风电场有功功率控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电作为最主要的清洁能源利用形式之一,得到了快速的发展。风电机组的装机容量越来越大,占电网的比重也越来越高。长期来看,实现风电场的可控运行,将风电场纳入电网的调度体系,是大型风电场安全并网运行的发展趋势。因此,风电场的有功功率控制已成为风电场并网发电迫切需要解决的关键问题。本文主要从风电场有功功率控制策略、风电场有功功率控制在风电场以及风电机组中的实现、风电场有功功率控制下的风电机组控制算法及稳定性等方面展开研究工作。本文所取得的创新性成果如下:
     1.为了抑制风电接入电网产生全场出力的波动,本文提出了一种基于风电机组有功功率超短期预测的风电场有功功率优化控制策略。该优化控制策略的研究工作主要包括:分析了风电接入电网后风电机组以及风电场与电网调度之间的关系,提出了一种基于时间尺度可变的风电场有功功率超短期预测方法,并将该方法应用于风电场有功功率控制策略中,从而实现风电场有功功率控制下的风电机组期望功率校准的目的,提高了风电场有功功率的控制精度;在有功功率分配策略中,采用以最少的风电机组停机为目标的优化降功率控制策略和以最少启动机组和最多启动机组为目标的优化升功率控制策略,实现了考虑风电场不同需求情况下风电机组功率的优化分配。
     2.本文研究了一种基于WiMAX的风电场通信网络架构和一种基于智能多代理的风力发电机组控制策略,该控制策略的主要研究工作为:采用基于WiMAX的风电场通信网络架构,并且根据风电场中需要传输和通信数据的特点及重要性制定不同的传输层和应用层协议,从而达到风电场数据可靠、高效传输的目的;在风电机组中采用基于智能多代理的控制策略,以此来保证风电场有功功率控制在风电机组中的稳定性与可靠性。以上策略使得风电场侧的有功功率分配结果能够稳定、可靠的下传到风电场各风电机组,并且可以保证风电机组在复杂的控制任务下仍能顺利完成风电场有功功率控制系统分配的控制任务。
     3.考虑到风电机组在风电场有功功率控制下需稳定运行的特点,本文针对风电机组在不同工况下的运行特性,提出了一种风力发电机组全局转速控制和负载转矩优化控制策略。该控制策略保证了风电机组在不同工况下的转速控制精度以及对应转速下的优化负载转矩输出,从而实现了风电机组在有功功率控制系统中的稳定、优化控制。此外,针对风力发电机在低速状态存在的严重的混沌属性,本文研究了针对风力发电机动态特性的自适应Backstepping控制算法。
     4.针对第3点提出的风电机组控制策略,本文研究了一种用于风力发电机组控制器的稳定性分析方法。
     基于以上的研究工作,本文设计了风电场有功功率控制系统,并将该有功功率控制系统应用于内蒙古某风电场现场进行实验。实验结果表明,本文设计的风电场有功功率控制系统在现场的控制误差小,风电场有功功率的输出稳定性强。
As the most important form of clean energy resource, wind power has developed rapidly. The capacity is growing at fast rate and wind power is taking more and more proportion in power supplies. Obviously, the effective control of output power in large-scale wind farm, together with the grid scheduling system, should be more and more important for wind power development. Therefore, active power control has become an urgent problem for the wind farm grid connection. This article has mainly studied on the power control theory of wind farm, the implementation of active power control in wind farms and wind turbines, the control algorithm of wind turbine and the stability of active power control. Some specific measures are included:
     1. In order to resist the volatility and uncontrollability of output power, the relationship between wind farm and power scheduling has been analyzed when a wind farm is connected to the grid and a wind farm active power optimization control strategy based on ultra-short-term power prediction is studied. Besides, a wind turbine power ultra-short-term prediction method with variable time scale is proposed. This prediction method is utilized in the wind farm active power optimization control strategy to adjust the wind turbine output power and improve the control accuracy. Furthermore, on one hand, an optimal control algorithm for wind farm active power reduction is presented to minimize the number of shutting down wind turbines when decreasing the output power, on the other hand, an optimal control algorithm for wind farm active power increasement is presented to minimize and maximize the number of starting wind turbines when lifting the output power.
     2. A wind farm communication network structure based on WiMAX and an intelligent wind turbine control strategy based on Multi-Agent are studied. The main research works are included in analyzing the WiMAX communication network architecture, designing different protocols to meet the requirements of data transmission and studying the multi-agent based intelligent control strategy to make the wind turbines more stable and reliable under the control of active power.
     3. Considering the stability of wind turbine control based on the wind farm active power control and the wind turbine operation characteristics in different work states, a wind turbine global control strategy of rotating speed with load torque optimization control strategy is presented to improve the performance of the wind turbine rotating speed in different work states. In addition, considering the serious chaotic property of wind generator in the low-speed status, a wind generator adaptive Backstepping control algorithm is proposed.
     4. In order to utilize the studied wind turbine control strategies in 3, a stability analysis method for wind turbine is proposed.
     Based on the above works, an active power control system is designed and has been applied in a wind farm located in Inner Mongolia. The field experimental results show that the designed control system could reduce the active power error and improve the stability of the wind farm active power output.
引文
[1]雷亚洲.与风电并网相关的研究课题.电力系统自动化, 2003, 27(8):84-89
    [2] P. Clemow, T. C. Green, C. A. Hernadez-Aramburo. Wind farm output smoothing through coordinated control and short-term wind speed prediction. IEEE Power and Energy Society General Meeting, 2010:1-8
    [3]王伟胜,范高锋,赵海翔.风电场并网技术规定比较及其综合控制系统初探.电网技术, 2007, 31(28):73-76
    [4]乔颖.考虑电网约束的风电场自动有功控制.电力系统自动化, 2009, 33(22):88-93
    [5]陈树勇,戴慧珠,白晓民,周孝信.风电场的发电可靠性模型及其应用.中国电机工程学报, 2000, 20(3):27-29
    [6]周玮,彭昱,孙辉,魏庆海.含风电场的辽宁省电网优化调度研究.中国电机工程学报. 2009, 29(25):13-18
    [7] L. M. Femandeza, C. A. Garcia, F. Jurado. Comparative study on the performance of control sy- stems for doubly fed induction generator(DFIG) wind turbines operating with power regulation. Energy 2008, 33(9):1438-1452
    [8] J. L. Rodriguez-Amendo. Automatic generation of a wind farm with variable speed wind turbines. IEEE Transactions on Energy Conversion, 2002, 17(2):279-284
    [9] P. Flores AT, G. Tapia. Application of a control algorithm for wind speed prediction and active power generation. Renewable Energy, 2005, 30(4):523-536
    [10] P.Sorensen, K.Thomsen, T. Buhl. Operation and control of large wind turbines and wind farms. Riso National Laboratory Report, 2005
    [11]王芝茗,苏安龙,鲁顺.基于电力平衡的辽宁电网接纳风电能力分析.电力系统自动化, 2010, 34(3): 86-90
    [12]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究:[博士学位论文].武汉:华中科技大学, 2005
    [13] S. A. Poul. Florin. Wind farm models and control strategies. R Nation Laboratory Report, 2005
    [14] C. Luo. Frequency deviation of thermal power plants due to wind farm. IEEE Transactions on Energy Conversion, 2006, 21(3): 708-716
    [15] G. C. Tarnowski. Adding a active power regulation to wind farms with variable speed inductiongenerators. Proceedings of IEEE Power Engineering Society General Meeting, 2007: 1-8
    [16]惠晶,顾鑫.大型风电场的集中功率控制策略研究.华东电力, 2008, 36(6): 57-60
    [17] A. D. Hansen, P. Sorensen, F. Iov. Centralized power control of wind farm with doubly fed induction generators. Renewable Energy, 31(7): 935-951
    [18]陈宁,于继来.基于电气剖分信息的风电系统有功调度与控制.中国电机工程学报, 2008, 28(6): 51-58
    [19]陈金富,陈海炎,段献忠.含大型风电场的电力系统多时段动态优化潮流.中国电机工程学报, 2006, 26(3): 31-35
    [20]雷亚洲,王伟胜.含风电场电力系统的有功优化潮流.电网技术, 2002, 26(6): 18-21
    [21] K. Abe, S. Iwamoto. New load frequency control method suitable for large penetration of wind power generations. 2006 IEEE Power Engineering Society General Meeting, 2006: 1-6
    [22] J. Morren, D. Hswh, J. A. Ferreira. Primary power/frequency control with wind turbines and fuel cells. 2006 IEEE Power Engineering Society General Meeting, 2006: 18-22
    [23] I. F. Akyildiz, W. Xudong. W. Weilin. Wireless mesh networks: a survey. Computer Networks, 2005, 47(4): 445-487
    [24] A. kyildiz, I. X. Faw. A survey on wireless mesh networks. IEEE Communications Magazine,2005, 43(9): 23-30
    [25] X. H. Wang. Wireless mesh networks. Journal of Telemedicine and Telecare, 2008, 14(8): 401-403
    [26] D. Lubitz, N. Wickramasinghe, G. Yanovsky. Networkcentric healthcare operations: the telecommunications structure. International Journal Networking and Virtual Organisations, 2006, 3(2): 65-85
    [27] D. Zatar. Development of a wireless rural telemedicine network and management system. International Journal Networking and Virtual Organisations, 2007, 4(5): 109-117
    [28] X. Li. Knowledge management in mobile environment. International Journal Networking and Virtual Organisations, 2007, 4(1): 229-244
    [29] M. Iqbal, X. Wang. SwanMesh: a multicast enabled dual-radio wireless mesh network for emergency and disaster recovery services. Journal of Communications, 2009, 4(5): 298-309
    [30] R. Rabelo. Effective management of dynamic and multiple supply chains. Int J Networking and Virtual Organisations, 2004, 2(6): 193-208
    [31] F. Knaesel. High-performance sharing of consistent data in ad hoc networks. International Journal Networking and Virtual Organisations, 2009, 6(3): 259-269
    [32]王成.大型风电场监控系统无线网络设计研究:[硕士学位论文].上海:上海交通大学, 2009
    [33]王成,王志新,张华强.风电场远程监控系统及无线网络技术应用研究.自动化仪表, 2008, 29(11): 16-20
    [34]王成,王志新.基于无线局域网的大型风电场远程监控系统.电网与清洁能源, 2009, 25(12): 75-78
    [35] S. McArthur. Multi-Agent systems for power engineering applications-part I: concepts, approaches, and technical challenges. IEEE Transaction on Power System, 2007, 22(4): 1743-1752
    [36] S. McArthur. Multi-Agent systems for power engineering applications-part II: technologies, standards, and tools for building multi-agent systems. IEEE Transaction on Power System, 2007, 22(4): 1753-1759
    [37]刘红进,袁斌,戴宏伟.多代理系统及其在电力系统中的应用.电力系统自动化, 2001, 26(19): 45-52
    [38] J. M. Solanki, N. N. Schulz. Using intelligent multi-agent systems for shipboard power systems reconfiguration. Proceedings of the 13th International Conference on Intelligent Systems Application to Power System, 2005: 212-214
    [39]陈艳霞,尹项根.基于多Agent技术的继电保护系统.电力系统自动化, 2002, 12: 48-53
    [40]畅广辉,镐俊杰,刘涤尘.基于多代理技术的电力控制中心综合数据平台设计.电力系统自动化, 2008, 1(5): 85-89
    [41] A. Deshmukh, A. Monti, M. Riva. Multi-agent system for diagnostics, monitoring and control of electric systems. Proceedings of the 13th International Conference on Intelligent Systems Application to Power System, 2005: 201-206
    [42] A. S. Zaher. A Multi-Agent fault detection system for wind turbine defect recognition and diagnosis. IEEE Power Tech, 2007: 22-27
    [43] Z. Kusiak, H. Zheng. Anticipatory control of wind turbines with data-Driven predictive models. IEEE Transactions on Energy Conversion, 2009, 24(3): 766-774
    [44] M. Rahimi. Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators. IEEE Transactions on Energy Conversion, 2010, 25(3): 873-883
    [45] B. Beltran, T. Benbouzid. High-Order sliding-mode control of variable-speed wind turbines industrial electronics. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3314-3321
    [46] F. Lin, L. Teng. Intelligent controlled-wind-turbine emulator and induction-generator systemusing RBFN. IEE Proceedings Electric Power Applications, 2006, 153: 608-618
    [47] T. Senjyu. Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Transactions on Energy Conversion, 2006, 21(2): 467-475
    [48] H. T. Camblong, M. Rodriguez. Robust digital control of a wind turbine for rated-speed and variable-power operation regime. Control Theory and Applications, 2006, 153(1): 81-91
    [49] W. Qiao, W. Zhou, J. Aller. Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. IEEE Transactions on Power Electronics, 2008, 23(3): 1156-1169.
    [50] F. Gao, D. Xu, Y. Lv. Hybrid automation modeling and global control of wind turbine generator. 2008 International Conference on Machine Learning and Cybernetics, Beijing, 2008: 1991-1997
    [51] G. Feng. Pitch-control for large-scale wind turbines based on feed forward fuzzy-PI. 7th World Congress on Intelligent Control and Automation, Beijing, 2008: 2277-2282
    [52] V. A. Riziotis. Stability analysis of pitch-regulated, variable-speed wind turbines in closed loop operation using a linear eigenvalue approach. Wind Energy, 2008, 11(5): 112-118
    [53] Y. D. Song, B. Dhinakran, X. Y. Bao. Variable speed control of wind turbines using nonlinear and adaptive algorithms. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(3): 293-308
    [54] E. Bossanyi. Wind turbine control for load reduction. Wind Energy, 2003, 6(3): 229-244
    [55] E. Bossanyi. The design of closed loop controllers for wind turbines. Wind Energy, 2000, 3(3): 149-163
    [56] R. Datta. A method of tracking the peak power points for a variable speed wind energy conversion system. IEEE Transactions on Energy Conversion, 2003, 18(1): 163-168
    [57] G. D. Moor, H. J. Beukes. Maximum power point trackers for wind turbines. Power Electronics Specialists Conference, 2004, 3: 2044-2049
    [58] H. Li, Z. Chen. A new current control strategy of maximizing the generated power from a doubly fed induction generator system. 12th International Power Electronics and Motion Control Conference, 2006: 1557-1562
    [59]李卫东,王秀岩.混沌控制综述.自动化技术与应用, 2009, 28(1): 1-6
    [60]韦笃取,罗晓曙,方锦清,汪秉宏.基于微分几何方法的永磁同步电动机的混沌运动的控制.物理学报, 2006, 55(54): 54-59
    [61]李忠,张波,毛宗源.永磁同步电动机的混沌特性及其反混沌控制.控制理论与应用,2002, 19(4): 545-548
    [62]任海鹏,刘丁,李洁.永磁同步电动机中混沌运动的部分解耦控制.中国电机工程学报, 2003, 22(4): 637-640
    [63]杨国良,李惠光.直驱式永磁同步风力发电机中混沌运动的滑模变结构控制.物理学报, 2009, 58(11): 7552-7557
    [64] K. Divya, P. Rao. Study of dynamic behaviour of grid connected induction generators . IEEE Power Engineering Society General Meeting, 2004: 2200-2205
    [65] H. Li. Transient stability analysis of wind turbines with induction generators considering blades and shaft flexibility. The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), 2007: 1604-1609
    [66] S. Salman. Investigation into the estimation of the critical clearing time of a grid connected wind power based embedded generator. IEEE PES Transmission and Dist ribution Conference and Exhibition, 2002: 975-980
    [67] C. Wang. Stability analysis of the drive-train of a wind turbine with quadratic torque control. International Journal of Robust and Nonlinear Control, 2009, 19(17): 1886-1895
    [68]赵斌,李辉,韩力.并网异步风力发电机组模型及参数对其暂态稳定性的影响.太阳能学报, 2008, 29(10): 1283-1289
    [69] X. Li, J. Zhou, Y. Zhang. Small signal stability analysis of large scale variable speed wind turbines integration. Proceedings of the 11th International Conference on Electrical Machines and Systems, 2008: 2526-2530
    [70] J. Daniel, A. G. Trudnowski. Fixed-Speed wind-generator and wind-park modeling for transient stability studies. IEEE Transcations on Power Systems, 2004, 19(4): 1911-1917
    [71] V. Riziotis. Stability analysis of pitch-regulated, variable-speed wind turbines in closed loop operation using a linear eigenvalue approach. Wind Energy, 2008, 11(5): 517-535
    [72]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化, 2003, 27(20): 62-67
    [73]李俊峰,高虎,王仲颖. 2008中国风电发展报告.中国环境出版社,2008
    [74]孙元章,吴俊,李国杰.风力发电对电力系统的影响.电网技术, 2007, 31(20): 55-62
    [75] H. S. Santoso. Analysis of voltage stability and optimal wind power penetration limits for a non-radial network with an energy storage system. IEEE Power Engineering Society General Meeting, 2007: 1-8
    [76]迟永宁,王伟胜,刘燕华.大型风电场对电力系统暂态稳定性的影响.电力系统自动化,2006, 30(15): 10-14
    [77]常勇.大型风电场接入系统方式的仿真比较.电力系统自动化, 2007, 31(4): 70-74
    [78] W. Li, G. Joes. Performance comparison of aggregated and distributed energy storage systems in a wind farm for wind power fluctuation suppression. IEEE Power Engineering Society General Meeting, 2007: 1-6
    [79] M. H. Tarek. Wind farms production: controland predietion:[PhDThesis]. Ontario, Canada: University of Waterloo, 2007
    [80] Utilities RIoDE. Connection of wind turbines to low and medium voltage networks.1998
    [81] Grid EN. Wind farm power station grid code provisions.2002
    [82] Issue SHE. Guidance note for the connection of wind farms.2002
    [83] Gmbh EON. Grid code,high and extra high voltage[S], 2002
    [84] GB/Z19963-2005.风电场接入电力系统技术规定.中国标准出版社, 2006
    [85]国家电网公司.风电场接入电网技术规定实施细则.西北电网公司, 2009.10
    [86]郭巍,范高锋.大规模风电接入对电力系统调度的影响.新能源, 2008(1), 8:54-55
    [87] S. Poul, D. H. Anca. Simulation and optimisation of wind farm controllers. Proceedings of EWEA conference and Exhibition 2004, 2004: 1-7
    [88] EN/61400-25-2. Wind turbines–part 25-2: communications for monitoring and control of wind power plants– Information models. 2006
    [89] Y. Lei, A. Mullane, G. Lightbody. Modeling of the wind turbine with a doubly-fed induction generator studies. IEEE Transactions on Energy Conversion, 2006, 21(1): 257-264
    [90]王正新.变权缓冲算子及缓冲算子公理的补充.系统工程, 2009, 27(1): 113-116
    [91]肖洋.风电场风速和发电功率预测研究:[硕士学位论文].吉林:东北电力大学, 2005
    [92]李勇刚,何炎平.引入模型定阶的ARMA模型在风力发电系统风速仿真中的应用.华东电力, 2010, 38(3): 395-397
    [93] M. H. Zamani, G. H. Riahy, A. J. Ardakani. modifying power curve of variable speed wind turbines by performance evaluation of pitch-angle and rotor speed controllers. IEEE Electrical Power Conference, 2007: 1-2
    [94] S. D. J. Mcarthur, E. M. Davidson, V. M. Catterson. multi-agent systems for power engineering applications-part I: concepts, approaches and technical challenges. IEEE Transactions on Power Systems, 2007, 22(4): 1743-1752
    [95]何岱海,徐健学,陈永红.常微分方程系统李雅普诺夫特性指数的研究.物理学报, 2000, 49(5): 833-837
    [96]吴青华.非线性控制理论在电力系统中应用综述.电力系统自动化, 2001,25(3): 64-75
    [97] E. Abdin. Control design and dynamic performance analysis of a wind turbine induction generator unit[J], IEEE Transactions on Energy Conversion, 2000, 15(1): 91-97
    [98] T. Petru, T. Thiringer. Modeling of wind turbines for power system studies[J], IEEE Transactions on Power System, 2002, 17(4): 1132-1140
    [99] Y. Cao, X. Cai. Comparison and simulation of maximal power point tracking (MPPT) method in variable speed constant frequency doubly fed wind power generation systems. East China Electric Power, 2008, 36(10): 1234-1237
    [100]L. Zhao, J. Song, H. Liu. Simulation study of wind power with continuously variable transmission. 2th IEEE Conference on Industrial Electronics and Applications, 2007: 2603-2605
    [101]A. Tapia, G. Tapia, J. X. Ostolaza. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Transactions on Energy Conversion, 2003, 18(2): 194-204
    [102] K. E. Johnson, L. Y. Pao, M. J. Balas. Stability analysis of an adaptive torque controller for variable speed wind turbines. The 43th IEEE Conference on Decision and Control, 2004, 4: 4087-4094