无线协作传输及其在认知网络中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知技术能够极大的提高系统的频谱利用率,而协作传输能够提高系统容量,认知和协作技术已经成为未来无线通信系统的两个关键技术。在认知网络中,应用协作传输技术,可充分利用了空间分集增益,提高通信性能。
     本文对协作通信中的关键技术及认知网络中的中继传输等问题进行了研究,主要成果如下:
     1.针对单个源节点,单个目的节点,和单个中继节点的情况,给出一种基于自适应中继协议的递增中继传输方案,其中只有当直接传输到目的节点的接收信噪比低于某一门限时,中继节点才会参与协作传输。并且,如果中继节点能够正确接收到信息,则采用解码中继协议重复发送信息。否则,中继节点采用放大中继协议发送信息。目的节点采用最大比值合并接收信号。结果表明自适应中继协议优于已有的固定中继协议。
     2.针对单个源节点,单个目的节点,和单个中继节点的情况,给出一种自适应调制的递增中继传输协议,源节点和中继节点根据中继节点与目的节点的接收信噪比信息,自适应的选择调制方式发送信息。分析了瑞利信道中自适应调制递增中继传输的中断概率和比特错误概率。结果表明该协议能够提高数据通过量,优于已有的自适应调制中继传输协议。
     3.针对无线协作网络中共道干扰影响中继选择的问题,首先给出一种选择协作协议,目的节点采用最大比值合并,选择合并,和混合选择、最大比值合并。并推导了选择协作协议在独立不同分布瑞利信道中的中断概率,推导了选择协作的比特错误概率。接着给出了一种机会中继选择协议,选择具有最大瞬时端到端信号与干扰加噪声比的中继节点转发源节点信息。并且在考虑直接传输时,目的节点分别采用选择合并、最大比值合并,从而充分利用空间分集增益,降低了系统的中断概率。所提协议不需要中继节点之间交互信息,通过竞争的方式完成数据传输,节省了系统开销,具有较好的实用性。
     4.针对认知传输系统中的中继选择问题,为了最小化次级用户的中断概率,给出一种基于门限的递增中继选择协议。在该协议中,所选中继节点产生的干扰小于某一门限值,并且主用户的通信质量不受影响。讨论了该递增中继传输的具体实现方法,并且推导了递增中继传输中次级用户的中断概率。仿真结果表明,相比于直接传输,该协议能够降低次级用户的中断概率。
     5.在无线网络中,源节点经常需要通过多跳中继才能将信息传送到目的节点。同时考虑到网络中节点的能量是有限的,而协作分集通过不同节点之间的合作能够节省发送功率,因此设计能够节省发送功率的协作路由算法是非常重要的。由于在集中式算法中中心节点需要知道网络中其它节点的信息,这在大型无线网络中是很难实现的。因此,在协作传输最优功率分配的基础上,提出了两种分布式协作路由和功率分配算法,分布式分离路由和功率分配算法与分布式联合路由和功率分配算法。结果表明两种分布式算法能够取得近似集中式算法的性能。并且相对于联合协作路由和功率分配算法,分离协作路由和功率分配算法能够更加有效地节省总的发送功率。
     6.在协作传输最优功率分配的基础上,提出一种修正的积累递增广播算法(MCIA),该算法允许多个节点同时传输信息到网络中的其它节点,能够减小广播信息所需的总发送功率。并且考虑到集中式MCIA在大型网络中很难实现,给出了分布式MCIA。分布式MCIA仅需要一跳范围内节点的信息,可以自适应决定协作传输节点的数目。研究结果表明,就总的发送功率而言,MCIA优于已有的广播算法。并且,分布式MCIA能够取得近似集中式MCIA的性能。
Cognitive radio is a promising way to improve the spectral efficiency. The cooperative transmission can improve the system capacity. Cognitive and cooperation are two key techniques for the future wireless communication. In cognitive radio networks, cooperate transmission can make full use of space diversity, and improve the system performance.
     In this dissertation, we mainly engage in the key techniques for the cooperation transmission in cognitive radio systems. The main contributions of the dissertation are as follows:
     1. Under the circumstance of one source, one relay, and one destination, an incremental relaying scheme based on adaptive relaying protocol is presented. Only the signal noise ratio (SNR) at the destination below a threshold, can the relay take part in the cooperative transmission. Moreover, the relay deploys decode and forward (DF) protocol, if the relay can decode the message from the source node correctly. Otherwise, the amplified and forward (AF) protocol is deployed at the relay. The destination decodes the message with the maximal ratio combining (MRC) scheme. Simulation results show the adaptive relaying protocol is better than the existing protocol.
     2. Under the circumstance of one source, one relay, and one destination, an adaptive modulation incremental relaying protocol is presented. As the SNR at the destination is below a threshold, the source and the relay will select the appropriate modulation mode according to the SNR at the relay and destination, respectively. Simulation results show the proposed protocol outperforms the existing adaptive modulation protocol.
     3. Focusing on the problem that co-channel interferences affect the relay selection in the wireless networks, a selection cooperation protocol is firstly proposed. In the protocol, MRC, selection combining (SC) and hybrid MRC and SC schemes are deployed at the destination. The exact outage probability of selection cooperation was derived in Rayleigh fading channels. Moreover, the bit error rate of selection cooperation was derived. Then we propose an opportunistic relaying which selects the relay with maximum instantaneous end-to-end signal to noise-interference ratio (SINR) forwarding the source message. Moreover, as the direct transmission is taken into account, MRC and SC schemes are deployed at the destination to combine the direct transmission and relay transmission, which can make full use of space diversity and decrease the system outage probability. Compared with the existing relay selection protocols, the proposed protocols do not need the information exchange between any two relays, and the data transmission is finished by competition. So the proposed protocols have the low system cost and good practicability.
     4. Under the constraint of spectrum-sharing, we propose a threshold based incremental relaying protocol to minimize the secondary user outage probability in cognitive radio systems, where the interferences caused by the selected relay and the secondary user transmitter are below than an optimal interference threshold. When the proposed protocol is applied in the cognitive radio systems, the outage probability of secondary user is derived in the Rayleigh fading channels. Simulation results show that compared with the direct the transmission, the protocol can decrease the secondary user outage probability.
     5. It is often the case that the source node transmits the message to the destination by several hops in wireless networks, where all nodes are powered by battery with limited energy supply. Cooperative transmission can save the transmission power significantly by making full use of the space diversity, and therefore it is crucial to design the energy efficient cooperative routing and power allocation algorithm in the wireless networks. However, the centralized cooperative routing and power allocation algorithms require the global location knowledge at each node, which is hard to realize in large sensor networks. Hence, in this paper, based on the optimal power allocation in cooperative transmission, two distributed algorithms, Distributed separate route and power allocation algorithm (D-SRPA) and Distributed joint route and power allocation algorithm (D-JRPA), are proposed to minimize the total transmission power. Results show that the proposed distributed algorithms can get the similar performance as the corresponding centralized algorithms. Furthermore, compared with D-JRPA, D-SRPA can save the total transmission power more efficiently.
     6. Based on the optimal power allocation in cooperative transmission, a modified cumulative increment algorithm (MCIA) was proposed. The algorithm permits multiple nodes simultaneously transmitting the message to other nodes in the networks, and can reduce the total transmission power for broadcast. Moreover, considering that the centralized MCIA is hard to realize in large wireless networks, the distributed MCIA was presented. The distributed MCIA requires only 1-hop neighborhood information, and can adaptively determine the number of nodes for transmission. Results show that in terms of total transmission power, MCIA can get a better performance than the existing broadcast algorithms. Furthermore, the performance of distributed MCIA is close to that of centralized MCIA.
引文
[1] J. Mitola III,“Cognitive radio for flexible mobile multimedia communication,”in Proc IEEE International Workshop On Mobile Multimedia Communications. pp.3-l0, Nov. 1999.
    [2] J. Mitola III,“Cognitive radio: an integrated agent architecture for software defined radio,”PhD Thesis, KTH Royal Institute of Technology, 2000.
    [3] A. Sahai, N. Hoven, and R.Tandra,“Some fundamental limits on cognitive radio,”in Proc Allerton Conf, Oct. 2004.
    [4] W. A. Gardner and C. M. Spooner,“Signal interception: Performance advantages of cyclic-feature detectors,”IEEE Trans. Commun., Vol. 40, pp. 149–159, Jan. 1992.
    [5] N. Han, S. Shon, J. H. Chung, and J. M. Kim,“Spectral Correlation Based Signal Detection Method for Spectrum Sensing in IEEE 802.22 WRAN systems,”in Proc International Conference Advanced Communication Technology, ICACT pp.1765–1770, Feb. 2006.
    [6] L. Jarmo, K. Visa., H. Anu, and P. H. Vincent,“Spectrum Sensing in Cognitive Radios Based on Multiple Cyclic Frequencies,”International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom, pp. 37-43, 2007.
    [7] S. Haykin,“Cognitive Radio: Brain-Empowered Wireless Communicadons,”IEEE J. Sel. Areas Commun., Vol.23, No.2, pp. 201-220, 2005.
    [8] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and M, Shantidev,“Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey,”EISEVIER Computer Networks. pp.2127-2159, Oct. 2006.
    [9] V. Brik, E.Rozner, S.Banarjee, and P.Bahl,“DSAP: a Protocol for Coordinated Spectrum Acccss,”IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 611-614, 2005.
    [10] C. Raman, R. D. Yates, and N. B.Mandayam,“Scheduling Variable Rate Links via a Spectrum Server,”IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 110-118, 2005.
    [11] S. A. Zekavat and X. Li,“User-central wireless system: Ultimate dynamic channel allocation,”IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 82-87, 2005.
    [12] H. Zheng and L. Cao,“Device-Centric Spectrum Management,”IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp.56-65, 2005.
    [13] A. Ghasemi and E. S. Sousa,“Collaborative Spectrum Sensing for Opportunistic Access in Fading Environments,”IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 131–136, 2005.
    [14] A. Ghasemi and E. S. Sousa,“Spectrum Sensing in Cognitive Radio Networks: The Cooperation-Processing Tradeoff,”Wireless Commun.and Mobile Comput, Vol. 7, No. 9, pp. 1049–1060, Nov. 2007.
    [15] A. Ghasemi and E. S. Sousa,“Opportunistic Spectrum Access in Fading Channels Through Collobrative Sensing,”Journal of. Commun., Vol. 2, No. 2, pp. 71–82, Mar. 2007.
    [16] A. Sendonaris, E. Erkip, and B. Aazhang,“User Cooperation Diversity. Part I. System Description,”IEEE Trans. Commun., Vol. 51, No. 11, pp.1927-1938, Nov. 2003.
    [17] A. Sendonaris, E. Erkip, and B. Aazhang,“User Cooperation Diversity. Part II. Implementation Aspects and Performance Analysis,”IEEE Trans. Commun., Vol. 51, No. 11, pp.1939-1948, Nov. 2003.
    [18] C. Tm and E. Aa,“Capacity Theorems for the Relay Channel,”IEEE Trans. Inf. Theory, Vol. 25, No. 5, pp. 572-584, 1979.
    [19] H. M. A and Zhang Js,“Capcity Bounds and Power Allocation for Wireless Relay Channels,”IEEE Trans. Inf. Theory, Vol.51, No.6. pp. 2020-2040, 2005.
    [20] J. N. Laneman, D.N.C. Tse, and G. W. Wornell,“Cooperative Diversity in Wireless Networks Efficient Protocols and Outage Behavior,”IEEE Trans. Inf. Theory, Vol. 50, No.12 ,pp. 3062-3080, Dec. 2004.
    [21] A. Stefanov and E. Erkip,“Cooperative Coding for Wireless Networks,”IEEE Trans. Commun., Vol. 52, No. 9, pp.1470-11476, Sep. 2004.
    [22] A. Stefanov and E. Erkip,“Cooperative Space-Time Coding for Wireless Networks,”IEEE Trans. Commun., Vol. 53, No. 11, pp.1804-1809, Nov. 2005.
    [23] D. S. Michalopoulos and G. K. Karagiannidis,“Performance Analysis of Single Relay Selection in Rayleigh Fading,”IEEE Trans. Wireless Commun., Vol. 7, No. 10, pp. 3718-3724, 2008.
    [24] S. S. Ikki and M. H. Ahmed,“On the Performance of Amplify-and-Forward Cooperative Diversity with the Nth Best-Relay Selection Scheme,”IEEE International Conference on Communications (ICC), 2009.
    [25] S. S. Ikki and M. H. Ahmed,“On the Performance of Adaptive Decode-and-Forward Cooperative Diversity with the Nth Best-Relay Selection Scheme,”IEEE Global Telecommunications Conference (Globalcom), 2009.
    [26] J. Hu and N. C. Beaulieu,“Closed-form Expressions for the Outage and Error Probabilities of Decode-and-Forward Relaying in Dissimilar Rayleigh Fading Channels ,”IEEE ICC, 2007.
    [27] N. C. Beaulieu and J. Hu,“Closed-form Expressions for the Error Probabilities of Decode-and-Forward Relaying in Dissimilar Rayleigh Fading Channels,”IEEE Commun. Lett., 2007.
    [28] T. W. Ban, B. C. Jung, D. K. Sung, and W Choi,“Performance Analysis of Two Relay Selection Schemes for Cooperative Diversity,”IEEE PIMRC, 2007.
    [29] F. A. onat, Y. Fan, H. Yanikomeroglu, and H. V. Poor,“Threshold Based Relay Selection in Cooperative Wireless Networks,”IEEE Globalcom, 2008.
    [30] F. A. onat, Y. Fan, H. Yanikomeroglu, J. S. Thompson, and H. V. Poor,“Threshold Selection for SNR-Based Digital Relaying in Cooperative Wireless Networks,”, IEEE Trans. Wireless Commun., Vol. 7, No. 11, Nov. 2008.
    [31] B. Zhu and W. Cheng,“Outage Probability of Multi-node Cooperative Threshold Selection MRC System,”IEEE Globalcom, 2006.
    [32] M. O. Hasna and M. S. Alouini,“Optimal Power Allocation for Relayed Transmissions over Rayleigh-fading Channels,”IEEE Trans. Wireless Commun., Vol. 3, No. 6, pp. 1999-2004, Nov. 2004.
    [33] E. G. Larsson and Y. Cao,“Collaborative Transmit Diversity with Adaptive Radio Resource and Power Allocation,”IEEE Commun. Lett., Vol. 9,No. 6, pp.511-513, Jun. 2005.
    [34] C. T. K. Ng and A. J. Goldsmith,“Capacity and Power Allocation for Transmitter and Receiver Cooperation in Fading Channels,”IEEE ICC, pp. 3741-3746, 2006.
    [35] J. Luo, R. S. Blum, and L. Cimini,“Power Allocation in a Transmit Diversity System with Mean Channel Gain Information,”IEEE Commun. Lett., Vol. 9, No. 7, pp. 616-618, Jul. 2005.
    [36] X. Deng and A. M. Haimovich,“Power Allocation for Cooperative Relaying in Wireless Networks,”IEEE Commun. Lett., Vol.9, No.11, pp. 994-996, Nov. 2005.
    [37] R. Annavajjala, P. C. Cosman, and B. Milstein,“Statistical Channel Knowledge-Based Optimum Power Allocation for Relaying Protocols in High SNR Regime,”IEEE J. Sel. Areas Commun., Vol. 25, No. 2, pp.292-305, Feb. 2007.
    [38] N. Ahmed, M. Khojastepour, and B. Aazhang,“Outage minimization and optimal power control for the fading relay channel,”IEEE Info. Theory Workshop, San Antonio, Oct. 2004.
    [39] Y. Liang and V. V. Veeravalli,“Resource Allocation for Wireless Relay Channels,”in Proc Asilomar Conference on Signals, Systems and Computers, pp. 1902-1906, Nov. 2004.
    [40] D. Gunduz and E. Erkip,“Outage Minimization by Opportunistic Cooperation,”in Proc.WirelessCom, Symposium on Information Theory, 2005.
    [41] I. Hammerstrom, M. Kuhn, and A. Wittneben,“Impact of Relay Gain Allocation on the Performance of Cooperative Diversity Networks,”IEEE Veh. Tech. Conf. (VTC), pp. 1815-1819, Sep. 2004.
    [42] Z. Qi, Z. J, S. C, W. Ying, P. Zhang, and H. Rong,“Power Allocation for Regenerative Relay Channel with Rayleigh Fading,”IEEE Veh. Tech. Conf. (VTC), pp. 1167-1171, May 2004.
    [43] Z. Jingmei, Z. Qi, S. Chunju, W. Ying, Z. Zhang, and P. Zhang,“Adaptive Optimal Transmit Power Allocation for Two-Hop Non-Regenerative Wireless Relaying Systems,”IEEE Veh. Tech. Conf. (VTC), pp. 1213-1217, May. 2004.
    [44] J. Zhang, Y. Wang, and P. Zhang,“STC-based Cooperative Relaying System with Adaptive Power Allocation,”Lecture Notes in Comp. Science, Vol. 3510, pp. 343-353, Jan. 2005.
    [45] M. Chen, S. Serbetli, and A. Yener,“Distributed Power Allocation for Parallel Relay Networks,”IEEE Globalcom, 2005.
    [46] M. Chen, S. Serbetli, and A. Yener,“Distributed Power Allocation Strategies for Parallel Relay Networks,”IEEE Trans. Wireless Commun., Vol.7, No.3, Feb. 2008.
    [47] Y. Zhang, Y. Xu, and Y Cai,“Relay Selection Utilizing Power Control for Decode-and-Forward Wireless Relay Networks”Signal Processing and Communication Systems, pp. 1-5;Dec. 2008.
    [48] P. Zhang; Z. Xu; F. Wang; X. Xie, and L. Tu,“A relay Assignment Algorithm with Interference Mitigation for Cooperative Communication,”IEEE Wireless Communications and Networking Conference (WCNC), 2009.
    [49] B Wang, H. Zhu, and K. J. R. Liu,“Distributed Relay Selection and Power Control for Multiuser Cooperative Communication Networks Using Buyer/Seller Game;”IEEE International Conference on Computer Communications (INFOCOM), pp.544– 552, 2007.
    [50] S. Zhou, H. Xiao, and Z. Niu,“Distributed Power Control for Interference-Limited Cooperative Relay Networks”ICC. 2009.
    [51] L. Fulu, W. Kui, and A. Lippman,“Minimum Energy Cooperative Path Routing in Wireless Networks: An Integer Programming Formulation,”IEEE VTC Spring. 2006.
    [52] Yang Z G, Liu J H, Host-Maden A,“Cooperative routing and power allocation in ad-hoc networks,”IEEE Globalcom. 2005.
    [53] L. Fulu, W. Kui, and A. Lippman,“Energy-efficient cooperative routing in multi-hop wireless ad hoc networks,”IEEE International Performance, Computing, and Communicaitons Conference, pp. 215-222, 2006.
    [54] A E Khanani, A J Abounadi, E. Modiano,“cooperative routing in wireless networks,”.in Proc of Allerton Conference. 2003.
    [55] Khandani A E, Abounadi J, Modiano E.“Cooperative routing in static wireless networks,”IEEE Trans. Commun., Vol. 55, No. 11, pp.2185-2192, 2007.
    [56] Cheung M H, Lok T M.“Cooperative routing in UWB wireless networksp,”IEEE WCNC. 2007.
    [57] Brahim S A and H. Zhu.“Distributed energy-efficient cooperative routing in wireless networks,”IEEE Globalcom, pp. 4413-4418, 2007.
    [58] J. Zhang and Q. Zhang,“Cooperative routing in multi-source multi-destination multi-hop wireless networks,”IEEE INFOCOM, pp. 306-310, 2008.
    [59] Kurth M, Zubow A, Redlich. J P.“Cooperative opportunistic routing using transmit diversity in wireless Mesh networks,”IEEE INFOCOM, pp.1984-1992. 2008.
    [60] H. Luo, Z. Zhang, and Yu G,“Cognitive cooperative relaing,”IEEE ICCS, pp 1499-1503, 2008.
    [61] S Osvaldo, B. N. Yeheskel, and S. Umberto,“Stable throughput of cognitive radios with and without relaying capability,”IEEE Trans. Commun., Vol. 55, No. 12, pp. 2351-2360, 2007.
    [62] Guo Y, Kang G, Zhang N, et al.“Outage performance of relay assisted cognitive radio system under spectrum sharing constraints,”IEE Electro lett. Vol. 46, No. 2, 2010.
    [63] J Jia, J Zhang, and Q Zhang,“Cooperative Relay for Cognitive Radio Network,”IEEE INFOCOM. 2009.
    [64] J Jia, J Zhang, and Q. Zhang,“Relay-assisted Routing in Cognitive Radio Networks,”IEEE ICC. 2009.
    [65] M. Xie, W. Zhang, and K. Wong.“A Geometric Approach to Improve Spectrum Efficiency for Cognitive Relay Networks,”IEEE Trans. Wireless Commun., Vol. 9, No. 1, Jan, 2010.
    [66] J. Mietzner, L. Lampe, and R. Schober,“Performance Analysis for a Fully Decentralized Transmit Power Allocation Scheme for Relay-assisted Cognitive-radio Systems,”IEEE Globalcom, 2008.
    [67] J. Mietzner, L. Lampe, and R. Schober,“Distributed Transmit Power Allocation for Multihop Cognitive-Radio Systems,”IEEE Trans. Wireless Commun., Vol. 8, No. 10, Oct, 2009.
    [68] X. Zhang and N. C. Beaulieu,“SER and Outage of Threshold-Based Hybrid Selection/maximal-ratio Combining over Generalized Fading Channels,”IEEE Trans. Commun., Vol. 52, No.12, pp.2143-2153, Dec. 2004.
    [69] W. Su, A. K. Sadek, and K. J. R. Liu,“SER Performance Analysis and Optimum Power Allocation for Decode-and-Forward Cooperation Protocol in Wireless Networks,”IEEE WCNC, pp. 984-989, 2005.
    [70] P. A. Anghel and M. Kaveh,“Exact Symbol Error Probability of a Cooperative Network in a Rayleigh-Fading Environment,”IEEE Trans. Wireless Commun., Vol. 3, No. 5, pp. 1416-1421, Sep. 2004.
    [71] L. L. Yang and H. H. Chen,“Error Probability of Digital Communications Using Relay Diversity over Nakagami-m Fading Channels,”IEEE Trans. Wireless Commun., Vol. 7, No.5, pp.1806-1811.May, 2008.
    [72] T. Q. Duong and H. J. Zepernick,“Hybrid Decode-Amplify-Forward Cooperative Communications with Multiple Relays,”IEEE WCNC, 2009.
    [73] Y. Li, B. Vucetic, Z. Chen, and J. Yuan,“An Improved Relay Selection Scheme with Hybrid Relaying Protocols,”IEEE Globalcom, pp. 3704-3708, 2007.
    [74] F. A. Onat, Y. Fan, H Yanikomeroglu, and J. S. Thompson,“Asymptotic BER Analysis of Threshold Digital Relaying Schemes in Cooperative Wireless Systems,”IEEE Trans. Wireless Commun., Vol. 7, No. 12, pp.4938-4947, Dec. 2008.
    [75] S. Ikki and M. H. Ahmed,“Performance Analysis of Incremental Relaying Cooperative Diversity Networks over Rayleigh Fading Channels,”IEEE WCNC, pp. 1311-1315. 2008
    [76] M. O. Hasna and M. S. Alouini,“End-to-End Performance of Transmission Systems with Relays over Rayleigh-Fading Channels,”IEEE Trans. Wireless Commun., Vol. 2, No. 6, pp.1126-1131, Nov. 2003.
    [77]盛骤,谢式千,潘承毅,概率论与数理统计,高等教育出版社.
    [78] K. S. Hwang, Y. C. Ko, and M. S. Alouini,“Performance Analysis of Incremental Opportunistic Realying over Identically and Non-indentically Distributed Cooperative Paths,”IEEE Trans. Wireless Commun., Vol. 8, No.4, pp.1953-1961, Nov. 2009.
    [79] J. M. Torrance and L. Hanzo,“Upper bound performance of adaptive modulation in a slow Rayleigh fading channels,”IEE Electro. Lett., Vol. 32, No. 8 pp. 718-719, April, 1996.
    [80] Y. Zhao, R. Raj, T. J. Lim,“Outage Probability at Arbitrary SNR with Cooperative Diversity,”IEEE Commun. Lett., Vol. 9, No. 8, pp. 700-703, 2005.
    [81] S. S. Ikki, M. H. Ahmed,“Performance Analysis of Generalized Selection Combining for Amplify-and-forward Cooperative-Diversity Networks,”IEEE ICC, 2009.
    [82] A. Bletsas, A. Lippman, and D. P. Reed,“A Simple Cooperative Diversity Method Based on Network Path Selection,”IEEE J. Sel. Areas Commun., Vol. 24, No. 3, pp. 659-672, 2006.
    [83] A. Bletsas, H Shin, and M. Z. Win.“Cooperative Communications with Outage-Optimal Opportunistic Relaying,”IEEE Trans. Wireless Commun., Vol. 6, No. 9, pp. 3450-3460, 2007.
    [84] E. Beres and R. Adve,“Outage Probability of Selection Cooperation in the Low to Medium SNR Regime,”IEEE Commun. Lett., Vol. 11, No. 7, pp. 589-591, 2007.
    [85] K Woradit, T. Q. S. Quek, W. Suwansantisuk, H. Wymeersch, L. Wuttisttikulkij, and M. Z. Win,“Outage Behavior of Selective Relaying Schemes,”IEEE Trans . Wireless Commu., Vol. 8, No. 8, pp. 3890-3895, Aug. 2009.
    [86] I. Krikidis, J. S. Thpmpson, S. Mclaughlin, and N. Goertz.“Max-Min Relay Selection for Legacy Amplify-and-Forward Systems with Interference,”IEEE Trans. Wireless Commun., Vol. 8, No. 6, pp. 3016-3027, Jun. 2009.
    [87] D. Lee, J. H. Lee.“Outage Probability for Opportunistic Relaying on Multicell Environment,”IEEE VTC, 2009.
    [88] Goldsmith A. Wireless Communications. Cambridge University Press, pp. 102-130, 2005.
    [89] Chayawan. C and Aalo. V. A,“Average Error Probability of Digital Cellular Radio Systems Using MRC Diversity in the Presence of Multiple Interferers,”IEEE Trans. Wireless Commun., Vol. 2, No. 5, pp. 860-864, Sep. 2003.
    [90] Aalo. V. A and Chayawan. C,“Outage Probability of Cellular Radio Systems Using Maximal Ratio Combining in Rayleigh Fading Channel with Multiple Interferers,”IEE Electro. Lett., Vol. 36, No. 15, pp.1314-1315, 2000.
    [91]王竹溪,郭敦仁.特殊函数概论.北京大学出版社. pp. 289-327. 2004.
    [92]实用积分表.中国科学技术大学出版社. pp. 220-227. 2006.
    [93] Parker P A, Mitran P, and Bliss D. W,“On Bounds and Algorithm for Frequency Aynchronization for Collaborative Communication Systems,”IEEE Trans. Signal Processing, Vol. 56, No. 8, pp. 3742-3752, 2008.
    [94] Savazzi S and Spagnolini U,“Energy Aware Power Allocation Strategies for Multihop-cooperative Transmission Schemes,”IEEE J. Sel. Areas Commun., Vol. 25,No. 2, pp. 318-327, Feb. 2007.
    [95] Zorzi M and Rao R. R,“Geographic Random Forwarding for Ad hoc and Sensor Networks: Energy and Latency Performance,”IEEE Trans. Mobile Computing, Vol. 2, No. 3, pp. 349-365, 2003.
    [96] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides,“On the Construction of Energy–Efficient Broadcast and Multicast Trees in Wireless Networks,”IEEE INFOCOM, pp. 585-594, 2000.
    [97] Li. D, X. Jia, and H.Liu,“Energy Efficient Broadcast Routing in Ad hoc Wireless Networks,”IEEE Trans. Mobile Computing, Vol. 3, No. 2, pp. 144-151, 2004.
    [98] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides,“The Energy Efficiency of Distributed Algorithms for Broadcasting in Ad hoc Networks,”In Proc. IEEE Int. Symp. Wireless Personal Multimeidia Communications (WPMC), pp. 499-503, Oct. 2002.
    [99] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides,“A Distributed Algorithms for Energy-Efficient Broadcasting in Ad hoc Networks,”IEEE Milcom, 2002.
    [100] G. Jakllari, S. V. Krishnamurthy, M. Faloutsos, and V. Krishnamurthy,“On Broadcasting with Cooperative Diversity in Multi-hop Wireless Networks, IEEE J. Sel. Areas Commun., Vol. 25, No. 2, pp. 484-496, Feb. 2007.
    [101] I. Maric, R. D. Yates,“Cooperative Multihop Broadcast for Wireless Networks,”IEEE J. Sel. Areas Commun., Vol. 22, No.6, pp.1080-1088, Aug. 2004.
    [102] Y. W. Hong and A. Scaglione,“Energy-Efficient Broadcasting with Cooperative Transmissions in Wireless Sensor Networks,”IEEE Trans. Wireless Commun., Vol. 5, No. 10, pp. 2844-2855, Oct. 2006.