无线协作通信中的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协作通信作为一种新型的传输技术,是利用无线通信系统中随机分布的用户天线,构成虚拟MIMO系统。在不增加硬件复杂度的前提下可获得空间分集增益、提高信道容量和无线链路的传输可靠性,能有效扩大无线传输的覆盖范围,备受学术界和工业界的广泛关注。因此,本文对协作通信中物理层的若干关键技术进行了研究。
     根据协作节点的信号处理方式,协作通信协议可分为三种:放大转发、解码转发、编码协作。将这三种基本协作机制应用于不同的中继选择策略中,又形成了自适应(选择性)协作和机会协作机制。本文对这些协作机制的基本原理和容量性能进行了研究。在此基础上,研究了OFDM/OFDMA与协作通信技术的中断概率,分析了二者所获得的分集增益与协作节点的个数之间的关系。
     在无线通信系统中,如何高效、合理地使用有限的功率、频率等资源是一个非常重要的问题。根据不同的优化目标,本文对无线通信系统的信道和功率分配技术的研究现状和研究热点进行详细阐述,对OFDM系统的无线资源优化目标进行了规划,并分析了它们之间的相互转化关系。以此为基础,对OFDM/OFDMA协作通信系统中的子信道和功率分配技术进行了深入研究。通过引入等效信道增益的概念,以maxmin准则作为优化准则,提出了一种兼顾用户的速率公平性和系统容量的子信道和功率联合分配算法。理论研究表明,该联合算法使得所有用户获得相同的传输速率的同时,获得较高的系统容量。为了降低计算复杂度,本文还提出了一种次优的子信道和功率分配算法。该算法将子信道和功率分配问题分成两个子问题,首先假设总功率在所有的子载波上平均分配,以此为前提在每个分配周期内将最好的子信道分配给速率最小的用户。在确定子信道分配之后,利用多水平注水算法将总功率在所有的等效中继信道中进行最优分配。计算机仿真表明,该次优算法的性能接近最优算法的性能,而计算复杂度大大降低。
     无线协作通信系统中的协作节点是随机分布的,如何从众多的备选协作节点中选择一个或多个合适的节点作为协作伙伴,是用户之间建立协作关系的前提。本文对协作通信系统的中继节点选择算法进行了深入研究。根据不同的通信目标和优化准则,中继节点选择算法可分为基于信道状态信息的中继选择算法、基于效用函数的中继选择算法、基于协作区域的中继选择算法等。与无线资源分配相似,选择协作节点的目标是提高系统容量、降低差错概率以及降低发射功率。因此,本文将功率分配、子信道分配和中继节点选择进行综合考虑,从最优化的角度对OFDMA协作中继系统中的中继节点选择问题进行了研究。以用户之间占用的子信道数为约束条件、以最大化系统的总吞吐量为目标,本文提出了一种基于即时信道增益的机会中继选择算法。仿真结果表明,该算法所获得的吞吐量接近无子载波限制时的系统吞吐量,同时用户占用子信道的公平性最大。因此,该算法对吞吐量和子载波公平性进行了很好的折衷。
     在多小区OFDMA系统中,小区内的子载波是相互正交的,因此小区内的干扰较小,影响系统性能、尤其是小区边缘用户性能的关键因素是小区间干扰。为了降低小区间干扰,提高小区边缘用户的传输速率,3GPP LTE中提出了很多降低小区间干扰的技术,如部分频率复用、软频率复用、干扰协调、干扰随机化、干扰删除等。另一个备受关注的研究热点是多点协作技术。本文以部分频率复用为基础,研究了OFDMA系统中的多小区协作传输技术。该算法将每个小区分成内部和外部两个区域,同时将外部区域分成三个扇区。内部区域的频率复用系数为1,外部区域的频率复用系数为3。将相邻三个小区的三个扇区组成一个虚拟小区,以每个用户占用的子信道数量为约束条件,由基站控制器对三个扇区天线进行协调调度,共同对虚拟小区内的用户传输数据。理论研究表明,该算法通过增加每个扇区天线的有效用户数量,提高了每个天线的多用户分集增益。仿真结果表明,该算法有效地提高了小区边缘用户的吞吐量和占用子信道的公平性。
Cooperative communication is a promising diversity technique that has been attracting significant research interests in academic and industry communities, where the antennas of randomly distributed users are shared to form a virtual MIMO system and reap the benefits of spatial diversity without any requirement of additional antennas at each single-antenna users. As a potential technique for 4G, Cooperative communication can improve the channel capacity, enhance the transmission reliability of wireless channel, and enlarge the coverage. In this dissertation, some key techniques in Physical Layer are investigated.
     According to the signal processing method, the basic cooperative diversity protocols can be cataloged into three classes:Amplify-and-Forward (AF), Decode-and-Forward (DF), and Coded Cooperation (CC). Combine these cooperation schemes with different relay se-lection strategies, adaptive (selection) cooperation and opportunistic relaying protocols are developed. The dissertation investigates the principle and capacity performance of these cooperation schemes. Based on these results, the outage performance of OFDM/OFDMA cooperative relaying protocols are also studied. Subsequently, the relationship between the cooperative diversity and the number of relays is analyzed.
     In wireless communication systems, it is an important research issue that how to utilize power and frequency efficiently and appropriately. There are diverse channel and power al-location methods according to different optimization objectives. All the channel and power allocation methods are expounded in details and are cataloged into MA and RA optimization problem. The transformation between MA and RA are also analyzed. Based on these analy-sis, the subchannel and power allocation techniques in OFDM/OFDMA cooperative relaying networks are investigated thoroughly. A joint subchannel and power allocation algorithm is proposed, in which equal channel power gain is introduced and maxmin criterion is adopted as an optimization metric. The proposed algorithm properly deals with the rate fairness and system capacity. Theoretical investigation and simulation indicate that the proposed opti-mal algorithm can obtain higher system capacity while result in equal transmission rate of each user. In order to reduce the computational complexity, a suboptimal subchannel and power allocation algorithm is also proposed, in which the original optimization problem is divided into two subproblem, namely, subchannel assignment and power distribution. In the suboptimal algorithm, the available subchannels are assigned to each user under the assumption that the total transmission power is distributed equally among all subchannels. After subchannel assignment, the total transmission power is distributed among all deter-mined subchannel pairs by using multi-level water-filling algorithm.
     Since the cooperation partners are located randomly in wireless cooperative communi-cation networks, it is the foundation of cooperation among multiple users that how to appro-priately select one or multiple cooperation partners from multiple potential relay nodes. The dissertation studies the relay node selection algorithms in cooperative communication sys-tems. According to different achievable targets and optimization objective, the commonly used relay nodes selection strategies can be classified into the followings which are relay nodes selection strategy based on channel state information, relay nodes selection strategy based on utility function, relay nodes selection strategy based on cooperation regions, and joint relay nodes selection and power allocation, et al.. Compared with radio resource allo-cation, the objectives of relay nodes selection are improve system capacity, reduce the error probability, and save transmit power. Thus, as one of the popular issue on relay selection, relay selection can be considered jointly with subchannel and power allocation. From the point of view on optimization problem, the relay nodes selection problem in OFDMA cooper-ative relaying networks are investigate, in which power distribution, subchannel allocation, and relay nodes selection are considered jointly. An opportunistic relay nodes selection strat-egy base on instantaneous channel state information is propose in the dissertation, of which the objective is to maximize the total throughput of all users under the constraints of fair-ness on subchannel occupation of each user. Simulation results show that the capacity of the proposed algorithm approaches asymptotically to that of the optimal one without fairness constraint and the fairness on subchannel occupation by each is most. Therefore, it can be said that the proposed algorithm can do the best tradeoff between throughput and fairness.
     In multi-cell OFDMA networks, the subchannels used within the cell are orthogonal to each other and then intra-cell interference is little. The key factor which degrade the sys-tem performance, especially the performance of cell-edge users, is inter-cell interference (ICI). In order to depress ICI which can further improve the transmission rate of cell-edge users, many ICI reduction methods, such as Fractional Frequency Reuse (FFR), Soft Fre-quency Reuse, ICI Coordination, ICI Randomization, ICI Cancellation, have been proposed in 3GPP LTE. Another hot research topic in 3GPP LTE is Coordinated Multi-Point (CoMP) transmission technique. In the dissertation, a multi-cell cooperative transmission technique is proposed which is based on fractional frequency reuse technique. In this algorithm, each cell is partitioned into interior and exterior region, and subsequently the exterior region is divided into three sector. The frequency reuse factor is 1 in the interior region while 3 in the exterior region. Three adjacent sectors belonging to three neighboring cells is constituted to a virtual-cell. The base station controller coordinately schedules three sector antennas and served all users in in a virtual cell. Theoretical investigation show that the proposed algo-rithm improve the multiuser gain by increasing the effective users of each sector antenna. Simulation results show that the proposed algorithm improve efficiently the throughput of cell-edge users and fairness of channel occupation among all users.
引文
[1]Theodore S. Rappaport, "Wireless Communications:Principles and Practice," Pren-tice Hall. Dec.2001。
    [2]Keller T. and Hanzo L., "Adaptive multicarrier modulation:a conventional framework for time-frequency processing in wireless communications," IEEE Proceedings of the IEEE,2000,88(5):611-640.
    [3]Wang Z. D. and Giannakis G. B., "Wireless multicarrier communications:Where Four-rier meets Shannon," IEEE Signal Processing Magazine,2000,17(3):29-48.
    [4]尹长川,罗涛,乐光新,多载波宽带无线通信技术,北京邮电大学出版社,2004年。
    [5]袁东风,张海霞等,“宽带移动通信中的的先进信道编码技术,”北京邮电大学出版社,2004年。
    [6]胡宏林,徐景,3GPP LTE无线链路关键技术,电子工业出版社,2008年。
    [7]高月红,张欣,杨大成,3GPP2 AIE工作进展及CDMA2000未来演进,移动通信,2006(7):26-32。
    [8]Wang Z. D. and Giannakis G. B.,"Wireless multicarrier communications," IEEE signal Proc. Magazine, May.2000,17(3):29-48.
    [9]佟学俭,罗涛,OFDM移动通信技术原理与应用,2003,人民邮电出版社。
    [10]王勇,刘光毅,张建华,"3GPP LTE中的OFDMA和SC-FDMA性能比较,”中兴通信技术2007,13(4):39-42.
    [11]Yin H. J. and Alamouti S., "OFDMA:A Broadband Wireless Access Technology," IEEE Sarnoff Symposium,2006 pp.1-4.
    [12]ProakisJ. G.著,张力军,张宗橙,郑宝玉,等译,数字通信(第四版),电子工业出版社,2003年,第577—604页。
    [13]Foschini G. J. and Gans M. J., "On limits of wireless communications in a fading envi-ronment when using multiple antennas," Wireless Personal Communications,1998, vol.6:311-335.
    [14]Telatar E., "Capacity of multi-antenna Gaussian channels," European Trans. Telecom., Nov.1999,10(6):585-595.
    [15]Paulraj A. J., GORE D. A., NABAR R. U., and Bocskei H., "An Overview of MIMO Communications—A Key to Gigabit Wireless," IEEE Proceedings.,2004,92(2):198-218.
    [16]Sendonaris A., Erkip E., and Aazhang B., "User Cooperation Diversity-part I:System Description," IEEE Trans. Commun., Nov.2003,51(11):1927-1948.
    [17]Sendonaris A., Erkip E., and Aazhang B., "User Cooperation Diversity-part II:Im-plementation aspects and performance analysis," IEEE Trans. Commun., Nov.2003, 51(11):1927-1948.
    [18]Janani M., Hedayat A., Hunter T. E., et al., " Coded Cooperation in Wireless Com-munications:Space-Time Transmission and Iterative Decoding," IEEE Trans. Signal processing, Feb.2004,52(2):362-371.
    [19]Nosratinia A., Todd E. Hunter, and Ahmadreza Hedayat, "Cooperative Communica-tion in Wireless Networks," IEEE Commun. Magzine,2004,42(10):74-80.
    [20]Stefanov A. and Erkip E., "Cooperative Coding for Wireless Networks," IEEE Trans. Commun.,2004,52(9):1470-1476.
    [21]Hunter T. E, "Coded Cooperation:a New Framework for User Cooperation in Wire-less Networks," Ph.D Dissertation, the university of Texas at Dallas, May.2004.
    [22]Tarasak P., Hlaing M. and Bhargava V. K., "Differential modulation for two-user co-operative diversity systems," IEEE J. Sel. Area Commun.,2005,23(9):1891-1900.
    [23]Hunter T. E. and Nosratinia A., " Diversity through Coded Cooperation," IEEE Trans. Wireless Commun.,2006,5(2):283-289.
    [24]Nabar R. R., Bolcskei H., and Kneubuhler F. W.,"Fading relay channels:performance limits and space-time signal design," IEEE J. Sel. Areas Commun.,2004,22(6):1099-1109.
    [25]Van Der Meulen E. C., "Three-terminal communication channels," Adv. Appl. Probab., 1971, vol.3, pp.120-154.
    [26]Cover T. M. and El Gamal A. A., "Capacity theorems for the relay channel," IEEE Trans. Inform. Theory, Sept.1979, vol. IT-25(5):572-584.
    [27]Gui B., Cimini L.J., and Dai L., "OFDM for cooperative networking with limited chan-nel state information," in Proc. IEEE Milcom,2006, pp.1-6.
    [28]Dai L., Gui B. and Cimini Jr. L. J., "Selective Relaying in OFDM Multihop Coopera-tive Networks," IEEE Wireless Communications and Networking Conference (WCNC 07), pp.963-968, Hong Kong, Mar.2007.
    [29]Gui B., Dai L. and Cimini Jr. L. J. "Selective Relaying in Cooperative OFDM Systems: Two-Hop Random Network," IEEE Wireless Communications and Networking Con-ference (WCNC; 08), pp.996-1001,31 Mar-3 Apr.,2008.
    [30]Laneman J. N.,Tse D. N. C., and Wornell G. W., "Cooperative diversity in wireless networks:Efficient protocols and outage behavior," IEEE Trans. Inf. Theory,2004, 50(12):3062-3080.
    [31]Bletsas A., Khisti, Reed, D. P., et al., "A Simple Cooperative Diversity Method Based on Network Path Selection," IEEE J. Sel. Areas Commun.2006,24(3):659-672.
    [32]Bletsas A., Lippman A., and Reed D.P., "A Simple Distributed Method for Relay Selec-tion in Cooperative Diversity Wireless Networks, based on Reciprocity and Channel Measurements", Proceeding of IEEE VTC-Spring, May.2005, vol.3:1484-1488.
    [33]Bletsas, A., Shin, H., and Win, M. Z, "Cooperative Communications with Outage-Optimal Opportunistic Relaying," IEEE Trans. Wireless Commun.,2007,6(9):1-11.
    [34]Liu, P., Tao, Z. F., and Panwar, S., "A Cooperative MAC Protocol for Wireless Local Area Networks," IEEE ICC'05,2005,5:2962-2968.
    [35]Bletsas, A., Shin, H., and Win, M. Z., "Outage Optimality of Opportunistic Amplify-and-Forward Re-laying," IEEE Commun. Letter,2007, 11(3):261-263.
    [36]Ding, Z. G., et. al.,"On the Performance of Opportunistic Cooperative Wireless Net-works," IEEE Trans. Commun.,2008,56(8):1236-1240.
    [37]Hunter T. E. and Nosratinia A., "Cooperation Diversity through Coding," IEEE In-ternational Symposium on Information Theory (ISIT2002), Jun.2002, Lausanne, Switzerland, pp:220.
    [38]Zhang Z. and Duman T. M. "Capacity-approaching turbo coding and iterative decod-ing for relay channels," IEEE Trans. Commun.,2005,53(11):1895-1905.
    [39]Zhang Z. and Duman T. M., "Capacity Approaching Turbo Coding For Half-Duplex Relaying," IEEE Trans. Commun.,2007,55(9):1822-1822.
    [40]Hu J. and Duman T. M., "Low Density Parity Check Codes over Wireless Relay Chan-nels," IEEE Trans. Wireless Commun.,2007,6(9):3384-3394.
    [41]Li C. X., Yue G. S., and Wang X. D., et al., "LDPC-coded cooperative relay systems: performance analysis and code design," IEEE Trans. Commun.,2008,56(3):485-496.
    [42]雷维嘉,放显中,李广军, “一种基于LDPC编码的的协作通信方式,”电子学报,2007,35(4):712—715.
    [43]Laneman J. N. and Wornell G. W.,"Distributed Space-Time-Coded Protocols for Ex-ploiting Cooperative Diversity in Wireless Networks," IEEE Trans. Inf. Theory,2003, 49(10):2415-2425.
    [44]Jing Y. and Hassibi B., "Distributed Space-Time Coding in Wireless Relay Networks," IEEE Trans. Wireless Commun., Dec.2006,5(12):3524-3536.
    [45]Chen D. Q. and Laneman J. N., "Modulation and Demodulation for Cooperative Di-versity in Wireless Systems," IEEE Trans. Wireless Commun.,2006,5(7):1785-1794.
    [46]Lin Z., Erkip E. and Stefanov A., " Cooperative Regions and Partner Choice in Coded Cooperative Systems," IEEE Trans. Commun., Jul.2006,54(7):1323-1333.
    [47]Scutari G. and Barbarossa S., "Distributed Space-Time Coding for Regenerative Relay Networks," IEEE Trans. Wireless Commun., Sep.2005,4(5):2387-2399.
    [67]Siriwongpairat W.P., Himsoon T., and Su W.F., et al., "Optimum Threshold-Selection Relaying for Decode-and-Forward Cooperation Protocol," IEEE WCNC'06, Apr.2006, 2:1015-1020.
    [49]Frank H. and Marcos D. K., "Cooperation in Wireless Networks:Principles and Appli-cations," New York, Springer-Verlag,2006.
    [50]Guo L., Ding X. N., Wang H. N., et al., "Cooperative Relay Service in a Wireless LAN," IEEE. J. Sel. Area. Commun.,2007,25(2), pp.355-368.
    [51]彭木根,王文博等,“协同无线通信原理与应用,”2009年1月,机械工业出版社。
    [52]Zhou Q.F. and Lau F.C.M., "Two Incremental Relaying Protocols for Cooperative Net-works," IET Communications,2008,2(10):1272-1278.
    [53]Yu G. D., Zhang Z. Y, and Qiu P. L., "Cooperative ARQ in Wireless Networks:Proto-cols Description and Performance Analysis," IEEE ICC'06, Jun.2006,8:3608-3614.
    [54]3GPP. TR 25.814 v7.1.0, "Physical Layer Aspects for Evolved UTRA [S]," http://www.3gpp1.org/ftp/Specs/html-info/25814.htm.
    [55]Bingham J. A. C., "Multicarrier modulation for data transmission:An idea whose time has come," IEEE Commun. Mag.,1990,28(5):5-14.
    [56]Morrison R., Cimini L. J., Wilson J. S. K., "On the use of a cyclic extension in OFDM," IEEE VTC, vol.2, pp.664-668, Oct.7-11,2001, Atlantic City, New Jersy USA.
    [57]张荣涛,谢显中, "OFDM几种多址接入技术的分析",信息技术,2006 (5):59-62。
    [58]王秀峰,宋荣芳,"OFDM系统多址方法研究,”中国电子学会第十届青年学术年会,2005年9月,济南,第387-390页。
    [59]余彩虹,“基于OFDMA的LTE下行多址接入方案,”通信与信息技术,2009(3):56-58。
    [60]尹长川,罗涛,佟学俭,“正交频分复用技术(3)”,中兴通讯技术,2003(3):46-49。
    [61]Weinstein S. B. and Ebert P. M., "Data Transmission by Frequency-Division Multiplex-ing Using the Discrete Fourier Transform," IEEE Trans. Commun. Tech.,1971,19(5): 628-634.
    [62]Peled A. R. and Ruize A., "Frequeny domain data transmission using reduced compu-tational complexity algorithms," Proc. IEEE Int. Conf. Acoust Speech Signal Process-ing, Denver,1980:964-967.
    [63]Cao Z. R., Orthognal Frequency Division Multiple Access for broadband wireless sys-tems:algorithms and implementation, Doctoral dissertation, UMI, Apr.2004.
    [64]Shin O. H., Chan A. M., Kung H. T., and Tarokh V., "Design of an OFDM Cooperative Space-Time Diversity System," IEEE Trans, on Veh. Tech.,2007,56(4):2203-2215.
    [65]Ng F. and Li X. H., "Cooperative STBC-OFDM Transmissions with Imperfect Synchro-nization in Time and Frequency," in Proc. of 39th Asilomar Conf. on Sigs., Sys. and Comp., pp.524-528, Nov.2005.
    [66]Can B., Yomo H., and Carvalho E. D., "Hybrid forwarding scheme for cooperative relaying in OFDM based networks," in Proc. of IEEE ICC 2006, vol.10, pp.4520-4525, May 2006.
    [67]Siriwongpairat W. P., Sadek A. K., and Liu K. J. R., "An Efficient Cooperative Protocol for Multiuser-OFDM Networks," in Proc. IEEE Globecom'06, Nov.2006, pp.1-5.
    [68]VuceticB.,YuanJ. H.并,王晓海等译,空时编码技术,机械工业出版社,2004年,第44—45页。
    [69]宋文涛,罗汉文,移动通信,上海交通大学,1995年1月。
    [70]Wu J. L., et al., "On Performance of Multiple Access for OFDM Transmission Tech-nique in Rayleigh Fading Channel," Proceedings ofICCT2003, vol.2, pp.1025-1028, Apr.2003.
    [71]3GPP, R1-060291. "OFDMA Downlink inter-cell interference mitigation," Nokia TSGR144.
    [72]3GPP, Rl-060905. "Adaptive Fractional Frequency Reuse," Nortel TSGR144.
    [73]3GPP, Rl-060401. "Interference Mitigation via Power Control, FDM Resource Allo-cation and UE Alignment for E-UTRA and+TP," Motorola TSGR144.
    [74]3GPP, R1-061796. "Analysis of Inter-cell Power Control for Interference Manage-ment in E-UTRA UL," Qualcomm Europe TSGR1 AH.
    [75]—-, R1-062734. "Transmission Power Control in E-UTRA Uplink," NTT DoCoMo TSGR146.
    [76]—-, R1-063478."Uplink Scheduling With Inter-Cell Power Control," with Exten-sions to Interference Coordination," Lucent Technologies TSGR146.
    [77]Shen Z. K., Andrews J. G., and Evans B. L.,"Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints," IEEE Trans. Wireless Commun., 2005,4(6):2726-2737.
    [78]Wong C. Y., Cheng R. S., Letaief K. B., and Murch R. D., "Multicarrier OFDM with adaptive subcarrier, bit, and power allocation," IEEE J. Sel. Areas Commun.,1999, 17(10):1747-1758.
    [79]Chen L.,Krongold B., and Evans J., "Adaptive resource allocation in OFDMA systems with fairness and QoS constraints," European Trans. Telecom.,2007,18:549-562.
    [80]Ergen M., Coleri S., and Varaiya P., "QoS Aware Adaptive Resource Allocation Tech-niques for Fair Scheduling in OFDMA Based Broadband Wireless Access Systems," IEEE Trans. Broadcasting,2003,49(4):362-370.
    [81]Rhee W. and Cioffi J. M., "Increasing in capacity of multiuser OFDM system using dynamic subchannel allocation," in in Proc. IEEE Int. Vehicular Tech. Conf., vol.2, pp.1085-1089, Tokyo, Japan, May 2000.
    [82]Ma Y., "Rate Maximization for Downlink OFDMA With Proportional Fairness," IEEE Trans. Vehicular Tech.,2008,57(5):3267-3274.
    [83]Tao M. X., Liang Y. C., and Zhang F, "Resource allocation for delay differentiated traf-fic in multiuser OFDM systems", IEEE Trans. Wireless Commun.,2008,7(6):2190-2201. June 2008
    [84]I. Kim, I. S. Park, and Y. H. Lee, "Use of linear programming for dynamic subchannel and bit allocation in multiuser OFDM," IEEE Trans. Vehicular Tech.,2006,55(4): 1195-1207.
    [85]Jang J. and Lee K. B., "Transmit Power Adaptation for Multiuser OFDM Systems," IEEE J. Sel. Area Commun.,2003,21(2):2061-2069.
    [86]Yu W., Ginis G., and Cioffi J. M., "Distributed multiuser power control for digital subscriber lines," IEEE J. Sel. Areas Commun.,2002,20(5):1105-1115.
    [87]Palomar D. P. and Fonollosa J. R., "Practical Algorithms for a Family of Waterfilling Solutions," IEEE Trans. Vehicular Tech.,2005,53(2):686-695.
    [88]Li G. Q. and Liu H., "Resource Allocation for OFDMA Relay Networks With Fairness Constraints," IEEE J. Sel. Area Commun.,2006,24(11):2061-2069.
    [89]Bae C. and Cho D., "Fairness-Aware Adaptive Resource Allocation Scheme in Multi-hop OFDMA Systems," IEEE Commun. Letter,2007,11(2):134-136.
    [90]Wang Y., Qu X. C., Wu T., and Liu B. L., "Power Allocation and Subcarrier Pairing Algorithm for Regenerative OFDM Relay System," in Proc. IEEE VTC'07-Spring, pp. 2727-2731.
    [91]Ng T. C. and Yu W., "Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks," IEEE J. Sel. Areas Commun.,2007,25(2):328-339.
    [92]Hammerstrom I. and Wittneben A., "Power Allocation Schemes for Amplify-and-Forward MIMO-OFDM Relay Links," IEEE Trans. Wireless Commun.,2007,6(8): 2798-2802.
    [93]Zhang D. H., Wang Y. Z. and Lu J. H., "Resource Allocation in OFDMA Based Coop-erative Relay Networks," IEEE Globecom Workshop,2008, pp.1-5.
    [94]Abualhaol I. Y. and Matalgah M. M., "Subchannel-Division Adaptive Resource Alloca-tion Technique for Cooperative Relay-Based MIMO/OFDMWireless Communication Systems," in Proc. of IEEE WCNC'08, pp.1002-1007, Mar.2008.
    [95]Zhang D. H., Wang Y. Z. and Lu J. H., "On QoS-Guaranteed Downlink Cooperative OFDMA Systems with Amplify-and-Forward Relays:Optimal Schedule and Resource Allocation," in Proc. of IEEE WCNC'09, pp.1-5, Apr.2009.
    [96]Gunduz D. and Erkip E., "Opportunistic Cooperation by Dynamic Resource Alloca-tion," IEEE Trans. Wireless Commun.,2007,6(4):1446-1454.
    [97]Kim S. J., Wang X. D., and Madihian M., "Optimal Resource Allocation in Multi-hop OFDMA Wireless Networks with Cooperative Relay," IEEE Trans. Wireless Commun., 2008,7(5):1833-1838.
    [98]Gui B. and L. J. Cimini Jr., "Bit Loading Algorithm for Cooperative OFDM Systems," EURASIP J. Wireless Commun. and Networking, vol.2008, pp.1-9.
    [99]Muller C., et. al., "Dynamic Subchannel, Bit and Power Allocation in OFDMA-Based Relay Networks," in Proc. of 12th International OFDM-Workshop, Hamburg, Ger-many, Aug.2007.
    [100]Hammerstrom I. and Wittneben A., "On the Optimal Power Allocation for Nonre-generative OFDM Relay Links," in Proc. IEEE International Conf. on Communica-tions(ICC), Istanbul, Turkey, Jun.2006, pp.4463-4468.
    [101]Weng L. F. and Murch R. D., "Cooperation Strategies and Resource Allocations in Multiuser OFDMA Systems," IEEE Trans.Vehicular Tech.,2009,58(5):2331-2342.
    [102]单冠杭,“无线协作传输系统的资源分配与协议设计,”复旦大学博士学位论文,2009年。
    [103]Zhu H., Himsoon T., Siriwongpairat W. P., and Liu K. J. R. "Resource Allocation for Multiuser Cooperative OFDM Networks:Who Helps Whom and How to Cooperate," IEEE Trans. Vehicular Tech.,2009,58(5):2378-2391.
    [104]Shannon C. E., "A mathematical theory of communication," Bell Syst, Tech. J., Oct. 1948, vol.27:379-423(part one),623-656(part two).
    [105]S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:Cambridge Uni-versity Press,2004.
    [106]Dah-Ming Chiu and Raj Jain, "Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks," Journal of Computer Networks and ISDN, vol.17, no.1, pp.1-14,10 Jun.1989.
    [107]Lee K. D., Yi B. K., Kwon S., and Kim S., "Capacity Planning of OFDMA Cellular Networks with Decode-and-Forward Relaying," in Proc. of IEEE WCNC'08, pp.1911-1915, Mar.2008.
    [108]Suraweera H. A. and Armstrong J., "Performance of OFDM-Based Dual-Hop Amplify-and-Forward Relaying," IEEE Commun. Letter,2007,11(9):726-728.
    [109]Jeong H. and Lee J. H., "Adaptive Relay Selection for Regenerative OFDMA Relay Networks with Fairness Constraints," in Proc. of IEEE VTC'08-Fall, pp.1-5, Sep.2008.
    [110]Lin J. C. H. and Stefanov A., "Asymptotic Analysis of the Choice of Partners in Coded Cooperative OFDM Systems," EUROCON 2005, vol.1, pp.25-28.
    [111]Lin Z., Erkip E., and A. Stefanov, "Cooperative regions for coded cooperative sys-tems," IEEE Trans. Commun.,2006,54(7):1323-1333.
    [112]高伟东,王文博,袁广翔,彭木根,“协作通信中的中继节点选取和功率分配联合优化,”北京邮电大学学报,2008,31(2):68-71。
    [113]Lin Z. and Erkip E.," Relay search algorithms for coded cooperative systems," In Proc. Globecom'05, vol.3, pp.1314-1319, St. Louis, Dec.2005.
    [114]邹玉龙,郑宝玉,崔景伍,陈超,基于跨层机制的的最佳协作中继选择及其系统实现,通信学报,2008,29(8):1-10。
    [115]Ibrahim A. S., Sadek A. K., Su W., and Liu K. J. R., "Cooperative communications with relay-selection:when to cooperate and whom to cooperate with?," IEEE Trans. Wireless Commun.,2008,7 (7), pp.2814-2827.
    [116]吴素文,吕星哉,朱近康,邓单,基于信道统计特性的的中继选择算法,电子与信息学报,2009,31(50):1077-1081。
    [117]Lo C. K., Jr. R.W. Heath, and Vishwanath S., "The Impact of Channel Feedback on Opportunistic Relay Selection for Hybrid-ARQ in Wireless Networks," IEEE Trans. Veh. Tech.,2009,58(3):1255-1268.
    [118]Lo C. K., Jr. R.W. Heath, and Vishwanath S., "Opportunistic relay selection with lim-ited feedback," in Proc. of IEEE 65th Vehicular Technology Conference,22-25 Apr. 2007.
    [119]Hwang K. S. and Ko Y. C., "An Efficient Relay Selection Algorithm for Cooperative Networks," in Proc. IEEE VTC-2007 Fall,2007, pp.81-85.
    [120]Nam S., Yu M., and Tarokh V., "Relay selection methods for wireless cooperative communications," 42nd Annual Report on CISS-2008, Mar.2008, pp.859-864.
    [121]Chen Y, Cheng P., Qiu P., and Zhang Z., "Selection Strategies in Wireless Coopera-tive Networks with Fixed and Variable Transmit Power," In Proc. IEEE WCNC'07, PP. 4083-4087.
    [122]Mahinthan V, Cai L., Mark J. W., and Shen X. (Sherman), "Partner Selection Based on Optimal Power Allocation in Cooperative-Diversity Systems," IEEE Trans. Vehicular Tech.,2008,57(1):511-520.
    [123]Zhao Y, Adve R., and Lim T. J., "Improving amplify-and-forward relay networks: optimal power allocation versus selection," IEEE Trans. Wireless Commun.,2007, 6(8):3114-3123.
    [124]Liu H., Zhu S. H., and Li G. Q., "A Novel Power Allocation and Relay Selection Scheme in AF Cooperative Networks with Mean Channel Gain Information," IEICE Trans. Commun.,2009, E92-B(1):342-345.
    [125]Lo C. K., Vishwanath S., and Jr. R.W. Heath, "Relay Subset Selection in Wireless Networks Using Partial Decode-and-Forward Transmission," IEEE Trans. Veh. Tech., 2009,58(2):692-704.
    [126]Assaad M., "Optimal Fractional Frequency Reuse (FFR) in Multicellular OFDMA Sys-tem," in Proc. IEEE VTC2008-Fall, pp.1-5.
    [127]Marc C. Necker, "Coordinated fractional frequency reuse," in Proc.10th ACM Sympo-sium on Modeling, analysis, and simulation of wireless and mobile systems, Chania, Greece, pp.296-305,2007.
    [128]3GPP R1-050507, Huawei, "Soft frequency reuse scheme for UTRAN LTE," May 2005.
    [129]—-R1-050896, QUALCOMM Europe, "Description and simulations of interference management technique for OFDMA based E-UTRA downlink evaluation," Sep.2005.
    [130]—-R1-050738, Siemens, "Interference mitigation-Considerations and Results on Frequency Reuse," Sep.2005.
    [131]—-R1-050694, Alcatel, "Multi-cell Simulation Results for Interference Co-ordination in New OFDM DL," Sep.2005.
    [132]—-R1-050833, LG, "Interference mitigation in evolved UTRA/UTRAN," Sep.2005.
    [133]—-R1-050764, Ericsson, "Inter-cell Interference Handling for E-UTRA," Sep.2005.
    [134]—-R1-082578, CHTTL and ITRI, "Performance Evaluation of User Grouping Meth-ods for Downlink Soft Frequency Reuse," Jul.2008.
    [135]—-R1-051059, Texas Instruments, "Inter-Cell Interference Mitigation for EUTRA," Oct.2005.
    [136]—-R1-082469, Ericsson, "LTE-Advanced-Coordinated Multipoint transmis-sion/reception," Jul.2008.
    [137]Viswanath P.,. Tse D. N. C, and Laria R., "Opportunistic beamforming using dumb antennas," IEEE Trans. Inf. Theory,2002,48(6):1277-1294.
    [138]3GPP TR 25.814, Rel-7.1.0, "Physical layer aspect for evolved Universal Terrestrial Radio Access (UTRA)," Oct.2006.
    [139]Dianati M., Shen X. M., and Naik K., "Cooperative Fair Scheduling for the Downlink of CDMA Cellular Networks," IEEE Trans. Vehicular Tech.,2007,56(4):1749-1760.
    [140]Kumar M. R., Bhashyam S., and Jalihal D., "Throughput improvement for cell-edge users using selective cooperation in cellular networks," the 5th IFIP International Conference on'WOCN', pp.1-5, May.2008.
    [141]3GPP R1-084400, Qualcomm Europe, "Coordinated Multi-Point downlink transmis-sion in LTE-Advanced," Nov.2008.
    [142]3GPP R1-083069, Ericsson, "LTE-Advanced-Coordinated Multipoint transmis-sion/reception," Aug.2008.
    [143]3GPP Rl-091263, "CoMP Coordinated Scheduling for LTE-A," Mar.2009.
    [144]3GPP R1-091946, Fujistu, "Efficient HARQ Protocol for SIC based DL CoMP," Mar. 2009.
    [145]Pischella M. and Belfiore J., "Achieving a Frequency Reuse Factor of 1 in OFDMA Cel-lular Networks with Cooperative Communications," in Proc. IEEE VTC2008-Spring, pp.653-657.
    [146]Pischella M. and Belfiore J., "Power control in distributed cooperative OFDMA cellu-lar networks," IEEE Trans. Wireless Commun.,2008,7(5):1900-1906.
    [147]Zhang H. Y., Dai H. Y., and Zhou Q., "Base station cooperation for multiuser MIMO: joint transmission and BS selection," Conference on Information Science and Sys-tems, pp.1-6, Mar.2004.
    [148]Marsch P. and Fettweis G., "On Base Station Cooperation Schemes for Downlink Network MIMO under a Constrained Backhaul Network MIMO under a Constrained Backhaul," IEEE Globecom'08, Nov.2008, pp.1-6.
    [149]Zhang J., Rong L, and Hu H. L., "Performance Evaluation of Downlink Interference Coordination Based on Cooperation Between Base Stations," IEEE WiCOM'08, Oct. 2008, pp.1-4.