGF protein. MGF and its peptide E promote the proliferation but delay the differentiation of osteoblasts. This function might be associated with specific activation of Erk1/2 induced by E peptide; while MGF has the capability significantly to activate Akt too. The activated Akt can promot cell migration and act as an important role on differentiation of osteoblasts.
引文
[1] Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review[J]. Osteoporos Int, 2002, 13(9): 688-700.
    [2] Potthoff MJ, Olson EN, Bassel-Duby R. Skeletal muscle remodeling[J]. Curr Opin Rheumatol, 2007, 19(6): 542-549.
    [3] Jones HH, Priest JD, Hayes WC, et al. Humeral hypertrophy in response to exercise[J]. J Bone Joint Surg Am, 1977, 59(2): 204-8.
    [4] Kontulainen S, Siev?nen H, Kannus P, et al. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls[J]. J Bone Miner Res, 2003, 18(2): 352-359.
    [5] Baar K, Nader G, Bodine S. Resistance exercise, muscle loading/unloading and the control of muscle mass[J]. Essays Biochem, 2006, 42: 61-74.
    [6] Yang S, Alnaqeeb M, Simpson H, et al. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch[J]. J Muscle Res Cell Motil, 1996, 17(4): 487-495.
    [7] Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation[J]. Physiology (Bethesda), 2005, 20: 232-238.
    [8] Xian CY, Wang YL, Zhang BB et al. Alternative splicing and expression of the insulin-like growth factor gene (IGF-1) in osteoblasts under mechanical stretch[J]. Chin Sci Bull, 2006, 51(22): 2731-2736.
    [9] Tang LL, Xian CY, Wang YL. The MGF expression of osteoblasts in response to mechanical overload[J]. Arch Oral Biol, 2006, 51: 1080-1085.
    [10] Goldspink G, Scutt A, Loughna PT, et al. Gene expression in skeletal muscle in response to stretch and force generation[J]. Am J Physiol, 1992, 262(3 Pt 2): R356-363.
    [11] Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair[J]. J Anat, 2003, 203(1): 89-99.
    [12] Aperghis M, Johnson IP, Cannon J, et al. Different levels of neuroprotection by two insulin-like growth factor-I splice variants[J]. Brain Res, 2004, 1009: 213-218.
    [13] Dluzniewska J, Sarnowska A, Beresewicz M, et al. A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-1 Ec (MGF) in brain ischemia[J]. FASEB J, 2005,19(13): 1896-1898.
    [14] Goldspink G. Method of treating muscular disorders[p]. US patent, US6221842, 2001-04-24.
    [15] Goldspink G, Goldspink P. Use of the insulin-like-growth factor 1 splice variant MGF for the prevention of myocardial damage[p]. US patent, 20050048028A1. 2005-03-03.
    [16] Goldspink G, Terenghi G. Repair of nerve damage[p]. US patent, US2002083477, 2002-06-27.
    [17] Yang H, Adamo ML, Koval AP, et al. Alternative leader sequences in insulin-like growth factor I mRNAs modulate translational efficiency and encode multiple signal peptides[J]. Mol Endocrinol, 1995, 9(10): 1380-1395.
    [18] West CA, Arnett TR, Farrow SM. Expression of insulin-like growth factor I (IGF-I) mRNA variants in rat bone[J]. Bone, 1996, 19(1): 41-46.
    [19] Shavlakadze T, Winn N, Rosenthal N, et al. Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle[J]. Growth Horm IGF Res, 2005, 15(1): 4-18.
    [20] Lund PK, Hoyt EC, Van Wyk JJ. The size heterogeneity of rat insulin-like growth factor-I mRNAs is due primarily to differences in the length of 3'-untranslated sequence[J]. Mol Endocrinol, 1989, 3(12): 2054-2061.
    [21] LeRoith D, Roberts CT Jr. Insulin-like growth factor I (IGF-I): a molecular basis for endocrine versus local action[J]? Mol Cell Endocrinol, 1991, 77(1-3): 57-61.
    [22] Kornblihtt AR, de la Mata M, Fededa JP, et al. Multiple links between transcription and splicing[J]. RNA, 2004, 10(10): 1489-1498.
    [23] Mandel CR, Kaneko S, Zhang H, et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease[J]. Nature, 2006, 444(7121): 953-956.
    [24] Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression[J]. J Biomed Sci, 2004, 11(3): 278-294.
    [25] Winn N, Paul A, Musaro A, et al. Insulin-like growth factor isoforms in skeletal muscle aging, regeneration, and disease[J]. Cold Spring Harb Symp Quant Biol, 2002, 67: 507-518.
    [26] Guan J, Waldvogel HJ, Faull RL, et al. The effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate in different regions following hypoxic-ischemic brain injury in adult rats[J]. Neuroscience, 1999, 89: 649-659.
    [27] Bell GI, Stempien MM, Fong NM, et al. Sequences of liver cDNAs encoding two different mouse insulin-like growth factor I precursors[J]. Nucleic Acids Res, 1986, 14: 7873-7882.
    [28] Ohtsuki T, Otsuki M, Murakami Y, et al. Organ-specific and age-dependent expression of insulin-like growth factor-I (IGF-I) mRNA variants: IGF-IA and IB mRNAs in the mouse[J].Zoolog Sci, 2005, 22(9): 1011-1021.
    [29] Mills P, Dominique JC, Lafrenière JF, et al. A synthetic mechano growth factor E Peptide enhances myogenic precursor cell transplantation success[J]. Am J Transplant, 2007, 7(10): 2247-2259.
    [30] Gao M, Craig D, Vogel V, et al. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics[J]. J Mol Biol, 2002, 323(5): 939-950.
    [31] Sukharev S, Anishkin A. Mechanosensitive channels: what can we learn from 'simple' model systems[J]? Trends Neurosci, 2004, 27(6): 345-351.
    [32] Marshall BT, Long M, Piper JW, et al. Direct observation of catch bonds involving cell-adhesion molecules[J]. Nature, 2003, 423(6936): 190-193.
    [33] Burger EH, Klein-Nulend J. Mechanotransduction in bone-role of the lacuno-canalicular netword[J]. FASEB J, 1999, 13: 101-112.
    [34] Goldspink G. Selective gene expression during adaptation of muscle in response to different physiological demands[J]. Comp Biochem Physiol B Biochem Mol Biol, 1998, 120(1): 5-15.
    [35] Chiquet M, Tun?-Civelek V, Sarasa-Renedo A. Gene regulation by mechanotransduction in fibroblasts[J]. Appl Physiol Nutr Metab, 2007, 32(5): 967-973.
    [36] Skarli M, Yang SY, Bouloux P, et al. Upregulation and alternative splicing of the IGF-I gene in the rabbit heart following a brief pressure/volume overload[J]. J Physiol, 1998, 509: 192P-193P.
    [37] Carpenter V, Matthews K, Devlin G, et al. Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction[J]. Heart Lung Circ, 2008, 17: 33-39.
    [38] Cheema U, Brown R, Mudera V, et al. Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle[J]. J Cell Physiol, 2005, 202: 67-75.
    [39] Hameed M, Toft AD, Pedersen BK, et al. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people[J]. Scand J Med Sci Sports, 2007 Dec 7 [Epub ahead of print].
    [40] Cheema U, Yang SY, Mudera V, et al. 3-D in vitro model of early skeletal muscle development[J]. Cell Motil Cytoskeleton, 2003, 54(3): 226-236.
    [41] Derek LR, Carolyn B, Shoshana Y, et al. The Somatomedin Hypothesis: 2001[J]. Endocrine Reviews, 2001, 22(1): 53–74.
    [42] Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I[J]. Proc Natl Acad Sci U S A, 1999, 96: 7324-7329.
    [43] Musaro A, Giacinti C, Borsellino G, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1[J]. Proc Natl Acad Sci USA, 2004,101: 1206-1210.
    [44] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation[J]. FEBS Lett, 2002, 522: 156-160.
    [45]唐丽灵,李大军,导师**.外力作为信号诱导基因的选择性剪接与力生长因子表达[J].生物化学与生物物理进展, 2007, 34(5): 454-459.
    [46] Mills P, Lafreniere JF, Benabdallah BF, et al. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor[J]. Exp Cell Res, 2007, 313: 527-537.
    [47] Barton ER. Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle[J]. J Appl Physiol, 2006, 100:1778-1784.
    [48] Booth F. The many flavors of IGF-I[J]. J Appl Physiol, 2006, 100(6): 1755-1756.
    [49] Musaro A, McCullagh K, Paul A, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle[J]. Nat Genet, 2001, 27: 195-200.
    [50] Carpenter V, Matthews K, Devlin G, et al. Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction[J]. Heart Lung Circ, 2008, 17: 33-39.
    [51] Musaro A, Dobrowolny G, Rosenthal N. The neuroprotective effects of a locally acting IGF-1 isoform[J]. Exp Gerontol, 2007, 42: 76-80.
    [52] Ates K, Yang SY, Orrell RW, et al. The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle[J]. FEBS Lett, 2007, 581: 2727-2732.
    [53] Mohan S, Richman C, Guo R, et al. Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms[J]. Endocrinology. 2003, 144(3): 929-936.
    [54] Tianhua Niu, Clifford J. Rosen. The insulin-like growth factor-I gene and osteoporosis: A critical appraisal[J]. Gene, 2005,361: 38-56.
    [55] Mourkioti F, Rosenthal N. IGF-1, inflammation and stem cells: interactions during muscle regeneration[J]. Trends Immunol, 2005, 26(10): 535-542.
    [56] Cooke RM, Harvey TS, Campbell ID. Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study[J]. Biochemistry, 1991, 30(22): 5484-591.
    [57] Sato A, Nishimura S, Ohkubo T, et al. 1H-NMR assignment and secondary structure of human insulin-like growth factor-I (IGF-I) in solution[J]. J Biochem, 1992, 111(4): 529-536.
    [58] Van den Brande JL. Structure of human insulin-like growth factors: relationship to function. In: Paul N eds. The insulin-like growth factors[M]. New York: Oxford university press, 1992.12-44.
    [59] Lupu F, Terwilliger JD, Lee K, et al. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth[J]. Dev Biol, 2001, 229(1): 141-162.
    [60] Kuznetsova TV, Schulga AA, Wulfson AN, et al. Producing human mechano growth factor (MGF) in Escherichia coli[J]. Protein Expr Purif, 2008, 58(1): 70-77.
    [61] Ballard FJ, Johnson RJ, Owens PC, et al. Chicken insulin-like growth factor-I: amino acid sequence, radioimmunoassay, and plasma levels between strains and during growth[J]. Gen Comp Endocrinol, 1990, 79(3): 459-468.
    [62] Moore LG, Jones D, Lymburn MA, et al. Isolation and sequencing of deer and sheep insulin-like growth factors-I and -II[J]. Gen Comp Endocrinol, 1993, 92(2): 302-310.
    [63] McBrier NM, Lekan JM, Druhan LJ, et al. Therapeutic ultrasound decreases mechano-growth factor messenger ribonucleic acid expression after muscle contusion injury[J]. Arch Phys Med Rehabil, 2007, 88(7): 936-940.
    [64] Vajo Z, Fawcett J, Duckworth WC. Recombinant DNA Technology in the Treatment of Diabetes: Insulin Analogs[J]. Endocr Rev, 2001, 22 (5): 706–717.
    [65] Qiao ZS, Min CY, Hua QX, et al. In vitro refolding of human proinsulin: Kinetic intermediates, putative disulfide-forming pathway folding initiation site, and potential role of C-peptide in folding process[J]. J Biol Chem, 2003, 278 (20): 17800-17809.
    [66] Kim SO, Lee YI. High-level expression and simple purification of recombinant human insulin-like growth factor I[J]. J Biotechnol, 1996, 48(1-2): 97-105.
    [67] Moriyama S, Duguay SJ, Conlon JM, et al. Recombinant coho salmon insulin-like growth factor I. Expression in Escherichia coli, purification and characterization[J]. Eur J Biochem, 1993, 218(1): 205-211.
    [68] Vos PE, Koppeschaar HP, de Vries WR, et al. Insulin-like growth factor-I: clinical studies[J]. Drugs Today (Barc), 1998, 34(1): 79-90.
    [69] Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli[J]. Nat Biotechnol, 2004, 22(11): 1399-1408.
    [70] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein[J]. Science, 2002, 295(5561): 1852-1858.
    [71]陈晔.力生长因子基因的克隆、表达及产物的纯化论文[D].(学位论文),重庆大学, 2006.
    [72] Ford CF, Suominen I, Glatz CE. Fusion tails for the recovery and purification of recombinant proteins[J]. Protein Expr Purif, 1991, 2(2-3): 95-107.
    [73] Fox JD, Waugh DS. Maltose-binding protein as a solubility enhancer[J]. Methods Mol Biol, 2003, 205: 99-117.
    [74] Murby M, Cedergren L, Nilsson J, et al. Stabilization of recombinant proteins from proteolytic degradation in Escherichia coli using a dual affinity fusion strategy[J]. Biotechnol Appl Biochem, 1991, 14(3): 336-346.
    [75] Liu Q, Lin J, Liu M, et al. Large scale preparation of recombinant human parathyroid hormone 1-84 from Escherichia coli[J]. Protein Expr Purif, 2007, 54(2): 212-219.
    [76] Park SJ, Georgiou G, Lee SY. Secretory production of recombinant protein by a high cell density culture of a protease negative mutant Escherichia coli strain[J]. Biotechnol Prog, 1999, 15(2): 164-167.
    [77] Sara VR, Carlsson-Skwirut C, Andersson C, et al. Characterization of somatomedins from human fetal brain: identification of a variant form of insulin-like growth factor I[J]. Proc Natl Acad Sci USA, 1986, 83(13): 4904-4907.
    [78] Ogasawara M, Karey KP, Marquardt H, et al. Identification and purification of truncated insulin-like growth factor I from porcine uterus. Evidence for high biological potency[J]. Biochemistry, 1989, 28(6): 2710-2721.
    [79] Francis GL, Upton FM, Ballard FJ, et al. Insulin-like growth factors1 and 2 in bovine colostrums. Sequences and biological activities compared with those of a potent truncated form[J]. Biochem J, 1988, 251(1): 95-103.
    [80] Carlsson-Skwirut C, Lake M, Hartmanis M, et al. A comparison of the biological activity of the recombinant intact and truncated insulin-like growth factor1(HHIGF-1) [J]. Biochim Biophys Acta, 1989, 1011: 192-197.
    [81] Bagley CJ, May BL, Szabo L, et al. A key functional role for the insulin-like growth factor 1 N-terminal pentapeptide[J]. Biochem J, 1989, 259(3): 665-671.
    [82] CarrióMM, Villaverde A. Protein aggregation as bacterial inclusion bodies is reversible[J]. FEBS Lett, 2001, 489(1): 29-33.
    [83] Villaverde A, CarrióMM. Protein aggregation in recombinant bacteria: biological role of inclusion bodies[J]. Biotechnol Lett, 2003, 25(17): 1385-95.
    [84]陈坚,李寅.发酵过程优化原理与实践[M].化学工业出版社.北京, 2001.
    [85] Schügerl K. Progress in monitoring, modeling and control of bioprocesses during the last 20 years[J]. J Biotechnol, 2001, 85(2): 149-173.
    [86] Lee SY. High cell-density culture of Escherichia coli[J]. Trends Biotechnol, 1996,14(3): 98-105.
    [87] O'Connor GM, Sanchez-Riera F, Cooney CL. Design and evaluation of control strategies for high cell density fermentations[J]. Biotechnol Bioeng, 1992, 39: 293-304.
    [88] Konstantinov K, Kishimoto M, Seki T, et al. A balanced DO-stat and its application to thecontrol of acetic acid excretion by recombinant Escherichia coli[J]. Biotechnol Bioeng, 1990, 36: 750-758.
    [89] O'Beirne D, Hamer G. The utilisation of glucose/acetate mixtures by Escherichia coli W3110 under aerobic growth conditions[J]. Bioprocess Eng, 2000, 23: 375-380.
    [90] Jensen EB, Carlsen S. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate and salts[J]. Biotechnol Bioeng, 1990, 36: 1-11.
    [91] Baronofsky J, Schreurs WJA, Kashket ER. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum[J]. Appl Environ Microbiol, 1984, 48: 1134-1139.
    [92] Riascos CAM, Pinto JM. Optimal control of bioreactors: a simultaneous approach for complex systems[J]. Chem Eng J, 2004, 99: 23-34.
    [93] Koch A L. The protein burden of lac operon products[J]. J Mol Evol, 1983, 19(6): 455-462.
    [94] Grabherr R, Nilsson E, Striedner Q, et al. Stabilizing plasmid copy number to improve recombinant protein production[J]. Biotechnol Bioeng, 2002, 77(2): 142-147.
    [95] Varma A, Palsson BO. Predictions for oxygen supply control to enhance population stability of engineered production strains[J]. Biotechnol Bioeng, 1994, 43: 275-285.
    [96] Creighton TE. A process for production of a protein[p]. World patent, WO86/05809, 1986-10-09.
    [97]鲍建芳,沈建根.免疫学实验技术[M].浙江大学出版社,浙江, 2006-12-1.
    [98] Kravchenko IV, Furalyov VA, Khotchenkov VP, et al. Monoclonal antibodies to mechano-growth factor[J]. Hybridoma (Larchmt), 2006, 25(5): 300-305.
    [99]唐丽灵.周期性机械拉伸对大鼠成骨细胞生理活性和力学性质的影响[D]. (学位论文),重庆大学, 2002.
    [100] Tan DS, Cook A, Chew SL. Nucleolar localization of an isoform of the IGF-I precursor[J]. BMC Cell Biol, 2002, 3: 1-6.
    [101] Benihoud K, Yeh P, Perricaudet M. Adenovirus vectors for gene delivery[J]. Curr Opin Biotechnol, 1999, 10(5): 440-447.
    [102] Williams DA, Smith FO. Progress in the use of gene transfer methods to treat genetic blood diseases[J]. Hum Gene Ther, 2000, 11: 2059-2066.
    [103] Bolon B, Carter C, Daris M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in mouse ovariectomy model of osteoporosis[J]. Mol Ther, 2001, 3: 197-205.
    [104] Kim SK, Kwon JY, Nam TJ. Involvement of ligand occupancy in Insulin-like growth factor-I (IGF-I) induced cell growth in osteoblast like MC3T3-E1 cells[J]. Biofactors. 2007, 29(4):187-202.
    [105] Related Articles, LinksDvorak HF, Brown LF, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis[J]. Am J Pathol, 1995, 146(5): 1029-1039.
    [106] Vajanto I, Rissanen TT, Rutanen J, et al. Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ[J]. J Gene Med, 2002, 4(4): 371-380.
    [107] Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions[J]. Curr Gene Ther, 2005, 5(1): 25-35.
    [108] Minamizato T, Sakamoto K, Liu T, et al. CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways[J]. Biochem Biophys Res Commun, 2007, 354(2): 567-573.
    [109] Hirata K, Tsukazaki T, Kadowaki A, et al. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2[J]. Bone, 2003, 32(5): 502-512.
    [110] Fujita T, Azuma Y, Fukuyama R, et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling[J]. J Cell Biol, 2004, 166(1): 85-95.
    [111] Danthinne X, Imperiale MJ. Production of first generation adenovirus vectors: a review[J]. Gene Ther, 2000, 7:1707-1714.
    [112] He TC, Zhou SB, Luis T, et al. A simplified system for generating recombinant adenoviruses[J]. PNAS, USA, 1998,95(5): 2509-2514.
    [113] Kremer EJ, Boutin S, Chillon M, et al. Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer[J]. J Virol, 2000, 74(1): 505-512.
    [114] Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science, 2002, 298: 1911-1912.
    [115] LinksJessop HL, Rawlinson SC, Pitsillides AA, et al. Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways[J]. Bone, 2002, 31(1): 186-194.
    [116] Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone[J]. Gene, 2006, 367: 1-16.
    [117] Fakhry A, Ratisoontorn C, Vedhachalam C, et al. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential[J]. Bone, 2005, 36(2): 254-266.
    [118] Pei Y, Meng XW, Zhou XY, et al. Expression of core binding factor alpha1 up-regulated by IGF-I, GM-CSF, and EGF through MAPK pathway in MC3T3-E1 and C2C12 cells[J]. Acta Pharmacol Sin, 2003, 24(10): 975-984.
    [119] Grey A, Chen Q, Xu X, et al. Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells[J]. Endocrinology, 2003, 144(11): 4886-4893.
    [120] Yue J, Frey RS, Mulder KM. Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGF-β[J]. Oncogene, 1999, 18(11): 2033-2037.
    [121] Lai CF, Chaudhary L, Fausto A, et al. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells[J]. J Biol Chem, 2001, 276(17): 14443-14450.
    [122] Cantley LC. The phosphoinositide 3-kinase pathway[J]. Science, 2002, 296(5573): 1655-1657.
    [123] Kurmasheva RT, Houghton PJ. IGF-I mediated survival pathways in normal and malignant cells[J]. Biochim Biophys Acta, 2006, 1766(1): 1-22.
    [124] Siri S, Chen MJ, Chen TT. Inhibition of human breast cancer cell (MBA-MD-231) invasion by the Ea4-peptide of rainbow trout pro-IGF-I[J]. J Cell Biochem, 2006, 99(5): 1363-1373.
    [125] Khan SN, Bostrom MP, Lane JM. Bone growth factors[J]. Orthop Clin North Am, 2000, 31: 375-388.
    [126] Mehrotra M, Krane SM, Walters K, et al. Differential regulation of platelet-derived growth factor stimulated migration and proliferation in osteoblastic cells[J]. J Cell Biochem, 2004, 93(4): 741-752.
    [127] Lieberman JR, Daluiski A, Einhorn TA. 2002. The role of growth factors in the repair of bone. Biology and clinical applications[J]. J Bone Joint Surg Am, 84-A: 1032-1044.
    [128] Panagakos FS. Insulin-like growth factors-I and -II stimulate chemotaxis of osteoblasts isolated from fetal rat calvaria[J]. Biochimie, 1993, 75(11): 991-994.
    [129] Pfeilschifter J, Wolf O, Naumann A, et al. Chemotactic response of osteoblastlike cells to transforming growth factor beta[J]. J Bone Miner Res, 1990, 5(8): 825-830.
    [130] Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation[J]. Endocrinology, 2000, 141(7): 2674-2682.
    [131] Farquharson C, Milne J, Loveridge N. Mitogenic action of insulin-like growth factor-I on human osteosarcoma MG-63 cells and rat osteoblasts maintained in situ: the role ofglucose-6-phosphate dehydrogenase[J]. Bone Miner, 1993, 22(2): 105-115.
    [132] Olmsted-Davis EA, Gugala Z, Gannon FH, et al.Use of a chimeric adenovirus vector enhances BMP2 production and bone formation[J]. Hum Gene Ther. 2002, 20, 13(11): 1337-47.
    [133] Tian XC, Chen MJ, Pantschenko AG, et al. Recombinant E-peptides of pro-IGF-I have mitogenic activity[J]. Endocrinology, 1999, 140(7): 3387-3390.
    [134] Siegfried JM, Kasprzyk PG, Treston AM, et al. A mitogenic peptide amide encoded within the E peptide domain of the insulin-like growth factor IB prohormone[J]. Proc Natl Acad Sci USA, 1992, 89(17): 8107-8111.
    [135] Schindeler A, Little DG. Ras-MAPK signaling in osteogenic differentiation: friend or foe[J]? J Bone Miner Res, 2006, 21(9): 1331-1338.
    [136] Osyczka AM, Leboy PS. Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling[J]. Endocrinology, 2005, 146(8): 3428-3437.
    [137] Danciu TE, Adam RM, Naruse K, et al. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts[J]. FEBS Lett, 2003, 536(1-3): 193-197.
    [138] Korn LJ, Siebel CW, McCormick F, et al. Ras p21 as a potential mediator of insulin action in Xenopus oocytes[J]. Science. 1987, 236(4803): 840-843.
    [139] Rani CS, Abe A, Chang Y, et al. Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases[J]. J Biol Chem, 1995, 270(6): 2859-2867.
    [140] Zhang W, Lee JC, Kumar S, et al. ERK pathway mediates the activation of Cdk2 in IGF-1-induced proliferation of human osteosarcoma MG-63 cells[J]. J Bone Miner Res, 1999, 14(4): 528-535.
    [141] Masamune A, Kikuta K, Satoh M, et al. Differential roles of signaling pathways for proliferation and migration of rat pancreatic stellate cells[J]. Tohoku J Exp Med, 2003, 199(2): 69-84.
    [142] Marra F, Gentilini A, Pinzani M, et al. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells[J]. Gastroenterology, 1997, 112(4): 1297-1306.
    [143] Fukuyama R, Fujita T, Azuma Y, et al. Statins inhibit osteoblast migration by inhibiting Rac-Akt signaling[J]. Biochem Biophys Res Commun, 2004, 315(3): 636-642.
    [144] Higuchi M, Masuyama N, Fukui Y, et al. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells[J]. Curr Biol, 2001, 11(24): 1958-1962.
    [145] Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement[J]. J Cell Biol, 1999, 144(6): 1235-1244.
    [146] Parent CA, Devreotes PN. A cell's sense of direction[J]. Science, 1999, 284(5415): 765-770.
    [147] Cospedal R, Lobo M, Zachary I. Differential regulation of extracellular signal-regulated protein kinases (ERKs) 1 and 2 by cAMP and dissociation of ERK inhibition from anti-mitogenic effects in rabbit vascular smooth muscle cells[J]. Biochem J, 1999, 342 ( Pt 2): 407-414.
    [148] Yamboliev IA, Gerthoffer WT. Modulatory role of ERK MAPK-caldesmon pathway in PDGF-stimulated migration of cultured pulmonary artery SMCs[J]. Am J Physiol Cell Physiol, 2001, 280(6): C1680-1688.
    [149] Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB[J]. Exp Cell Res, 1999, 253(1): 210-229.
    [150] Hii CS, Anson DS, Costabile M, et al. Characterization of the MEK5-ERK5 module in human neutrophils and its relationship to ERK1/ERK2 in the chemotactic response[J]. J Biol Chem, 2004, 279(48): 49825-49834.
    [151] Hughes FJ, Turner W, Belibasakis G, et al. Effects of growth factors and cytokines on osteoblast differentiation[J]. Periodontol 2000, 2006, 41:48-72.
    [152] Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts[J]. Cell, 1997, 89(5): 755-764.
    [153] Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways[J]. J Cell Biochem, 2003, 88(3): 446-454.
    [154] Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation[J]. Cell, 1997, 89(5): 747-754.
    [155] Aubin JE, Liu F, Malaval L, et al. Osteoblast and chondroblast differentiation[J]. Bone, 1995, 17(2 Suppl): 77S-83S.
    [156] Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone[J]. J Cell Biochem, 1994, 55(3): 287-299.
    [157] Trippel SB. Potential role of insulinlike growth factors in fracture healing[J]. Clin Orthop Relat Res, 1998, 355: S301-313.
    [158] Kozawa O, Miwa M, Tokuda H, et al. Activation of protein kinase C inhibits 45Ca-accumulation in cultures of osteoblast-like cells: possible involvement of insulin-like growth factor-I[J]. Bone Miner, 1992, 19(3): 235-243.
    [159] Noda T, Tokuda H, Yoshida M, et al. Possible involvement of phosphatidylinositol3-kinase/Akt pathway in insulin-like growth factor-I-induced alkaline phosphatase activity in osteoblasts[J]. Horm Metab Res, 2005, 37(5): 270-274.
    [160] Radcliff K, Tang TB, Lim J, et al. Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways[J]. Circ Res, 2005, 96(4): 398-400.
    [161] Seibel MJ. Molecular markers of bone turnover: biochemical, technical and analytical aspects[J]. Osteoporos Int, 2000, 11(6): S18-29.
    [162] Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation[J]. FASEB J, 1990, 4(13): 3111-3123.
    [163] Wennberg C, Hessle L, Lundberg P, et al. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice[J]. J Bone Miner Res, 2000, 15(10): 1879-1888.
    [164] Ghosh-Choudhury N, Abboud SL, Nishimura R, et al. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription[J]. J Biol Chem, 2002, 277(36): 33361-33368.
    [165] Maeda T, Matsunuma A, Kawane T, et al. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells[J]. Biochem Biophys Res Commun, 2001, 280(3): 874-877.
    [166] Xiao G, Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1[J]. J Biol Chem, 2000, 275(6): 4453-4459.
    [167] Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication[J]. Endocrinology, 1988, 122(1): 254-260.
    [168] Lynch MP, Stein JL, Stein GS, et al. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization[J]. Exp Cell Res, 1995, 216(1): 35-45.
    [169] Gerstenfeld LC. Osteopontin in skeletal tissue homeostasis: An emerging picture of the autocrine/paracrine functions of the extracellular matrix[J]. J Bone Miner Res, 1999, 14(6): 850-855.
    [170] Kono SJ, Oshima Y, Hoshi K, et al. Erk pathways negatively regulate matrix mineralization[J]. Bone, 2007, 40(1): 68-74.
    [171] Tanaka H, Wakisaka A, Ogasa H, et al. Effect of IGF-I and PDGF administered in vivo on the expression of osteoblast-related genes in old rats[J]. J Endocrinol, 2002, 174(1): 63-70.
    [172] Huang W, Carlsen B, Rudkin G, et al. Osteopontin is a negative regulator of proliferation anddifferentiation in MC3T3-E1 pre-osteoblastic cells[J]. Bone, 2004, 34(5): 799-808.
    [173] Yoshitake H, Rittling SR, Denhardt DT, et al. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption[J]. Proc Natl Acad Sci USA, 1999, 96: 8156-8160.
    [174] Rittling SR, Matsumoto HN, McKee MD, et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro[J]. J Bone Miner Res, 1998, 13(7): 1101-1111.
    [175] Ihara H, Denhardt DT, Furuya K, et al. Parathyroid hormone-induced bone resorption does not occur in the absence of osteopontin[J]. J Biol Chem, 2001, 276: 13065-13071.
    [176] Ishijima M, Tsuji K, Rittling SR, et al. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice[J]. J Bone Miner Res, 2002, 17: 661-667.
    [177] McKee MD, Nanci A. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair[J]. Microsc Res Tech, 1996, 33: 141-164.
    [178] Pei Y, Meng XW, Zhou XY, et al. Expression of core binding factor alpha1 up-regulated by IGF-I, GM-CSF, and EGF through MAPK pathway in MC3T3-E1 and C2C12 cells[J]. Acta Pharmacol Sin, 2003, 24(10): 975-984.
    [179] Hurley MM, Abreu C, Harrison JR, et al. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells[J]. J Biol Chem, 1993, 268: 5588-5593.
    [180] Rodan SB, Wesolowski G, Thomas KA, et al. Effects of acidic and basic fibroblast growth factors on osteoblastic cells[J]. Connect Tissue Res, 1989, 20: 283-288.