微网系统的运行优化与能量管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为了充分发挥可再生能源发电等分布式能源系统的效益,微网的集成与控制成为研究热点,这也是智能电网建设中的一个重要组成部分。微网作为一种新型能源网络化供应与管理技术,便利了分布式能源系统的接入,同时可实现需求侧管理及现有能源的最大化利用。它具有灵活的运行方式和可调度性能,可实现自我控制、保护和管理等自治功能。本文围绕微网系统的运行优化与能量管理展开研究,主要研究内容有:
     (1)基于深入调研国内外关于微网技术的发展及研究现状,侧重从技术内涵角度归纳总结出微网研究中的关键技术,包括微网系统的建模与仿真、微网系统的运行控制与能量管理、微网系统的环境与经济性评估等五个方面;
     (2)对照常规电力系统的运行控制结构与方法,详细描述了微网研究领域目前所提出的两种运行控制结构,针对微网系统包含电力电子控制器类型的分布式能源单元的情形,归纳出微网系统孤岛运行期间可供采用的三种类型运行控制方法,并对这些方法的特点和适用场合进行了对比分析,同时,在充分继承常规电力系统能量管理研究成果基础上,结合考虑分布式能源发电与常规能源发电系统的异同、分布式能源的引入所带来的影响,归纳出微网系统的能量管理研究范畴内需要着重关注的几个方面;
     (3)选取技术相对成熟、发展前景较好、可实施性较强的几种分布式发电技术,研究分析其相关特性,明确了其用于能量管理的稳态模型,建立了一种集中控制式微网系统的经济运行优化模型,提出运行成本最低、折旧成本最低、环境效益最高和综合效益最高四种优化目标函数,以及微网系统运行过程中所可能采用的三种交互式运行控制策略,采用以锦标赛选择、单点交叉、高斯变异的改进遗传算法为求解问题的优化算法,通过算例仿真探讨了多种因素对系统运行优化结果的影响,仿真结果验证了所提模型的合理性;
     (4)由于可再生能源发电所具有的间歇性使得微网系统承受扰动的能力相对较弱,储能技术受到了广泛的关注,文中对比分析了多种能量型和功率型储能技术的应用场合、技术分类、自身特性、研发进展和运用现状,对在微网系统中有较好应用前景的钠硫电池、锂离子电池和全钒氧化还原液流电池三种新型电池储能技术的主要技术参数和特点进行了阐述,选取钠硫电池这一适用于电力系统应用、适应范围广且已实现批量生产的设备为储能研究对象,在进一步完善微网系统的经济运行优化模型基础上,考虑钠硫电池储能的参与及其运行影响,以其实现削峰填谷应用为例,提出一种包含钠硫电池储能的微网系统经济运行优化模型,并通过设计多种场景进行详细对比分析,实现了仿真验证;
     (5)介绍了能量管理系统的发展概况,进行了微网能量管理方面的框架研究,分析归纳出微网能量管理系统与传统能量管理系统的不同点,以及微网能量管理系统在研制开发过程中有待关注的几个方面,给出微网能量管理系统应实现的关键功能,明确了一种微网能量管理系统的设计目标及体系结构,并对微网能量管理系统中经济运行优化应用软件的设计开发进行了重点阐述。
In recent years, in order to make full use of distributed energy resources, many attentions are paid to integration and operation control of microgrid, which is also an important part of smart grid. As a new energy supply and network management technology, microgrid could allow renewable and clean resources to penetrate into a utility. At the same time, it could achieve demand-side management and maximum utilization of existing energy. It is flexible and dispatchable, namely it could operate in grid-connected or stand-alone mode and could switch between the two modes seamlessly. This paper focuses on issues related to the operation optimization and energy management of microgrid.
     First of all, this paper gives an in-depth study of development and research about microgrid at home and abroad. From the viewpoint of technical connotation, the present research situation of key technologies for the microgrid is reviewed. These technologies include such as modeling and simulation research in component-level and system-level, issues related to operation control and energy management, microgrid environmental and economic evaluation.
     Secondly, in contrast to traditional power system, two kinds of current structure and three types of operational control methods for microgrid during the stand-alone mode are summarized and described in detail. The characteristics and application occasions of those methods are compared. Besides, based on existing achievements of energy management, the author sums up several aspects, which are about new generation of energy management for microgrid and should be paid more attention, taking into account the impacts, similarities and differences between traditional energy generation systems and distributed generation systems.
     Thirdly, this paper selects some distributed generation technologies as objects, which are relatively mature and have better prospects. And their relevant features are studied and analysed. Then, based on steady state characteristics of these distributed generators, this paper proposes an optimization and dispatch model of microgrids in centralized control, objective functions with minimizing the cost of operation or depreciation and maximizing environmental or comprehensive benefit, and three interactive operational control strategies. The problem is figured out by improved genetic algorithm adopting tournament selection, single-point crossover and Gaussian mutation. In addition, the model is validated by studying a specified case with different factors.
     Then, energy storage technologies have been widespread concerned, because microgrid that includes intermittent renewable energy power generations could withstand relatively weak disturbances. The paper gives a review on energy storage technologies. The technical data and characteristics of NAS battery, lithium-ion batteries and vanadium redox flow battery are described in detail. NAS battery is then selected as the object. It is commercial and suitable in power system application. The battery also has various performances. Considering the operational modes and impact of battery, an economic operation optimization model for microgrids including NAS battery has been proposed. Furthermore, the model is validated by studying a specified case with a variety of scenarios.
     Finally, framework of microgrid energy management system is researched in this part. The differences between microgrid energy management system and traditional energy management system are pointed out. A survey of microgrid energy management system is presented. These aspects are mainly composed of development issues, key functions, design objectives and architecture about software. And, withal, the application of economic operation optimization for microgrids is elaborated.
引文
[1]国家发展和改革委员会.可再生能源发展“十一五”规划[R].北京. 2008
    [2]中华人民共和国可再生能源法[M].北京. 2005
    [3]中华人民共和国国务院新闻办公室.中国的能源状况与政策[R]. 2007
    [4] Agency International Energy. World Energy Outlook[R]. 2009
    [5]中国经济信息网. 2010年中国新能源行业年度报告[R]. 2010
    [6] Begovi? M.,Pregelj A.,Rohatgi A.,et al. Impact of Renewable Distributed Generation on Power Systems[M]. Hawaii. 2001
    [7]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化. 2001,25(12):53-56
    [8] Lasseter R. Distributed Generation[R]: PSERC. 2003
    [9]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化. 2005,29(24):90-97
    [10] Lasseter R. H. The Role of Distributed Energy Resources in Future Electric Power Systems[R]: University of Wisconsin. 2006
    [11] Costa P. M.,Matos M. A. Loss Allocation in Distribution Networks with Embedded Generation [J]. IEEE Transactions on Power Systems. 2004,19(1):384-389
    [12] Xu Ding,Girgis A. A. Optimal load shedding strategy in power systems with distributed generation[C]. 2001:788-793
    [13] Hegazy Y. G.,Chikhani A. Y. Intention islanding of distributed generation for reliability enhancement[C]. 2003
    [14]王敏,丁明.分布式发电及其效益[J].合肥工业大学学报. 2004,27(4):354-358
    [15] Brahma S. M.,Girgis A. A. Development of adaptive protection scheme for distribution systems with high penetration of distributed generation[J]. IEEE Transactions on Power Delivery. 2004,19(1):56-63
    [16]陈琳,钟金,倪以信等.含分布式发电的配电网无功优化[J].电力系统自动化. 2006,30(14):20-24
    [17]吴汕,梅天华,龚建荣等.分布式发电引起的电压波动和闪变[J].能源工程. 2006(4):54-58
    [18] IEEE. IEEE standard for interconnecting distributed resources with electric power systems[S]. 2003
    [19] Lasseter R. H.,Akhil A.,Marnay C.,et al. Integration of distributed energy resources:the CERTS microgrid concept[R]: USA:Consortium for Electric Reliability Technology Solutions.2002
    [20] Piagi P.,Lasseter R. H. Control and design of microgrid components [R]: USA:Power Systems Engineering Research Center. 2006
    [21] Kojima Y.,Koshio M.,Nakamura S.,et al. A demonstration project in hachinohe:microgrid with private distribution line[C]. San Antonio,TX,USA. 2007: 1-6
    [22] Hatziargyriou N.,Asano H.,Iravani R.,et al. Microgrids[J]. IEEE Power and Energy Magazine. 2007,5(4):78-94
    [23] Morozumi S.,Kikuchi S.,Chiba Y.,et al. Distribution technology development and demonstration projects in Japan[C]. Pittsburgh,Pennsylvania,USA. 2008: 1-7
    [24] Driesen J.,Katiraei F. Design for distributed energy resources[J]. IEEE Power and Energy Magazine. 2008,6(3):30-39
    [25] Kroposki B.,Lasseter R.,Ise T.,et al. Making microgrids work [J]. IEEE Power and Energy Magazine. 2008,6(3):40-53
    [26] Katiraei F.,Iravani R.,Hatziargyriou N.,et al. Microgrids management[J]. IEEE Power and Energy Magazine. 2008,6(3):54-65
    [27] Marnay C.,Asano H.,Papathanassiou S.,et al. Policymaking for microgrids[J]. IEEE Power and Energy Magazine. 2008,6(3):66-77
    [28] Dimeas A. L.,Hatziargyriou N. D. Agent based control for microgrids[C]. Tampa,FL,USA. 2007: 1-5
    [29] Bose S.,Liu Y.,Bahei-Eldin K.,et al. Tieline controls in microgrid applications[C]. Charleston,South Carolina,USA. 2007: 1-9
    [30] Tsikalakis A. G. , Hatziargyriou N. D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion. 2008,23(1):241-248
    [31]鲁宗相,王彩霞,闵勇等.微电网研究综述[J].电力系统自动化. 2007,31(19):100-107
    [32]钱科军,袁越,石晓丹等.分布式发电的环境效益分析[J].中国电机工程学报. 2008,28(29):11-15
    [33]郑漳华,艾芊.微电网的研究现状及在我国的应用前景[J].电网技术. 2008,32(16):27-31
    [34]伍磊,袁越,季侃等.微型电网及其在防震减灾中的应用[J].电网技术. 2008,32(16):32-36
    [35]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术. 2009,33(11):6-11
    [36]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报. 2009,29(34):1-8
    [37]茆美琴,丁明,张榴晨等.多能源发电微网实验平台及其能量管理信息集成[J].电力系统自动化. 2010,34(1):106-111
    [38]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化. 2010,34(2):10-14, 23
    [39]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化. 2008,32(20):1-4
    [40] Barnes M.,Kondoh J.,Asano H.,et al. Real-World MicroGrids-An Overview [C]. San Antonio, TX, USA. 2007: 1-8
    [41]欧盟微网项目组. http://www.microgrids.eu
    [42]袁越,李振杰,冯宇等.中国发展微网的目的方向前景[J].电力系统自动化. 2010,34(1):59-63
    [43] Kueck J. D.,Staunton R. H.,Labinov S. D.,et al. Microgrid energy management system[R]: USA:Consortium for Electric Reliability Technology Solutions. 2003
    [44] Firestone R.,Marnay C. Energy manager design for microgrids[R]: USA:Ernest Orlando Lawrence Berkeley National Laboratory. 2005
    [45] Madureira A.,Moreira C.,Lopes J. P. Secondary load-frequency control for microgrids in islanded operation[C]. Spain. 2005
    [46] Celli G.,Pilo F.,Pisano G.,et al. Optimal participation of a microgrid to the energy market with an intelligent EMS[C]. Singapore. 2005: 663-668
    [47] Lopes J. A. P.,Moreira C. L.,Madureira A. G.,et al. Control strategies for microgrids emergency operation[C]. Amsterdam, Netherlands. 2005
    [48] Hernandez-Aramburo C. A.,Green T. C.,Mugniot N. Fuel consumption minimization of a microgrid[J]. IEEE Transactions on Industry Applications. 2005,41(3):673-681
    [49] Hatziargyriou N. D.,Dimeas A.,Tsikalakis A. G.,et al. Management of microgrids in market environment[C]. Amsterdam, Netherlands. 2005
    [50] Pedrasa M. A.,Spooner T. A survey of techniques used to control microgrid generation and storage during island operation[C]. Melbourne, Australia. 2006
    [51] Lopes J. A. P.,Moreira C. L.,Madureira A. G. Defining control strategies for microgrids islanded operation[J]. IEEE Transactions on Power Systems. 2006,21(2):916-924
    [52] Rahman S.,Pipattanasomporn M.,Teklu Y. Intelligent distributed autonomous power systems(IDAPS)[C]. Tampa,FL,USA. 2007: 1-8
    [53] Green T. C.,Prodanovi? M. Control of inverter-based micro-grids[J]. Electric Power Systems Research. 2007,77(9):1204-1213
    [54] Barklund E.,Pogaku N.,Prodanovic M.,et al. Energy management system with stability constraints for stand-alone autonomous microgrid[C]. San Antonio,TX,USA. 2007
    [55] Borghetti A.,Bosetti M.,Bossi C.,et al. An energy resource scheduler implemented in the automatic management system of a microgrid test facility[C]. Capri, Italy. 2007: 94-100
    [56] Bae In-Su,Kim Jin-O. Reliability evaluation of customers in a microgrid[J]. IEEE Transactions on Power Systems. 2008,23(3):1416-1422
    [57] Bando S.,Sasaki Y.,Asano H.,et al. Balancing control method of a microgrid with intermittent renewable energy generators and small battery storage[C]. Pittsburgh, Pennsylvania, USA. 2008: 1-6
    [58] Hawkes A. D.,Leach M. A. Modelling high level system design and unit commitment for a microgrid[J]. Applied Energy. 2009,86(17):1253-1265
    [59] Vallem M. R.,Mitra J. Siting and sizing of distributed generation for optimal microgrid architecture[C]. Ames, USA. 2005: 611-616
    [60] Asano H.,Watanabe H.,Bando S. Methodology to design the capacity of a microgrid[C]. San Antonio, TX, USA. 2007: 1-6
    [61]刘维烈主编.电力系统调频与自动发电控制[M].北京:中国电力出版社. 2006
    [62] Morozumi S. Micro-grid demonstration projects in Japan[C]. Nogoya, Japan. 2007: 635-642
    [63] Gil N. J.,Lopes J. A. P. Hierarchical Frequency Control Scheme for Islanded Multi-Microgrids Operation[C]. Lausanne, Switzerland. 2007: 473-478
    [64] Pedrasa M. A.,Spooner T. A survey of techniques used to control microgrid generation and storage during islanded operation[C]. Melbourne, Australia. 2006
    [65] Georgakis D.,Papathanassiou S.,Hatziargyriou N.,et al. Operation of a prototype microgrid system based on micro-sources quipped with fast-acting power electronics interfaces [C]. Aachen,Germany. 2004: 2521-2526
    [66] Laaksonen H.,Saari P.,Komulainen R. Voltage and frequency control of inverter based weak LV network microgrid[C]. Amsterdam, Netherlands. 2005
    [67] Sao C. K.,Lehn P. W. Control and Power Management of Converter Fed Microgrids[J]. IEEE Transactions on Power Systems. 2008,23(3):1088-1098
    [68] Sao C. K.,Lehn P. W. Intentional islanded operation of converter fed microgrids [C]. Montreal, QC, Canada. 2006: 1-6
    [69] Piagi P.,Lasseter R. H. Autonomous Control of Microgrids[C]. Montreal, Canada. 2006
    [70] Zhang Yingyuan,Mao Meiqin,Ding Ming,et al. Study of energy management system for distributed generation systems[C]. Nanjing, China. 2008: 2465-2469
    [71] Ding Ming,Zhang Yingyuan,Mao Meiqin. Key technologies for microgrids-a review [C]. Nanjing, China. 2009: 1-5
    [72] Schainker R. Energy storage and distributed generation technologies[R]: Palo Alto,CA,USA:EPRI. 2006
    [73] Jewell Ward,Gomatom Phanikrishna,Bam Lokendra,et al. Evaluation of Distributed Electric Energy Storage and Generation[R]. Wichita, Kansas, USA: Power Systems Engineering Research Center (PSERC). 2004
    [74] Hatziargyriou N.,Tsikalakis A.,Vlachogiannis J. Microgrids large scale integration of micro-generation to low voltage grids:microgrids central controller strategies and algorithms[R]. EU.2004
    [75]郑诗程.光伏发电系统及其控制的研究[D]:合肥工业大学. 2005
    [76]杨淑英.双馈型风力发电变流器及其控制[D]:合肥工业大学. 2007
    [77]孙春顺.风力发电系统运行与控制方法研究[D]:湖南大学. 2008
    [78]刘昌金,胡长生,李霄等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化. 2008,32(16):83-88
    [79]鲁鸿毅,何奔腾.超级电容器在微型电网中的应用[J].电力系统自动化. 2009,33(2):87-91
    [80]郭力,王成山,王守相等.微型燃气轮机微网技术方案[J].电力系统自动化. 2009,33(9):81-85
    [81]孙春顺,王耀南,李欣然.飞轮辅助的风力发电系统功率和频率综合控制[J].中国电机工程学报. 2008,28(29):111-116
    [82]王丹.分布式发电系统建模及稳定性仿真[D]:天津大学. 2009
    [83]张红光.大容量风电并网对电力系统安全稳定的影响研究[D]:华北电力大学. 2008
    [84]曾杰.可再生能源发电与微网中储能系统的构建与控制研究[D]:华中科技大学. 2009
    [85]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报. 2005,25(11):1-5
    [86]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报. 2008,28(26):87-91
    [87]范高锋,王伟胜,刘纯等.基于人工神经网络的风电功率预测[J].中国电机工程学报. 2008,28(34):118-123
    [88]张国强,张伯明.基于组合预测的风电场风速及风电机功率预测[J].电力系统自动化. 2009,33(18):92-95, 109
    [89] Wang L.,Singh C. PSO-based multidisciplinary design of a hybrid power generation system with statistical models of wind speed and solar insolation[C]. New Delhi, India. 2006: 1-6
    [90] Mohamed Faisal A.,Koivo Heikki N. Online management of microgrid with battery storage using multiobjective optimization[C]. Setubal,Portugal. 2007: 231-236
    [91]车孝轩.太阳能光伏系统概论[M].武昌:武汉大学出版社. 2006
    [92]茆美琴.风光柴蓄复合发电及其智能控制系统研究[D]:合肥工业大学. 2004
    [93]何朝阳.含微网的电力系统优化运行与稳定控制相关问题研究[D]:华中科技大学. 2008
    [94] Azmy A. M.,Erlich I. Online optimal management of PEMFuel cells using neural networks[J]. IEEE Transactions on Power Delivery. 2005,20(2):1051-1058
    [95] Kwasinski Alexis. A microgrid architecture with multiple-input DC/DC converters: applications, reliability, system operation, and control[D]. Urbana, Illinois, USA: University of Illinois at Urbana-Champaign. 2007
    [96] Martín Jose Ignacio San,Zamora Inmaculada,Martín Jose Javier San,et al. Hybrid fuel cellstechnologies for electrical microgrids[J]. Electric Power Systems Research. 2010,80(9):993-1005
    [97] Obara Shin'ya. Power generation efficiency of an SOFC–PEFC combined system with time shift utilization of SOFC exhaust heat[J]. International Journal of Hydrogen Energy. 2010,35(2):757-767
    [98]张颖颖,曹广益,朱新坚.燃料电池——有前途的分布式发电技术[J].电网技术. 2005,29(2):57-61
    [99]陈启梅,翁一武,翁史烈等.燃料电池-燃气轮机混合发电系统性能研究[J].中国电机工程学报. 2006,26(4):31-35
    [100]朱行健,王雪瑜.燃气轮机工作原理及性能[M].北京:科学出版社. 1992
    [101]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用[J].工程热物理学报. 2004,25(5):786-788
    [102]陈跃华.基于智能方法的熔融碳酸盐燃料电池/微型燃气轮机联合发电系统的建模与控制研究[D]:上海交通大学. 2007
    [103]郭力,王成山,王守相等.两类双模式微型燃气轮机并网技术方案比较[J].电力系统自动化. 2009,33(8):84-88
    [104]刘君,穆世霞,李岩松等.微电网中微型燃气轮机发电系统整体建模与仿真[J].电力系统自动化. 2010,34(7):85-89
    [105]陈皓勇,王锡凡.机组组合问题的优化方法综述[J].电力系统自动化. 1999,23(4):51-56
    [106]陈皓勇,王锡凡.机组组合问题的优化方法综述[J].电力系统自动化. 1999,23(5):51-56
    [107]戴晓晖,李敏强,寇纪淞.遗传算法理论研究综述[J].控制与决策. 2000,15(3):263-268, 273
    [108]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社. 2002
    [109]玄光男,程润伟,著.遗传算法与工程优化[M].北京:清华大学出版社. 2004
    [110] Maifeld T. T.,Sheble G. B. Genetic-based unit commitment algorithm [J]. IEEE Transactions on Power Systems. 1996,11(3):1359-1370
    [111] Mantawy A. H. A genetic-based algorithm for fuzzy unit commitment model [C]. Seattle, WA, USA. 2000: 250-254
    [112] Fung C. C.,Chow S. Y.,Wong K. P. Solving the economic dispatch problem with an integrated parallel genetic algorithm [M]. Perth, WA, Australia. 2000: 1257-1262
    [113] Tippayachai J.,Ongsakul W.,Ngamroo I. Parallel micro genetic algorithm for constrained economic dispatch [J]. IEEE Transactions on Power Systems. 2002,17(3):790-797
    [114]熊信银,吴耀武.遗传算法及其在电力系统中的应用[M].武汉:华中科技大学出版社. 2002
    [115] Zhang P. X.,Zhao B.,Cao Y. J.,et al. A novel multi-objective genetic algorithm for economic power dispatch [M]. Bristol, UK. 2004: 422-426
    [116] Chiang Chao-Lung. Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels [J]. IEEE Transactions on Power Systems. 2005,20(4):1690-1699
    [117]孙力勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题[J].中国电机工程学报. 2006,26(2):82-87
    [118] Chiang C. L. Genetic-based algorithm for power economic load dispatch[J]. IET on Generation, Transmission & Distribution. 2007,1(2):261-269
    [119] Eldin A. S.,El-sayed M. A. H.,Youssef H. K. M. A two-stage genetic based technique for the unit commitment optimization problem [C]. Aswan, Egypt. 2008
    [120]张明辉,王尚锦.自适应搜索的改进遗传算法及其应用[J].西安交通大学学报. 2002,36(3):226-229, 256
    [121]陈理国,蔡之华.改进的正交遗传算法及其在函数优化中的应用[J].计算机工程与设计. 2008,29(13):3413-3415, 3418
    [122] Gyuk I. EPRI-DOE Handbook of energy storage for transmission and distribution applications[R]. Palo Alto,CA,USA: USA:EPRI. 2003
    [123] Iba K.,Ideta R.,Suzuki K. Analysis and operational records of NAS battery[C]. Newcastle,UK. 2006
    [124] Schoenung S. M.,Hassenzahl W. Long vs. short-term energy storage: sensitivity analysis[R]: CA,USA:Sandia National Laboratories. 2007
    [125] Eyer Jim,Norris Benjamin. Guide to estimating benefits and market potential for electricity storage in New York (with emphasis on New York City)[R]. Albany, NY, USA: New York State Energy Reserach and Development Authority. 2007
    [126] Mohd A.,Ortjohann E.,Schmelter A.,et al. Challenges in integrating distributed Energy storage systems into future smart grid[C]. Cambridge, United Kingdom. 2008: 1627-1632
    [127] Ibrahim H.,Ilinca A.,Perron J. Energy storage systems—Characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews. 2008,12(5):1221-1250
    [128] Naish Chris,McCubbin Ian,Edberg Oliver,et al. Outlook of energy storage technologies[R]. Brussels, Belgium: European Parliament's committee on Industry, Research and Energy (ITRE). 2008
    [129] Chen Haisheng,Cong Thang Ngoc,Yang Wei,et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science. 2009,19(3):219-312
    [130] Divya K. C.,?stergaard Jacob. Battery energy storage technology for power systems—An overview[J]. Electric Power Systems Research. 2009,79(4):511-520
    [131] Beaudin Marc,Zareipour Hamidreza,Schellenberglabe Anthony,et al. Energy storage formitigating the variability of renewable electricity sources: An updated review [J]. Energy for Sustainable Development. 2010,14(4):302-314
    [132] Wade N. S.,Taylor P. C.,Lang P. D.,et al. Evaluating the benefits of an electrical energy storage system in a future smart grid[J]. Energy Policy. 2010,38(11):7180-7188
    [133] Herman D. Comparison of Storage Technologies for Distributed Resource Applications[R]: Palo Alto,CA,USA:EPRI. 2003
    [134] Schoenung Susan M. Characteristics and technologies for long-vs. short-term energy storage—A study by the DOE energy storage systems program[R]. California, USA: Sandia National Laboratories. 2001
    [135] Butler Paul,Miller Jennifer L.,Taylor Paula A. Energy storage opportunities analysis phase II final report - A study for the DOE energy storage systems program[R]. California, USA: Sandia National Laboratories. 2002
    [136] Eckroad S. Field trial of AEP sodium-sulfur (NAS) battery demonstration project[R]: Palo Alto,CA,USA:EPRI. 2003
    [137] Nourai Ali. Installation of the first distributed energy storage system (DESS) at American Electric Power (AEP)—A study for the DOE energy storage systems program[R]. California, USA: Sandia National Laboratories. 2007
    [138] Hida Y.,Yokoyama R.,Iba K.,et al. Practical Load Following Operation of NAS Battery[C]. Santander,Spain. 2008:101-105
    [139]王康,兰洲,甘德强等.基于超导储能装置的联络线功率控制[J].电力系统自动化. 2008,32(8):5-9,68
    [140]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术. 2008,32(7):1-9
    [141]陈伟,石晶,任丽等.微网中的多元复合储能技术[J].电力系统自动化. 2010,34(1):112-115
    [142]刘素琴,黄可龙,刘又年等.储能钒液流电池研发热点及前景[J].电池. 2005,35(5):356-359
    [143]陈茂斌,李晓兵,张胜涛等.钒氧化还原液流电池的充放电特性[J].电池. 2008,38(1):37-39
    [144]孙晨曦,陈剑,张华民等.电流密度和温度对VRB性能的影响[J].电池. 2009,39(6):297-300
    [145] Tamyurek B.,Nichols D. K.,Demirci O. The NAS battery: a multifunction energy storage system[C]. Toronto,Canada. 2003
    [146] Toshiya O.,Masashi T.,Shinichi I. Installation planning and operation control of NAS battery systems considering voltage stability margin[C]. Hong Kong. 2003
    [147] Kazempour S. J.,Moghaddam M. P.,Haghifam M. R.,et al. Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies[J]. Renewable Energy. 2009,34(12):2630-2639
    [148] Kazempour S. J.,Hosseinpour M.,Moghaddam M. P.,et al. Coupling fuel-constrained power plant and NaS battery system for profit increment in a competitive electricity market[C]. Piscataway, New Jersey, USA. 2009: 1-9
    [149]于尔铿,刘广一,周京阳.能量管理系统(EMS)[M].北京:科学出版社. 1998
    [150]王士政.电网调度自动化与配电自动化技术(第二版)[M].北京:中国水利水电出版社. 2006
    [151]国电南瑞科技股份有限公司.标准化平台支持的调度自动化信息集成系统OPEN-2000E技术白皮书[R].南京. 2004
    [152]中华人民共和国国家发展和改革委员会.能量管理系统应用程序接口(EMS-API)第301部分:公共信息模型(CIM)基础[S].北京:中国电力出版社. 2004