力生长因子E肽促进骨愈合及含E肽生物活性材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力生长因子(mechano-growth factor, MGF)是一种新发现的生长因子,它是胰岛素样生长因子-I(insulin like-growth factor-I, IGF-I)基因剪接变异的产物。该生长因子由力敏感细胞响应力学刺激而表达,已有研究表明MGF及其E肽(MGF- Ct24E)具有促进肌肉肥大、心肌保护及神经修复等功能。本实验室前期研究表明,MGF及MGF-Ct24E能够促进成骨细胞增殖,影响其分化、矿化过程,这提示MGF将会对骨折愈合过程产生影响。本研究围绕MGF-Ct24E在骨折愈合中的功能应用展开,包括以下两个方面的内容:一是MGF-Ct24E直接注射于骨缺损部位对骨折愈合的影响;二是MGF-Ct24E生物活性材料的制备与性能。主要研究内容和结果如下:
     (1)MGF-Ct24E直接注射于骨缺损部位对骨折愈合的影响
     通过手术在大白兔桡骨中段制造5mm的完全缺损骨折模型,术后第3天开始局部注射不同剂量的MGF-Ct24E(对照组注射PBS),连续注射5 d,1次/d。然后,进行如下检测:①术后第4,6,8周,X射线摄片观察骨折愈合情况;②术后第8周,通过组织学观察了解各组骨折部位细胞形态学变化。所有检测结果均表明,较高剂量的MGF-Ct24E(0.144mg/次)局部注射能够明显提高骨愈合质量,并且愈合时间提前2周以上。
     (2)MGF-Ct24E生物活性材料的制备与性能研究
     ①首先,制备含有MGF-Ct24E的生物活性材料(MHPLA),即按照整体仿生思路,依次将马来酸酐、已二胺、MGF-Ct24E引入聚乳酸中,合成一种新型的仿生骨基质材料MHPLA,本研究中引入马来酸酐、己二胺为MGF-Ct24E引入聚乳酸中提供活性位点;
     ②采用分子量和分子量分布对引入MGF-Ct24E过程中对MHPLA分子量的影响进行表征,表征结果表明,采用依次引入改性单体的过程对本体聚合物本身有一定的影响,即相对于初始PDLLA的分子量,MHPLA分子量明显下降,但该分子量仍保持在骨折愈合材料的要求范围内;
     ③采用氨基酸分析、核磁氢谱对MHPLA中MGF-Ct24E的接入情况进行检测,为深入研究MGF-Ct24E生物活性材料在骨折愈合中的意义奠定基础,两种检测均表明,MGF-Ct24E被成功接入到聚乳酸上,通过整体仿生法制得一种新型骨基质材料。反应过程中MGF-Ct24E的转化率为25%,MHPLA中MGF-Ct24E的绝对含量为0.88 mmol/g;
     ④最后,通过体外细胞相容性研究,探讨了MGF-Ct24E生物活性材料对成骨细胞生长行为和功能行为的影响。将对照组、实验组材料与原代大鼠成骨细胞共培养,分别采用显微镜观察、MTT检测、ALP检测的方法对成骨细胞形态、成骨细胞的增殖、成骨细胞分化进行检测,可见成骨细胞在MHPLA材料上形态饱满,粘附及铺展状况良好,并且明显促进成骨细胞增殖的活性、抑制其分化,时间持续一周以上,所有结果均表明,MGF-Ct24E—生物活性材料(MHPLA)中的MGF-Ct24E保持其生物活性,促使MHPLA细胞相容性好,表现出明显地促进成骨细胞生长行为和功能行为的优势;另外,MGF-Ct24E—生物活性材料相对于游离的MGF-Ct24E具有作用时间延长的优势,因此将MGF-Ct24E—生物活性材料植入骨缺损部位有望起到更好的骨折愈合效果。
Mechano growth factor (MGF) is a novel growth factor from the alternative splicing of Insulin-like growth factor I (IGF-I) gene, which is expressed in response to the mechanic stimulation. Further studies have confirmed that MGF and its E peptide (MGF-Ct24E) could promote muscle hypertrophy, preserve cardiac muscle and repair the damage of nerves. Our previous studies concluded that MGF mRNA expressed highly in the cyclic stretched osteoblasts, suggested that MGF is a mechano-response molecule in bone and influences on the function of osteoblasts. these results indicated that MGF or MGF-Ct24E may play a major role in the process of bone healing. This research focus on the influence of MGF-Ct24E for fracture healing. Firstly, effects of the injected-MGF-Ct24E on radial fracture healing; Secondly, the preparation and property of the bioactive materials containing MGF-Ct24E. The main works and conclusions are included as follows:
     (1) The effects of the injected-MGF-Ct24E on radial fracture healing
     The animal models used in this study, with 5mm bone defect, were produced in the middle of the left radius in rabbits. After 3 days of the surgical operation, 0.2 mL MGF (0.36 and 0.72 g/L, control: PBS) was injected into the ends of fracture areas once per day for continuous 5 days. And then following detections were taken:①After 4, 6, 8 weeks, X-ray photography was used to evaluate the healing of fracture;②At 8th week, histological examinations were performed to observe the cell morphology. All results showed that MGF-Ct24E can accelerate fracture healing significantly in a rabbit model and shows a dose-dependent manner in a certain range.
     (2) The preparation and property of the bioactive materials containing MGF-Ct24E.
     ①The bioactive materials containing MGF-Ct24E was prepared in the Research Center of Bioinspired Material Science & Engineering;
     ②GPC-MALLS was used to confirmed the influence of MGF-Ct24E introduction on molecular weight of PDLLA, which showed that the modified process reduced the molecular weight of PDLLA, however, did not weaken the function of PDLLA in fracture healing;
     ③Amino Acid Analysis (AAA) and 1H-NMR were used to determine the introduction and bioactivity of MGF-Ct24E, which is key to the study of influences of bioactive materials on fracture healing. The results of AAA exhibited that MGF-Ct24E were coupled to the MHPLA at a concentration of 0.88μmol/g and the coupling efficiency was found to be 25%.
     ④Examinations of cytocompatibity was used to probe the influences of MGF-Ct24E_bioactive materials on fracture healing. Firstly, osteoblasts were cultured on different materials films, with glass as control. The cytocompatibility of MHPLA with rats osteoblasts was estimated by means of cell morphology (by discrepancy microscope) and cell proliferation (by MTT assay) and ALP activity. The morphology observations revealed that the osteoblasts cultured on MHPLA spread wider than those on PDLLA and glass, and much more cells were confluent on MHPLA, comparing to the other two groups; The result of MTT showed osteoblasts grown faster on MHPLA than on HPLA and glass at 3rd, 5th, 7th; ALP showed that MHPLA delayed osteoblast differentiation. All results showed that the bioactivity of MGF-Ct24E on MHPLA is high. Moreover, effective time of MGF-Ct24E-bioactive materials on fracture healing is higher than MGF-Ct24E, which suggested potentially wide applications of MHPLA in biomedical areas, especially in tissue engineering.
引文
[1] Richards JB, Rivadeneira F, Inouye M, et al. Bone mineral density, osteoporousis, and osteoporotic fractures: a genome-wide association study [J]. Lancet, 2008, 371:1505-1512.
    [2] Siris E, Delmas PD. Assessment of 10-year absolute fracture risk: a new paradigm with worldwide application [J]. Osteoporos Int, 2008, 19: 383-384.
    [3]郑玉峰,奚廷斐,魏世成.骨科器械国内外产业状况[J].新材料产业,2007,10(11):20-23.
    [4] Goldspink G, Terenghi G. Repair of nerve damage [P]. US patent, US2002083477, 2002-06-27.
    [5] Goldspink G. Method of treating muscular disorders [P]. US patent, US6221842, 2001-04-24.
    [6] Goldspink G, Goldspink P. Use of the insulin-like-growth factor I isoform MGF for the treatment of neurological disorders [P]. US patent, 20050048028AI, 2005-03-03.
    [7] Goldspink G, Yang SY, Goldspink P. Peptides [P]. US patent, US0211606A1, 2006-09-21.
    [8]杰弗里.戈德斯宾克;杨士钰;P.戈德斯宾克机械生长因子肽及其用途[P].中国专利, CN101300269A, 2008-11-05
    [9]张兵兵.力生长因子的制备及功能研究.重庆大学博士学位论文[D],2008.
    [10]张纲,李焰,谭颖徽.细胞生长因子在骨折愈合中的作用研究进展[J].重庆医学,2008,37(2):196-197.
    [11] Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone [J]. Matrix Biol, 2000, 19:91-96.
    [12] Kusec V, Jelic M, Borovecki F, et al. Distraction osteogenesis by Ilizarov and unilateral external fixators in a canine model [J]. Int Orthop, 2003, 27:47-52.
    [13] Ilizarov GA. Thetension-stress effect on the genesis and growth of tissues: partII. The influence of the rate and frequency of distraction [J]. Clin Orthop, 1989, 239:263-285.
    [14] Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration [J]. Clin Orthop, 1998, 355[Suppl]:S41-S55.
    [15] Sato M, Yasui N, Nakase T, et al. Expression of bone matrix proteins mRNA during distraction osteogenesis [J]. J Bone Miner Res, 1998, 13:1221-1231.
    [16]王鹏程,张英泽,陈百成等.牵拉应力下成骨细胞(MC3T3-E1)的增殖与matrilin-2 mRNA的表达[J].中华创伤骨科杂志,2004,6(8):877-880.
    [17]邹淑娟,胡静.力学张力对人成骨细胞TGF-β表达的影响[J].现代口腔医学杂志,2002,16 (3):214-21517.
    [18] Pavlin D Zadro D. Temproalpattern of stimulation of osteoblast associated genes during mechanically induced osteogenesis in vivo: early response of osteocalin and type I collagen [J]. Connect Tissue Res, 2001, 42(2):135-148.
    [19] Carvalho RS, Bumann A, Schaffer JL, et al. Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation[J]. J Cell Biochem, 2002, 84(3):494-508.
    [20]张兵兵,潘君,王远亮等.流体剪切力对成骨细胞OPG和ODF表达的影响[J].生物化学与生物物理进展.2007,34:326-332.
    [21] Ilizarov GA. The tension - stress effect on the genesis and growth of tissues . Part I. The influence of stability of fixation and soft-tissue preservation [J]. Clin Orthop, 1989, 238:249 - 281.21.
    [22]赵金忠,张光健.Ilizarov技术及其临床应用[J],国外医学(创伤与外科基本问题分册),1993,14(4):220-223.
    [23]李刚,秦泗河.牵拉成骨技术的基础研究进展与带给骨科的启示[J].中华外科杂志,2005,43(8):540-543.
    [24] Yang SY, Alnaqeeb M, Simpson H, et al. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch [J]. J Muscle Res Cell Motil, 1996, 17(4): 487—495.
    [25] Talmadge RJ. Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms [J]. Muscle nerve, 2000, 23(5): 661-679.
    [26] Xian CY, Wang YL, Zhang BB, et al. Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch[J]. Chin Sci Bull, 2006, 51(22):2731-2736.
    [27] Zhang BB, Xian CY, Luo YF, et al. Expression and subcellular localization of mechano-growth factor in osteoblasts under mechanical stretch [J]. Sci China Ser C-Life Sci, 2009, 52(10): 928-934.
    [28]鲜成玉,王远亮,张兵兵等.应力作用下成骨细胞内IGF-1的剪接变异及表达[J].科学通报,2006,51(20):2399-2403.
    [29] Tang LL, Xian CY, Wang YL. The MGF expression of osteoblasts in response to mechanical overload [J]. Arch Oral Biol, 2006, 51(12): 1080-1085.
    [30]张兵兵,鲜成玉,罗彦凤等.拉伸刺激下MGF在成骨细胞中的表达及亚细胞定位分析[J].中国科学C辑:生命科学,2009,39(5):518-524.
    [31]张兵兵,王远亮,杨力等.力生长因子及其E肽对成骨细胞分化的影响[J].生物化学与生物物理进展,2010,37(3):304-312.
    [32] Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation [J]. Physiology (Bethesda), 2005, 20: 232-238,
    [33] Tan DS, Cook A, Chew S L. Nucleolar localization of an isoform of the IGF-I precursor. BMC Cell Biol, 2002, 3(17): 1-6.
    [34] Dluzniewska J, Sarnowska A, Beresewicz J, et al. A strong neuroprotective effect of the autonomous C-terminal petide of IGF-I Ec(MGF) in brain ischemia [J]. The FASEB Journal, 2005, 19:1896-1898.
    [35] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation [J]. FEBS Lett, 2002, 522(1-3): 156-160.
    [36] Goldspink G . Skeletal muscle as an artificial endocrine tissue [J].B est Pract Res Clin EndocrinolMetab, 2003, 17 (2): 211- 222.6.
    [37] Musaro A, McCullagh K, Paul A, et al. Localized Igf-1 transgene expression sustains hypertr ophy and regeneration in senescent skeletal muscle [J]. Nat Genet, 2001, 27 (2): 195-200.
    [38] HillM, Wernig A, Golds p ink G. Muscle satellite (stem) cell activation during l ocal tissue injury and repair [J]. J Anat, 2003, 203(1) : 89-99.
    [39] Goldspink G Inpaiment of IGF-I gene splicing and MGF expression associated with muscle wasting [J]. biochem boil, 2006.38(30):481-489.
    [40] Carpenter V, Matthews K, Devlin G, et al. Mechano-Growth Factor Reduces Loss of Cardiac Function in Acute Myocardial Infarction [J]. Heart, Lung and Circulation, 2008, 17:33–39.
    [41] Dariusz C, Malgorzata B, Barbara Z. Neuroprotective effects of short peptides derived from the Insulin-like growth factor I[J]. Neurochemistry intermational, 2007, 51:451-458.
    [42] Guan J, Waldvogel HJ, Faull RL, et al, The effectsof the N-terminal tripeptide of insulin-like growth factor-I , glycine-proline-glutamate in different regions following hypoxic-ischemic brain injury in adult rats[J].Neuroscience,1999,89:649-659.
    [43] Aperghis M, Johnson IP, Cannon J, et al.Different levels of neuroprotection by two insulin-like growth factor-I splice variants [J]. Brain Res. 2004;1009 (1-2): 213-218.
    [44] Ates K, Yang SY, Orrell RW, et al. The IGF-I splice cariant MGF increases progenitor cells in ALS, dystrophic, and normal muscle [J]. FEBS lett, 2007, 581:2727-2732.
    [45]张兵兵,江鹏,鲜成玉等.力生长因子在大肠杆菌中的表达及活性分析[J].生物工程学报.2008.(7):1180-1185.
    [46] Kalambur S, Rizvi SSH. An overview of starch-based plastic blends from reactive extrusion[J]. J Plast Film Sheet. 2006, 22: 39-58.
    [47] Dubois P, Narayan R. Biodegradable compositions by reactive processing of aliphatic polyester/Polysaccharide blends [J]. Macromol Symp. 2003, 198: 233-243.
    [48] Edlund U, Kallrot M, Albertsson A-C. Single-step covalent functionalization of polylactide surfaces [J]. J Am Chem Soc. 2005, 127: 8865-8871.
    [49] Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory?s experience [J]. Accounts Chem Res. 2000, 33(2): 94-101.
    [50]罗时荷,邹丽花,彭美婷等.生物基材料聚乳酸研究进展[J].材料研究与应用,2010,4(4):762-764.
    [51] Niu XF, Wang YL, Luo YF, et al. Arg-Gly-Asp (RGD) modified biomimetic polymeric materials[J]. J Mater Sci Technol. 2005, 21(4): 571-576.
    [52] Zhu YB, Gao CY, Liu XY, et al. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells [J]. Biomacromolecules, 2002, 3: 1312-1319.
    [53] Pan J, Wang YL, Qin SH, et al. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk[J]. J Biomed Mater Res B. 2005, 74B: 476-480.
    [54] Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering [J]. Trends Biotechnol. 2002, 20(1): 16-21.
    [55]王远亮,潘君.一类采用不饱和环状酸酐或不饱和环状酰亚胺改性聚乳酸的方法、改性物及应用[P],CN1367189 2002.09.04.
    [56]王远亮.一种采用不饱和环状酸酐或不饱和环状酰亚胺改性聚乳酸的方法及应用[P],CN1495216 2004.05.12.
    [57] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation [J]. FEBS Lett. 2002, 522(1-3): 156-160.
    [58]鲜成玉,王远亮,唐丽灵.IGF-1剪接变构体:力生长因子.生理科学进展,2005,36(4):322-324.
    [59] Goldspink G. Gene expression in skeletal muscle [J]. Biochem Soc Trans. 2002, 30(2): 285-290.
    [60] Dimitriou R, Tsiridis E, Giannoudis PV.Current concepts of molecular aspects of bone healing [J]. Injury. 2005, 36(12):1392-1404.
    [61] Larsson s, Kim W, Caja VL, et al. Effect of early axial dynamization on tibial bone healing: a study in dogs [J]. Clin Orthop Relat Res.2001, 388: 240-251.
    [62] Arazi M, Yalcin H, Tarakcioglu N, et al.The effect of dynamization and destabilization of the external fixator on fracture healing [J]. Ortlropedics. 2002, 25(5):521-524.
    [63] Claes L, Eckert-Hubner K, Augat P .The effect of mechanical stability on local vascularization and tissue differentiation in callus healing[J]. J Orthop Res. 2002, 20(5):1099-1105.
    [64]鲜成玉,王远亮,张兵兵等.机械拉伸对成骨细胞增殖及IGF-1 mRNA表达的影响[J].生物医学工程学杂志,2007,24(2):312-315.
    [65]中华人民共和国科学技术部,关于善待实验动物的指导性意见[M].2006-09-30.
    [66]王玉学,李郑民,毕郑钢.建立兔桡骨缺损动物模型的实验研究[J].中国地方病防治杂志,2008,23(1):60-61.
    [67]孙保勇,陈文直,贾小林等.低强度脉冲超声促进骨折愈合的动物实验研究[J].中国矫形外科杂志,2005,13(6):443-446.
    [68] Ghanribjanian NA, Hhua WC, Dhar S, et al. Release kinetics of polymer-bound bone morphogenetic protein-2 and its effects on the osteogenic expression of MC3T3-E1 ostoprecursor cells [J]. Plast Reconstr Surg, 2009; 123(4):1169-1177.
    [69] Morgan EF, Mason ZD, Bishop G, et al. Combined effects of recombinant human BMP-7 and parathyroid hormone in metaphyseal bone healing [J]. Bone, 2008; 43(6):1031-1038.
    [70] Kawasaki T, Niki Y, Miyamoto T, et al. The effect of timing in the administration of hepatocyte growth factor to modulate BMP-2-induced osteoblast differentiation [J]. Biomaterials, 2010; 34(60):1191-1198.
    [71] Park J, Lutz R, Felszeghy E, et al. The effect on bone regeneration of a liposomal vector to deliver BMP-2 gene to bone grafts in peri-inplant bone defect [J]. Biomaterials, 2007; 28(17):2772-2782.
    [72] Hou CH, Hou SM, Tang CH. Ultrasound increased BMP-2 expression via PI3K, Akt, c-Fos/c- Jun, and AP-1 pathways in cultured osteoblasts [J]. J Cell Biochem, 2009; 106(1):7-15.
    [73] Li BC, Zhang JJ, Xu C, et al, Treatment of rabbit femoral defect by firearm with BMP-4 gene combined with TGF-β1 [J]. J Trauma, 2009; 66(2):450-456.
    [74] Sumner DR, Turner TM, Urban RM,et al. Additive enhancement of implant fixation following combined treament with rhTGF-beta2 and rhBMP-2 in a canine model [J]. J Bone Joint Surg Am, 2006; 88(4):806-817.
    [75] Geiger F, Lorenz H, Xu W, et al. VEGF producing bone marrow stromal cells(BMSC) enhance vasularization and resorption of a matural coral bone substitute[J]. Bone, 2007; 41(40):516-522.
    [76] Huh JE, Kwon NH, Baek YH, et al. Formononetin promotes early fracture healing through stimulating angiogenesis by up-regulating VEGFR-2/Flk-1 in a rat fracture model[J]. IntImmunopharmacol, 2009; 9(12):1357-1365.
    [77] Kempen DH, Lu L, Heijink A, et al. Effect of lacal sequential VEGF and BMP-2 delivery in ectopic and orthotopic bone regeneration [J]. Biomaterials, 2009; 30(14):2816-2825.
    [78] Kawaguchi H. Bone fracture and the healing mechanisms: Fibroblast growth factor-2 and fracture healing [J]. Clin Calcium, 2009; 19(5):653-659.
    [79] Xiao L, Adams D, Wang L, et al. Effects of global knockout or over-expression of fibroblast growth factor-2 in osteoblasts on fracture healing in transgenic mice [J]. Bone, 2008; 42(S): 65-66.
    [80] Weiss S, Henle P, Bidlingmaier M, et al. Systemic response of the GH/IGF-1 axis in timely versus delayde fracture healing[J]. Growth Horm IGF Res, 2008; 18(3): 205-212.
    [81] Nakasaki M, Yoshioka K, Miyamoto Y, et al. IGF-1 secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts [J]. Bone, 2008; 43(50):869-879.
    [82] Chung R, Foster BK, Zannettino AC, et al. Potential roles of growth factor PDGF-BB in the bony repair of injured growth plate [J]. Bone, 2009; 44(50): 875-885.
    [83] Al-Zube L, Breitbart EA, Connor JP, et al. Recombinant human platelet-derived growth factor BB(rhPDGF-BB) and beta-tricalcium phosphate/collagen matrix enhance fracture healing in a diabetic rat model[J]. J Orthop Res, 2009; 27(8): 1074-1081.
    [84] Lind M. Growth factor stimulation of the bone healing, Effects on osteoblasts, osteomies, and implants fixation [J]. Acta Orthop Scand Suppl., 1988, 283: 2-37.
    [85]邹德波,周东生,王永会等.人骨形态发生蛋白-2基因传染兔骨髓基质干细胞及其表达[J].中华创伤骨科杂志,2006,8(2):148-152.
    [86]汤亭亭,徐小良,戴尅戎等.转染人骨形态蛋白-2基因的羊骨髓间充质细胞的异位成骨研究.中华骨科杂志,2003,23(8):489-492.
    [87] Lane JM. Bone morphogenic protein science and studies [J]. J Orthop Trauma, 2005, 19(10 Suppl): S17-22.
    [88] Jones AL. Recombinant human bone morphogenic protein-2 in fracture care [J]. J Orthop Trauma, 2005, 19(10 Suppl): S23-25.
    [89] Shimizu T, Mehdi R, Y oshimura Y,et al . Sequential expression of bone morphogenetic protein , tumor necrosis factor ,and their receptors in bone - forming reaction after mouse femoral marrow ablation[J] .Bone 1998 ,23 (2) :127~33.
    [90] Gao M, Craig D, Vogel V, et al. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics[J]. J Mol Biol.2002;323(5):939-950.
    [91] Sukharev S, Anishkin A. Mechanosensitive channels: what can we learn from 'simple' model systems [J]? Trends Neurosci.2004;27(6):345-351.
    [92] Marshall BT, Long M, Piper JW, et al. Direct observation of catch bonds involving cell-adhesion molecules[J].Nature.2003;423(6963):190-193.
    [93] Burger EH, Klein-Nulend J. Mechanotransduction in bone--role of the lacuno-canalicular network [J]. FASEB J. 1999; 13 Suppl: s101-s112.
    [94]刘振东,范清宇.应力遮挡效应-寻找丢失的钥匙[J].中华创伤骨科杂志,2002,4(1):62-64.
    [95]赖金平,魏刚,李秀波等.低应力遮挡效应接骨板的研究与设计[J].生物骨科材料与临床研究,2006,4(3):51-52.
    [96]付青格,许硕贵,刘欣伟等.镍钛合金天鹅记忆接骨器对成人上肢骨骨折愈合应力遮挡效应的评价[J].中国组织工程研究与临床康复,2008,12(26):5023-5027.
    [97]刘欣伟,苏佳灿,张春才等.生理性成骨力值概念在镍钛聚髌器置入治疗髌骨骨折的应用:106例回顾[J].中国组织工程研究与临床康复,2008,12(17):3225-3228.
    [98]张春才,禹宝庆,许硕贵等.应用生理性成骨力值概念治疗骨折与骨不连——兼论MO现象与有效固定[J].中国骨伤,2007,20(6):361-363.
    [100] Einhorn TA.Clinically applied models of bone regeneration in tissue engineering research [J]. Clin Orthop Relat Res 1999; 367(Suppl.):S59–67.
    [101] Cacchioli A, Spaggiari B, Ravanetti F, et al. The critical sized bone defect: morphological study of bone healing [J]. Ann Fac Medic Vet di Parma 2006; 26:97–110.
    [102] Rimondini L, Aldini N, Fini M, et al. In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005, 99(2): 148–154.
    [103] Gugala Z, Gogolewski S. Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study [J].J Orthop Trauma 1999; 13(3):187–95.
    [104] Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect [J]. J Orthop Res 2006; 24(7):1438–53.
    [105] Gugala Z, Lindsey RW, Gogolewski S. New Approaches in the treatment of critical-size segmental defects in long bones [J]. Macromol Symp 2007; 253:147–161.
    [106] Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect[J]. J Orthop Res 2006; 24(7):1438–53.
    [107] Perka C, Schultz O, Spitzer RS, Lindenhayn K, Burmester GR, Sittinger M. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable ?eece and fibrinscaffolds in rabbits[J]. Biomaterials, 2000; 21(11): 1145–53.
    [108]曹斌,张守平,王兆林等.低应力遮挡效应交锁髓内钉的研制与生物力学研究[J],中国矫形外科杂志,2004,12(12):930-933.
    [109] Komaki H, Tanaka T, Chazono M, Kikuchi T. Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, type I collagen,and fibroblast growth factor-2[J]. Biomaterials, 2006, 27(29): 5118–26.
    [110] Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering.1.Basic concepts. J Tissue Eng Regen Med 2007, 1:4-24; Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds [J]. Prog Polym Sci 2007, 32:698-725.
    [110] Niu XF, Wang YL, Luo YF, et al. Synthesis of the Biomimetic Polymer: Aliphatic Diamine and RGDS Modified Poly (D, L-lactic acid) [J]. Chinese Chem Lett, 2005, 16(8): 1035-1038.
    [111]罗彦凤.聚(D,L-乳酸)的改性及体外降解和细胞相容性研究[D].重庆大学博士论文,2003.
    [112]牛旭锋.聚(D,L-乳酸)基仿生细胞外基质的骨组织工程基质材料研究[D].重庆大学博士论文,2006.
    [113]王镜岩,朱圣庚,徐长法.生物化学(上) (第三版) [M].北京:高等教育出版社. 2002: 116-123
    [114] Hurley MM, Abreu C, Harrison, et al. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3 cells [J]. J Biol chem, 1993; 268: 5588-5593.
    [115]丁雅韵,谢孟峡,康娟.蛋白质水解液中氨基酸组成的定量分析[J].分析化学,2002, 30(40):418-421.
    [116]薛庆善.体外培养的原理与技术[M].北京:科学出版社,2001,485– 488.
    [117]王洪复.骨细胞图谱与骨细胞体外培养技术[M].上海.上海科学技术出版社.2001,60-63.
    [118]王远亮等译.生物材料—生物学与材料科学的交叉[M].北京:科学出版社.2009:1-2.
    [119]李玉宝.生物医学材料[M].北京:化学工业出版社.2003,265-269.
    [120] GB/T 16886.1-2001,医疗器械生物学评价第1部分评价与试验.
    [121]司徒镇强,吴军正.细胞培养[M].西安:世界图书出版西安公司,2006:135 - 139
    [122] Masuelier D,Herbert B,Hauser N, et al. Morphologic characterization of osteoblast-like cell cultures isolated from newborn rat calvaria[J[.Calcif Tissue Int,1990,47(2):92 - 104.
    [123] Aronow MA, Gerstenfeld LC, Owen TA, et al. Factor s t hat promote progressive development of t he osteoblast phenotype in cultured fetal rat calvaria cels [J]. J CellPhysiol , 1990 ,143(2) :213-221。
    [124]朱文菁,金藯芳,张丽丽等.MTT法分析培养成骨细胞的存活和增殖能力[J].上海医科大学学报.1995,22(4):254-257.
    [125]杨芳,路国华,刘利兵等.影响MTT比色实验的关键环节[J].第四军医大学学报,2009,30(3):243.
    [126]罗彦凤,王远亮,潘君等.新型改性聚乳酸及其亲疏水性研究[J].高技术通讯,2003,13(2):47-51.