电渗析—微生物技术修复油污土壤的效能及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
落地油是石油污染土壤的重要来源之一,落地油产生后,若不及时处理,就会成为老化石油。由于老化石油不仅具有复杂的石油烃组分,还容易与土壤颗粒紧密结合,造成土壤的低渗透性,导致修复难度增大,因此针对老化石油污染土壤的有效修复研究具有重要意义,基于此,本研究以长期暴露于环境中的老化石油污染土壤为修复对象,将电渗析修复技术与微生物修复技术组合来处理土壤中的老化石油,并对修复效能及影响因素进行了探索研究。
     本研究首先通过常规的土壤分析技术,比较研究了不同污染程度的老化石油污染土壤的主要理化性质及微生物学性质,结果表明,与未污染土壤相比,老化石油污染土壤的pH及含水率变化与土壤中的总石油烃(TPH)含量直接相关,均表现为下降趋势,而呼吸强度和典型酶(脱氢酶及过氧化氢酶)含量略有升高,变性梯度凝胶电泳(DGGE)技术对微生物群落的分析结果表明这是石油作为有机底物刺激了土壤中部分细菌的生长繁殖所导致的。
     本研究首次提出采用β-环糊精作为增溶剂来促进老化石油从土壤颗粒表面的解吸,并通过静态试验证实了针对高污染强度(78.6mg/g soil)的老化石油污染土壤,β-环糊精促进TPH的解吸效率达到79.4%,虽然略低于于表面活性剂SDS(86.5%),但β-环糊精更具有环境安全性,可以作为老化石油增溶剂的理想选择,其增溶机理主要是依靠β-环糊精与石油烃发生的n:1(n>1)包合反应,根据本试验中老化石油的污染强度(78.6mg/g soil),β-环糊精的最佳使用浓度为1674mg/L,此时,TPH的解吸过程符合假二阶动力学模型,初始的pH及Ca2+浓度对解吸过程的影响较小,但β-环糊精在促进土壤中TPH解吸的过程中存在少量的吸附损失,约为18.7mg/g soil,吸附损失符合Freundlich等温吸附模型,求得吸附损失的方程表达式为:lnqea=ln0.0018+lnCs/0.664。然后将β-环糊精促进石油烃解吸的条件应用于电渗析修复过程强化土壤中石油烃类污染物的去除,结果表明,石墨电极的修复效果优于金属电极,选择石墨电极采用单阳极单阴极工艺进行修复过程中,在电场强度为2V/cm时,可以将土壤中石油烃含量从78.6mg/g soil降至50.2mg/g soil,获得36.1%的去除率,呼吸强度及典型酶含量均出现不同程度的降低,阳极土壤的pH降低幅度较小,从8.38降至7.22,DGGE图谱显示阳极土壤中微生物群落结构受到的影响较小,从细菌种属的多样性来看,通电修复技术后,阳极土壤中仍然包含了原始土样中可检测的11个细菌种属中的8个。采用多阳极单阴极电动工艺在2V/cm的电场强度下虽然可以获得38.3%的去除率,但是电能效率只有2.65g/kWh,远低于单阳极单阴极工艺(7.799g/kWh)。
     通过传统的平板分离法,从老化石油污染的土壤中筛选获得了三株具有高效降解石油烃能力的菌株,分别命名为S1、S11、D7,16SrRNA序列分析比对结果显示,其与Bacillus flexus、Pseudomonas seudoalcaligenes、Pseudomonas aurantiaca,相似性分别为100%、99%、97%,在石油培养基中对TPH均具有40%的去除率,其中S1和S11是通过自身产生脂肽类生物表面活性剂促进石油烃增溶来进行降解。试验中针对实际老化石油污染土壤,采用了生物泥浆法考察了复配菌液对TPH的去除效果,结果表明,当S1:S11:D7按体积比为0.5:2:2复配时可以获得的去除率最高,达到40.8%,调整初始pH为7.0时,可以将去除率进一步提高到43.7%。
     最后,本研究通过小试试验证实了电动修复与微生物修复技术联合进行土壤中老化石油去除的有效性,并考察了氮源、磷源、铁镁离子、β-环糊精、硝酸盐氮及生物载体投加等环境因素对修复过程的影响,结果表明,氨氮和硝酸盐氮是影响其原位微生物修复的关键因素,试验的初始条件为:在每300g阳极土壤中加入复配菌液180mL,完全混合后装入圆筒形工艺,形成的土柱高度约为15cm,试验过程中每2d翻土一次,每10d加入约60mL水,并翻土混匀,当投加2g氨氮时,土壤中石油烃的去除率可达61.3%,而投加2g硝酸盐氮时,石油烃的去除率可达74.9%,同时对土壤中的微生物群落结构进行DGGE分析,结果表明,氨氮及硝酸盐氮的投加均丰富了土壤中细菌种群的多样性,投加硝酸盐氮后还促进了Pseudomonas sp.、Rhodococcus sp.、Rhodobacter sp.、Mycobacterium monacense等具有反硝化能力菌株的出现并大量增殖,分析认为强化反硝化作用能够有效提高土壤中TPH的去除效率。
Crude oil is one of dominant sources of oil pollution. If it has not obtained immediate and appropriate treat, it would become aging petroleum which tends to combine with soil particles and affects permeability of soil, then it would be hard to remove. Thus, the remediation of aging oil polluted soil is of great importance present environmental science. This study took long-term aging oil polluted soil as the object, and combined electrokinetic (EK) and biological remediation technologies to remove the contaminant, and investigated removal efficiency and influencing factors.
     This study initially investigated the physicochemical and biological properties of aging petroleum polluted soil. The results revealed that pH and moisture content of polluted soil were lower than the healthy soil, while respiratory intensity and typical enzymes content were higher. The denaturing gradient gel electrophoresis profiles indicated that oil can stimulated the growth of partial bacteria as metabolic substrate.
     This is the first study usingβ-cyclodextrin (β-CD) as solubilizer to enhance desorption of aging petroleum from soil particles. It was demonstrated thatβ-CD can well improved the adsorption of TPH (the desorption efficiency reached 79.4%) in strongly polluted soil (oil content reached 78.6mg/g soil) by batch experiments. Though this was not as good as SDS did,β-CD was still the better choice of solubilizer because it is safer than SDS. According to the content of contaminant (78.6mg/g soil), the best dosage ofβ-CD was 1674mg/L. Meanwhile, the TPH desorption agreed with pseudo-second-order model. The desorption was slightly influenced by initial pH and Ca2+ concentration, but there are few adsorption lost in this process (about 18.7mg/g soil). And adsorption ofβ-CD fitted with Freundlich isothermal equation, and the adsorption equation was as followed: lnqea=ln0.0018+lnCs/0.664. Then,β-CD enhanced desorption conditions of oil were applied in EK remediation. The results presented that graphite electrodes were better than metallic ones. When 2V/cm of direct current using graphite as mono-anode and mono-cathode was applied, TPH content decreased from 78.6mg/g soil to 50.2mg/g soil. Respiratory intensity and typical enzyme content were all decreased. And pH at anode changed form 8.38 to 7.22. DGGE profiles indicated that bacterial community structure at anode was minor influenced, whose number of species changed from 11 to 8. Removal efficiency reached 38.3% when multi-anode and mono-anode was adopted, but the efficiency of electric energy was only 2.65g/kWh which was much lower than mono-anode and mono-cathode technique (7.799g/kWh).
     Three efficient oil degradation bacteria were screened from polluted soil by plated separation method and were named as S1, S11, and D7, respectively. The Blast results of 16S rRNA sequencing revealed that they were similar with Bacillus flexus, Pseudomonas seudoalcaligenes, and Pseudomonas aurantiaca, and the similarity was 100%, 99%, and 97%, respectively. About 40% TPH was removed. Meanwhile, S1 and S11 removed the THP by lipopetide bio-surfactant which was generated by themselves. The effect of mixed bacteria was studied and took natural aging petroleum polluted soil as objective. The results presented that best removal efficiency reached 40.8% when volume ratio of S1:S11:D7 was 0.5:2:2.
     Finally, laboratory test was taken to investigate EK technology and biological technology combined for removal of aging petroleum. And, effect of some crucial conditions such as: nitrogen, phosphorus, iron and magnesian ion,β-CD, nitrate, and bio-carrier was studied. The results presented that ammonia and nitrate had more effect on the remediation. The initial conditions were followed: 300g soil and 180mL mixed inoculums were loaded into a cylindrical reactor; height of the soil column was 15cm; the soil samples were cultivated every two days; 60mL water was added every ten days. When 2g ammonia was added, removal of petroleum reached 61.3%. While the removal efficiency reached 74.9% when 2g nitrate was added. Meanwhile, DGGE profiles revealed that addition of ammonia and nitrate enriched bacterial diversity. The denitrifiers (Pseudomonas sp., Rhodococcus sp., Rhodobacter sp., Mycobacterium monacense) were propagated because of addition of nitrate. Thus, enhanced denitrification can improve removal of aging petroleum efficiency.
引文
1魏小芳,张忠智,罗一菁等.重质石油污染土壤的生物修复.化学与生物工程. 2005, 22(7):7-9
    2程国玲,李培军.石油污染土壤的植物与微生物修复技术.环境工程学报. 2007, 1(6):91-96
    3李宝明.石油污染土壤微生物修复的研究.中国农业科学院. 2007:12-13
    4李大伟.石油污染土壤的碳材料增强微波热修复研究.大连理工大学. 2008:3-8
    5任磊,黄廷林.土壤的石油污染.农业环境保护. 2000, 19(6):360-363
    6肖汝,汪群慧,杜晓明等.典型污灌区土壤中多环芳烃的垂直分布特征.环境科学研究. 2006, 19(6):49-53
    7丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志. 2000, 19(2):50-55
    8张宝良.油田土壤石油污染与原位生物修复技术研究.大庆石油学院. 2007:4-7
    9陆秀君,郭书海,孙清等.石油污染土壤的修复技术研究现状及展望.沈阳农业大学学报. 2003, 34(1):63-67
    10 J. R. Bragg, R. C. Prince, E. J. Harner, et al. Effectiveness of bioremediation for the Exxon Valdez oil spill. 1994,12:1410-1416
    11陆光华,万蕾,苏瑞莲.石油烃类污染土壤的生物修复技术研究进展.生态环境. 2003, 12(2):220-223
    12蒋小红,喻文熙,江家华等.污染土壤的物理/化学修复.环境污染与防治. 2006, 28(3):210-214
    13钱暑强,刘铮.污染土壤修复技术介绍.化工进展. 2000, 19(004):10-12
    14 V. Bucala, H. Saito, J. B. Howard, et al. Thermal treatment of fuel oil-contaminated soils under rapid heating conditions. Environmental science & technology. 1994, 28(11):1801-1807
    15 Z. Kawala, T. Atamanczuk. Microwave-enhanced thermal decontamination of soil. Environ. Sci. Technol. 1998, 32(17):2602-2607
    16袁平夫,廖柏寒,卢明.表面活性剂在环境保护中的应用.环境保护科学. 2005, 31(1):38-41
    17 K. Urum, T. Pekdemir, M. Copur. Surfactants treatment of crude oil contaminated soils. Journal of colloid and interface science. 2004, 276(2):456-464
    18时进钢,袁兴中.生物表面活性剂的合成与提取研究进展.微生物学通报. 2003, 30(1):68-72
    19吴健,沈根祥,黄沈发.挥发性有机物污染土壤工程修复技术研究进展.土壤通报. 2005, 36(3):430-435
    20罗洪君,王绪远,赵骞等.石油污染土壤生物修复技术的研究进展.四川环境. 2007, 26(3):104-109
    21蔺昕,李培军,台培东等.石油污染土壤植物-微生物修复研究进展.生态学杂志. 2006, 25(1):93-100
    22周东美,郝秀珍,薛艳等.污染土壤的修复技术研究进展.生态环境. 2004, 13(2):234-242
    23 J. D. Van Hamme, A. Singh, O. P. Ward. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews. 2003, 67(4):503-
    507
    24陈晓东,常文越,邵春岩.土壤污染生物修复技术研究进展.环境保护科学. 2001, 27(5):23-25
    25 Y. B. Acar, A. N. Alshawabkeh. Principles of electrokinetic remediation. Environ. Sci. Technol. 1993, 27(13):2638-2647
    26 J. Virkutyte, M. Sillanp, P. Latostenmaa. Electrokinetic soil remediation--critical overview. The science of the Total Environment. 2002, 289(1-3):97-121
    27 Y. B. Acar, R. J. Gale, A. N. Alshawabkeh, et al. Electrokinetic remediation: Basics and technology status. Journal of Hazardous Materials. 1995, 40(2):117-137
    28陆小成,陈露洪,毕树平等.污染土壤电动修复及供能方式研究进展.污染防治技术. 2003, 16(2):19-24
    29 R. F. Probstein, R. E. Hicks. Removal of contaminants from soils by electric fields. Science. 1993, 260(7):498-502
    30袁松虎.持久性有毒物质污染土壤/沉积物的电动力学修复技术和机理研究.华中科技大学. 2007:37-40
    31 A. P. Shapiro, R. F. Probstein. Removal of contaminants from saturated clay by electroosmosis. Environmental Science and Technology ESTHAG. 1993,27(2):1-8
    32 R. E. Saichek, K. R. Reddy. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere. 2003, 51(4):273-287
    33 Q. Luo, X. Zhang, H. Wang, et al. Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics. Chemosphere. 2005, 59(9):1289-1298
    34王焘,郑余阳,杨磊等.苯酚污染土壤的电动力学修复技术研究.环境科技. 2009, 22(2):22-25
    35 G. C. C. Yang, Y. W. Long. Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process. Journal of Hazardous Materials. 1999, 69(3):259-271
    36罗启仕,王慧,张锡辉等.土壤中2, 4-二氯酚在非均匀电动力学作用下的迁移.环境科学学报. 2004, 24(6):1104-1109
    37 Q. Luo, X. Zhang, H. Wang, et al. The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil. Journal of Hazardous Materials. 2005, 121(1-3):187-194
    38罗启仕,张锡辉,王慧等.土壤酚类污染物在电动力学作用下的迁移及其机理.中国环境科学. 2004, 24(2):134-138
    39罗启仕,张锡辉,王慧等.非均匀电动力学修复技术对土壤性质的影响.环境污染治理技术与设备. 2004, 5(4):40-45
    40 K. Hanna, S. Chiron, M. A. Oturan. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Research. 2005, 39(12):2763-2773
    41 S. Yuan, M. Tian, Y. Cui, et al. Treatment of nitrophenols by cathode reduction and electro-Fenton methods. Journal of Hazardous Materials. 2006, 137(1):573-580
    42 G. Lear, M. J. Harbottle, G. Sills, et al. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environmental Pollution. 2007, 146(1):139-146
    43 D. E. Kile, C. T. Chiou. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental science & technology. 1989, 23(7):832-838
    44 S. O. Ko, M. A. Schlautman, E. R. Carraway. Partitioning of hydrophobicorganic compounds to hydroxypropyl-[beta]-cyclodextrin: Experimental studies and model predictions for surfactant-Enhanced remediation applications. Environ. Sci. Technol. 1999, 33(16):2765-2770
    45 A. P. Khodadoust, K. R. Reddy, O. Narla. Cyclodextrin-enhanced electrokinetic remediation of soils contaminated with 2, 4-dinitrotoluene. Journal of Environmental Engineering. 2006, 132:1043-1047
    46 J. Wan, S. Yuan, J. Chen, et al. Solubility-enhanced electrokinetic movement of hexachlorobenzene in sediments: A comparison of cosolvent and cyclodextrin. Journal of Hazardous Materials. 2009, 166(1):221-226
    47 A. Oonnittan, R. A. Shrestha, M. Sillanp. Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation. Journal of Hazardous Materials. 2009, 162(2-3):989-993
    48 C. Yuan, C. H. Weng. Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process. Chemosphere. 2004, 57(3):225-232
    49 J. H. Chang, Z. Qiang, C. P. Huang, et al. Phenanthrene removal in unsaturated soils treated by electrokinetics with different surfactants-Triton X-100 and rhamnolipid. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009,23:41-48
    50 J. T. Hamed, A. Bhadra. Influence of current density and pH on electrokinetics. Journal of Hazardous Materials. 1997, 55(1-3):279-294
    51 A. Kaya, Y. Yukselen. Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. Journal of Hazardous Materials. 2005, 120(1-3):119-126
    52 S. H. Yuan, J. Z. Wan, X. H. Lu. Electrokinetic movement of multiple chlorobenzenes in contaminated soils in the presence of beta-cyclodextrin. Journal of environmental sciences (China). 2007, 19(8):968-971
    53 S. O. Ko, M. A. Schlautman, E. R. Carraway. Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environ. Sci. Technol. 2000, 34(8):1535-1541
    54 R. Lageman, R. L. Clarke, W. Pool. Electro-reclamation, a versatile soil remediation solution. Engineering Geology. 2005, 77(3-4):191-201
    55 S. Yuan, M. Tian, X. Lu. Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 andβ-cyclodextrin. Journal of HazardousMaterials. 2006, 137(2):1218-1225
    56 Y. U. Kim. Effect of sonication on removal of petroleum hydrocarbon from contaminated soils by soil flushing method. Ph. D Thesis, The Pennsylvania State University, The graduate School, Department of Civil and Environmental Engineering. 2000:12-14
    57 T. D. Pham, R. A. Shrestha, J. Virkutyte, et al. Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin. Electrochimica Acta. 2009, 54(5):1403-1407
    58 S. J. Kim, J. Y. Park, Y. J. Lee, et al. Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite. Journal of Hazardous Materials. 2005, 118(1-3):171-176
    59 G. Maini, A. K. Sharman, G. Sunderland, et al. An integrated method incorporating sulfur-oxidizing bacteria and electrokinetics to enhance removal of copper from contaminated soil. Environmental science & technology. 2000, 34(6):1081-1087
    60 L. Y. Wick, P. A. Mattle, P. Wattiau, et al. Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil. Environ. Sci. Technol. 2004, 38(17):4596-4602
    61 K. R. Reddy, T. J. Cutright. Nutrient amendment for the bioremediation of a chromium-contaminated soil by electrokinetics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2003, 25(9):931-943
    62 M. F. DeFlaun, C. W. Condee. Electrokinetic transport of bacteria. Journal of Hazardous Materials. 1997, 55(1-3):263-277
    63 A. López-López, E. Expósito, J. Antón, et al. Use of Thiobacillus ferrooxidans in a coupled microbiological-electrochemical system for wastewater detoxification. Biotechnology and bioengineering. 2000, 63(1):79-86
    64 N. Matsumoto, S. Nakasono, N. Ohmura, et al. Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe (III). Biotechnology and bioengineering. 2000, 64(6):716-721
    65 P. She, B. Song, X. H. Xing, et al. Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current. Biochemical Engineering Journal. 2006, 28(1):23-29
    66童林荟.环糊精化学.科学出版社, 2001:12-17
    67 A. Villiers. Sur la fermentation de la fecule par l'action du ferment butyrique. Compt. Rend. Acad. Sci. 1891, 112:536–538
    68王政华.表面活性剂和环糊精溶液中多氯联苯(PCBs)的光降解研究.湖南大学. 2008:33-36
    69 Magnus E. Skold, Geoffrey D. Thyne, John W. Drexler, et al. Solubility enhancement of seven metal contaminants using carboxymethyl-[beta]-cyclodextrin (CMCD). Journal of Contaminant Hydrology. 2009, 107(3-4):108-113
    70 P. B. Fai, A. Grant, B. J. Reid. Compatibility of hydroxypropyl-[beta]-cyclodextrin with algal toxicity bioassays. Environmental Pollution. 2009, 157(1):135-140
    71 M. Molnar, E. Fenyvesi, K. Gruiz, et al. Effects of RAMEB on bioremediation of different soils contaminated with hydrocarbons. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2002, 44(1):447-452
    72 J. Szejtli. Cyclodextrins in food, cosmetics and toiletries. Starch-St rke. 2006, 34(11):379-385
    73 J. W. Park, H. J. Song. Association of anionic surfactants with. beta.-cyclodextrin: fluorescence-probed studies on the 1: 1 and 1: 2 complexation. The Journal of Physical Chemistry. 1989, 93(17):6454-6458
    74 K. Gruiz, E. Fenyvesi, E. Kriston, et al. Potential use of cyclodextrins in soil bioremediation. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 1996, 25(1):233-236
    75 X. Wang, M. L. Brusseau. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environmental science & technology. 1995, 29(10):2632-2635
    76 J. M. Schuette, T. T. Ndou, A. Munoz de la Pena, et al. Influence of alcohols on the. beta-cyclodextrin/acridine complex. Journal of the American Chemical Society. 1993, 115(1):292-298
    77 J. Wan, S. Yuan, K. Mak, et al. Enhanced washing of HCB contaminated soils by methyl-[beta]-cyclodextrin combined with ethanol. Chemosphere. 2009, 75(6):759-764
    78 T. Badr, K. Hanna, C. De Brauer. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. Journal of Hazardous Materials. 2004, 112(3):215-223
    79 M. Chen, L. Cui, C. Li, et al. Adsorption, desorption and condensation of nitrobenzene solution from active carbon: A comparison of two cyclodextrins and two surfactants. Journal of Hazardous Materials. 2009, 162(1):23-28
    80 Laura Leitgib, Katalin Gruiz, A Fenyvesi, et al. Development of an innovative soil remediation: "Cyclodextrin-enhanced combined technology". Science of the total environment. 2008, 392(1):12-21
    81 A. Petitgirard, M. Djehiche, J. Persello, et al. PAH contaminated soil remediation by reusing an aqueous solution of cyclodextrins. Chemosphere. 2009, 75(6):714-718
    82邵云,高士祥,伏彩中等.环糊精和表面活性剂对土壤中2-硝基联苯的解吸行为的影响.生态环境. 2006, 15(1):32-36
    83陈云飞,曾清如,马云龙等.β-环糊精衍生物对甲基对硫磷的增溶洗脱和光降解.环境科学与技术. 2008, 31(4):37-40
    84罗跃初,曾清如,廖柏寒等.β-环糊精及其衍生物对疏水性有机农药增溶和毒性影响的研究.环境科学学报. 2001, 1:139-144
    85 L. Stroud, T. Marina, I. Paton, et al. Influence of hydroxypropyl-[beta]-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil. Environmental Pollution. 2009, 157(10):2678-2683
    86 J. Kieron, J. Clasper, U. Karina, et al. Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environmental Pollution. 2006, 144(1):345-354
    87 D. Garon, L. Sage, F. Seigle-Murandi. Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation. 2004, 15(1):1-8
    88 M. Molnar, L. Leitgib, K. Gruiz, et al. Enhanced biodegradation of transformer oil in soils with cyclodextrin–from the laboratory to the field. Biodegradation. 2005, 16(2):159-168
    89 L. Bardi, A. Mattei, S. Steffan, et al. Hydrocarbon degradation by a soil microbial population with [beta]-cyclodextrin as surfactant to enhance bioavailability. Enzyme and microbial technology. 2000, 27(9):709-713
    90高永荣,王凤英,张力等.β-环糊精在药学应用上的研究现状.中国药师. 2005, 8(6):513-515
    91 S. O. Ko, M. A. Schlautman, E. R. Carraway. Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. Experimental studies. Environ.Sci. Technol. 1998, 32(18):2769-2775
    92 L. Bardi, A. Mattei, S. Steffan, et al. Hydrocarbon degradation by a soil microbial population withβ-cyclodextrin as surfactant to enhance bioavailability. Enzyme and microbial technology. 2000, 27(9):709-713
    93 F. Fava, D. Di Gioia, L. Marchetti. Cyclodextrin effects on the ex-situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Biotechnology and bioengineering. 2000, 58(4):345-355
    94 E. Fenyvesi, K. Gruiz, S. Verstichel, et al. Biodegradation of cyclodextrins in soil. Chemosphere. 2005, 60(8):1001-1008
    95刘五星,骆永明,滕应等.石油污染土壤的生物修复研究进展.土壤. 2006, 38(5):634-639
    96 G. Goma, A. Pareilleux, G. Durand. Specific hydrocarbon solubilization during growth of Candida lipolytica. J. Ferment. Technol. 1973, 51(8):616-618
    97华兆哲,陈坚.石油烷烃降解与生物表面活性剂生产的相关性研究及进展.石油化工. 1998, 27(12):925-929
    98 M. Rosenberg, E. Rosenberg. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Journal of bacteriology. 1981, 148(1):51
    99 A. A. Pe a, C. A. Miller. Solubilization rates of oils in surfactant solutions and their relationship to mass transport in emulsions. Advances in colloid and interface science. 2006, 123:241-257
    100马强,林爱军,马薇等.土壤中总石油烃污染(TPH)的微生物降解与修复研究进展.生态毒理学报. 2008, 3(1):1-8
    101 B. E. Rittmann, A. J. Valocchi, E. Seagren, et al. Critical review of in situ bioremediation. Gas Research Institute Topical Report," GRI-92/0322, Chicago, IL. 1992,3:77-84
    102 P. Morgan, R. J. Watkinson. Biodegradation of components of petroleum. Biochemistry of microbial degradation. 1994,31:1–31
    103苏荣国,倪方天.微生物对石油烃的降解机理及影响因素.化工环保. 2001, 21(4):205-208
    104丁克强,骆永明.生物修复石油污染土壤.土壤. 2001, 33(004):179-184
    105胡凌燕.几个菌株对原油污染的生物修复初步研究.南京理工大学. 2006:41-43
    106贾燕.石油降解菌和生物表面活性剂在水体石油污染生物修复中的应用及机理研究.暨南大学. 2007:27-29
    107 J. D. Coates, J. Woodward, J. Allen, et al. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Applied and Environmental Microbiology. 1997, 63(9):3589-3584
    108 R. Rabus, M. Kube, J. Heider, et al. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Archives of microbiology. 2005, 183(1):27-36
    109 V. G. Grishchenkov, R. T. Townsend, T. J. McDonald, et al. Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochemistry. 2000, 35(9):889-896
    110 C. Calvo, M. Manzanera, G. A. Silva-Castro, et al. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Science of the total environment. 2009, 407(12):3634-3640
    111 C. Ruggeri, A. Franzetti, G. Bestetti, et al. Isolation and characterisation of surface active compound-producing bacteria from hydrocarbon-contaminated environments. International Biodeterioration & Biodegradation. 2009, 12:3-9
    112 S. Supaphol, S. Panichsakpatana, S. Trakulnaleamsai, et al. The selection of mixed microbial inocula in environmental biotechnology: Example using petroleum contaminated tropical soils. Journal of microbiological methods. 2006, 65(3):432-441
    113 S. B. Batista, A. H. Mounteer, F. R. Amorim, et al. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresource technology. 2006, 97(6):868-875
    114齐永强,王红旗.微生物处理土壤石油污染的研究进展.上海环境科学. 2002, 21(3):177-180
    115 K. S. M. Rahman, J. Thahira-Rahman, P. Lakshmanaperumalsamy, et al. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource technology. 2002, 85(3):257-261
    116 D. Delille, E. Pelletier, F. Coulon. The influence of temperature on bacterial assemblages during bioremediation of a diesel fuel contaminated subAntarctic soil. Cold Regions Science and Technology. 2007, 48(2):74-83
    117顾传辉,陈桂珠.石油污染土壤生物降解生态条件研究.生态科学. 2000, 19(4):67-72
    118 Y. Liang, X. Zhang, D. Dai, et al. Porous biocarrier-enhanced biodegradationof crude oil contaminated soil. International Biodeterioration & Biodegradation. 2009, 63(1):80-87
    119赵阳国,王爱杰,任南琪等. FISH技术监测硫酸盐还原反应器中碱度降低对功能微生物群落的影响.中国化学工程学报(英文版). 2007, 2:14-18
    120 J. Bertaux, U. Gloger, M. Schmid, et al. Routine fluorescence in situ hybridization in soil. Journal of microbiological methods. 2007, 69(3):451-460
    121 G. Muyzer, E. C. De Waal, A. G. Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 1993, 59(3):695
    122邢德峰.产氢—产乙醇细菌群落结构与功能研究.哈尔滨工业大学. 2006:52-53
    123任南琪,赵阳国,高崇洋等. TRFLP在微生物群落结构与动态分析中的应用.哈尔滨工业大学学报. 2007, 39(4):552-556
    124 T. L. Marsh. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Current opinion in Microbiology. 1999, 2(3):323-327
    125 I. Neria-González, E. T. Wang, F. Ramírez, et al. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe. 2006, 12(3):122-133
    126 I. J. Diaz-Ramirez, E. Escalante-Espinosa, E. Favela-Torres, et al. Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. International Biodeterioration & Biodegradation. 2008, 62(1):21-30
    127 S. L. Edenborn, A. J. Sexstone. DGGE fingerprinting of culturable soil bacterial communities complements culture-independent analyses. Soil Biology and Biochemistry. 2007, 39(7):1570-1579
    128毛丽华,吕华,李子君.石油污染土壤生物强化修复的机制与实施途径.有色金属. 2006, 58(1):92-96
    129何泽能,李振山,籍国东.老化石油污染土壤的清洗处理.环境污染与防治. 2006, 28(12):884-887
    130魏复盛,徐晓白,阎吉昌.水和废水监测分析方法指南,下册.中国环境科学出版社, 1997:47-58
    131 R. J. Kavlock, G. P. Daston, C. DeRosa, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environmental health perspectives. 1996, 104(l4):715-723
    132 G. Lear, M. J. Harbottle, C. J. van der Gast, et al. The effect of electrokinetics on soil microbial communities. Soil Biology and Biochemistry. 2004, 36(11):1751-1760
    133 F. Schinner, R. hlinger, E. Kandeler, et al. Methods in soil biology. Springer, 1995:101-104
    134陶士珩,王立祥.土壤含水率测定的误差分析及控制.干旱地区农业研究. 1997, 15(2):84-88
    135张琴芝,戴琴.表面活性剂的红外光谱鉴定.日用化学工业. 1992, (2):37-40
    136 J. Zhou, M. A. Bruns, J. M. Tiedje. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology. 1996, 62(2):316-323
    137邢德峰,任南琪,宋业颖, et al. DG-DGGE分析产氢发酵系统微生物群落动态及种群多样性.生态学报. 2005, 25(7):1818-1823
    138 B. J. Bassam, G. Caetano-Anollés, P. M. Gresshoff. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical biochemistry. 1991, 196(1):80-83
    139周春生,尹军. TTC—脱氢酶活性检测方法的研究.环境科学学报. 1996, 16(4):400-405
    140 Z. Stpniewska, A. Wolińska, J. Ziomek. Response of soil catalase activity to chromium contamination. Journal of Environmental Sciences. 2009, 21(8):1142-1147
    141陈龙然,袁康培,冯明光等.一株产环糊精葡萄糖基转移酶的地衣芽孢杆菌的选育,产酶条件及酶学特性.微生物学报. 2005, 45(1):97-101
    142陈新,刘晓冬,刘晓艳.大庆市重要类型土壤的性质.大庆石油学院学报. 2004, 28(4):15-17
    143李玉宁,王关玉.土壤呼吸作用和全球碳循环.地学前缘. 2002, 9(2):351-357
    144 R. Riffaldi, R. Levi-Minzi, R. Cardelli, et al. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, &Soil Pollution. 2006, 170(1):3-15
    145 G. Stotzky, C. J. Hurst, G. R. Knudsen, et al. Quantifying the metabolic activity of microbes in soil. 2008,3:41-49
    146 K. Ilangovan, M. Vivekanandan. Effect of oil pollution on soil respiration and growth of Vigna mungo(L.) Hepper. Science of the total environment. 1992, 116(1-2):187-194
    147张丽莉,陈利军,刘桂芬等.污染土壤的酶学修复研究进展.应用生态学报. 2003, 14(12):2342-2346
    148 D. Kumar Jha, G. D. Sharma, R. R. Mishra. Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil biology & biochemistry. 1992, 24(8):761-767
    149李广贺,张旭.土壤残油生物降解性与微生物活性.地球科学:中国地质大学学报. 2002, 27(2):181-185
    150戴伟,白红英.土壤过氧化氢酶活度及其动力学特征与土壤性质的关系.北京林业大学学报. 1995, 17(1):37-41
    151李慧,张颖,苏振成等.沈抚石油污水灌区稻田土壤细菌遗传多样性-16S rDNA-PCR-DGGE分析.土壤学报. 2006, 43(6):972-980
    152任随周,郭俊,邓穗儿等.石油降解菌的分离鉴定及石油污染土壤的细菌多样性.生态学报. 2005, 25(12):3314-3322
    153章晶晓,陈东之,成卓韦等. PM1菌降解甲基叔丁基醚的代谢途径.中国环境科学. 2008, 28(9):802-806
    154 N. Yoshida, K. Yagi, D. Sato, et al. Bacterial communities in petroleum oil in stockpiles. Journal of bioscience and bioengineering. 2005, 99(2):143-149
    155吴业辉,邵宗泽.海洋烷烃降解菌Alcanivorax sp. A-11-3的分离鉴定及其降解酶基因研究.台湾海峡. 2008, 27(4):427-434
    156 M. J. Sánchez-Mart n, M. S. Rodr guez-Cruz, M. Sanchez-Camazano. Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soil–water system. Water Research. 2003, 37(13):3110-3117
    157 R. Khalladi, O. Benhabiles, F. Bentahar, et al. Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials. 2009, 164(2-3):1179-1184
    158 D. Sailaja, K. L. Suhasini, S. Kumar, et al. Theory of rate of solubilization into surfactant solutions. Langmuir. 2003, 19(9):4014-4026
    159 W. Chu, W. S. So. Modeling the two stages of surfactant-aided soil washing. Water Research. 2001, 35(3):761-767
    160 L. Kuang, X. Zhang, B. Wang, et al. Environmental behavior of surfactant in soil and its hazard analysis. Journal of Northeast Forestry University. 2008, 36(2):1213-1216
    161 J. Villaverde. Time-dependent sorption of norflurazon in four different soils: Use ofβ-cyclodextrin solutions for remediation of pesticide-contaminated soils. Journal of Hazardous Materials. 2007, 142(1-2):184-190
    162 M. Lubomska, P. Gierycz, M. Rogalski. Enhancement of the anthracene aqueous solubility by a synergistic effect of alcohols andβ-cyclodextrin. Fluid Phase Equilibria. 2005, 238(1):39-44
    163 M. L. Brusseau, X. Wang, Q. Hu. Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environmental science & technology. 1994, 28(5):952-956
    164 G. Yardin, S. Chiron. Photo–Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin. Chemosphere. 2006, 62(9):1395-1402
    165 K. Hanna, C. De Brauer, P. Germain. Solubilization of the neutral and charged forms of 2, 4, 6-trichlorophenol byβ-cyclodextrin, methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin in water. Journal of Hazardous Materials. 2003, 100(1-3):109-116
    166侯涛,徐仁扣.胶体颗粒表面双电层之间的相互作用研究进展.土壤. 2008, 40(003):377-381
    167 J. Zhou, W. Jiang, J. Ding, et al. Effect of Tween 80 and [beta]-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by White Rot Fungi. Chemosphere. 2007, 70(2):172-177
    168 S. O. Ko, M. A. Schlautman, E. R. Carraway. Partitioning of hydrophobic organic compounds to hydroxypropyl-β- cyclodextrin: Experimental studies and model predictions for surfactant- enhanced remediation applications. Environmental Science and Technology. 1999, 33(16):2765-2770
    169 V. K. Gupta, A. Rastogi. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. Journal of Hazardous Materials. 2008, 154(1-3):347-354
    170 Y. S. Ho, T. H. Chiang, Y. M. Hsueh. Removal of basic dye from aqueoussolution using tree fern as a biosorbent. Process Biochemistry. 2005, 40(1):119-124
    171 X. Cheng, X. Huang, X. Wang, et al. Phosphate adsorption from sewage sludge filtrate using zinc-aluminum layered double hydroxides. Journal of Hazardous Materials. 2009, 169(1-3):958-964
    172 J. Tseng, C. Yuan Chang, C. Chang, et al. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent. Journal of Hazardous Materials. 2009, 171(1-3):370-377
    173 P. Djl, W. J. Weber, L. M. Abriola. Solubilization rates of n-alkanes in micellar solutions of nonionic surfactants. Environmental science & technology. 2000, 34(3):16-19
    174 S.Langergren, B.K.Svenska. Zur theorie der soge nannten adsorption geloester stoffe.Veternskapsakad Handlingar.1898,24(4):1-39
    175 Moia Sengil. A kinetic study of metal complex dye sorption onto pine sawdust. Process Biochemistry. 2005, 40(2):58-66
    176高士祥,王连生.环糊精在环境科学中的应用.环境科学进展. 1998, 6(4):80-86
    177高士祥.环糊精和表面活性剂对有机污染物的增溶及在土壤修复中的应用研究.南京大学. 1999:31-35
    178赵保卫.增效试剂对难降解有机物的增溶作用,机理及生物可利用性影响.浙江大学. 2004:79-81
    179 W. P. Johnson, W. W. John. PCE solubilization and mobilization by commercial humic acid. Journal of Contaminant Hydrology. 1999, 35(4):343-362
    180 I. Sanemasa, T. Takuma, T. Deguchi. Association of some polynuclear aromatic hydrocarbons with cyclodextrins in aqueous medium. Bulletin of the Chemical Society of Japan. 1989, 62(10):3098-3102
    181张久根,蔡士悦.土壤矿物油及其污染.农业环境保护. 1993, 12(4):166-170
    182李学垣.土壤化学.高等教育出版社,北京, 2001:7-10
    183 T. Loftsson, K. Matth asson, M. Másson. The effects of organic salts on the cyclodextrin solubilization of drugs. International journal of pharmaceutics. 2003, 262(1-2):101-107
    184 T. W. Sheremata, J. Hawari. Cyclodextrins for desorption and solubilizationof 2, 4, 6-trinitrotoluene and its metabolites from soil. Environ. Sci. Technol. 2000, 34(16):3462-3468
    185 I. A. W. Tan, A. L. Ahmad, B. H. Hameed. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials. 2009, 164(2-3):473-482
    186 J. Virkutyte, M. Sillanp, P. Latostenmaa. Electrokinetic soil remediation—critical overview. Science of the Total Environment, The. 2002, 289(1-3):97-121
    187 V. Pomes, A. Fernandez, D. Houi. Effect of applied electrical field and the initial soil concentration on species recovery during application of the electroremediation process. Process Safety and Environmental Protection. 2002, 80(5):256-264
    188 V. R. Ouhadi, R. N. Yong, N. Shariatmadari, et al. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. Journal of Hazardous Materials. 2009, 32(2):12-17
    189 N. Costarramone, S. Tellier, M. Astruc, et al. Application of an electrokinetic technique to the reclamation of fluoride polluted soils: laboratory and pilot scale experiments. Waste management & research. 1998, 16(6):555-563
    190 Y. Cong, Q. Ye, Z. Wu. Electrokinetic behaviour of chlorinated phenols in soil and their electrochemical degradation. Process Safety and Environmental Protection. 2005, 83(2):178-183
    191 J. M. Wang, E. M. Marlowe, R. M. Miller-Maier, et al. Cyclodextrin-enhanced biodegradation of phenanthrene. Environ. Sci. Technol. 1998, 32(13):1907-1912
    192解清杰,何佳,黄卫红等.六氯苯污染底泥的电动力学修复.华中科技大学学报:自然科学版. 2006, 34(6):111-114
    193 S. A. Jackman, G. Maini, A. K. Sharman, et al. Electrokinetic movement and biodegradation of 2, 4-dichlorophenoxyacetic acid in silt soil. Biotechnology and bioengineering. 2001, 74(1):40-48
    194 A. T. Yeung, C. Hsu. Electrokinetic remediation of cadmium-contaminated clay. Journal of Environmental Engineering. 2005, 131:298-303
    195 A. Giannis, E. Gidarakos. Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. Journal of HazardousMaterials. 2005, 123(1-3):165-175
    196 W. Verstraete, J. P. Voets. Soil microbial and biochemical characteristics in relation to soil management and fertility. Soil Biology and Biochemistry. 1977, 9(4):253-258
    197 K. L. Kalburtji, A. P. Mamolos, S. Kostopoulou. Nutrient release from decomposing Lotus corniculatus residues in relation to soil pH and nitrogen levels. Agriculture, Ecosystems & Environment. 1997, 65(2):107-112
    198曹慧,孙辉,杨浩等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报. 2003, 9(1):105-109
    199 M. J. Harbottle, G. Lear, G. C. Sills, et al. Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics. Journal of environmental management. 2009, 90(5):1893-1900
    200蔺昕,李培军,孙铁珩等.石油污染土壤的生物修复与土壤酶活性关系.生态学杂志. 2005, 24(10):1226-1229
    201张晶,张惠文,张勤等.长期石油污水灌溉对东北旱田土壤微生物生物量及土壤酶活性的影响.中国生态农业学报. 2008, 16(1):67-70
    202 T. Persson, H. Lundkvist, A. Wirén, et al. Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus. Water, Air, & Soil Pollution. 1989, 45(1):77-96
    203 G. H. Yu, P. J. He, L. M. Shao. Reconsideration of anaerobic fermentation from excess sludge at pH 10.0 as an eco-friendly process. Journal of Hazardous Materials. 2009, 3(4):1513-1518
    204 L. Y. Wick, A. R. De Munain, D. Springael, et al. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Applied microbiology and biotechnology. 2002, 58(3):378-385
    205 W. Shi, B. A. Stocker, J. Adler. Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis. Journal of bacteriology. 1996, 178(4):1113-1117
    206 J. Teissie, N. Eynard, M. C. Vernhes, et al. Recent biotechnological developments of electropulsation: A prospective review. Bioelectrochemistry. 2002, 55(1-2):107-112
    207 T. Matsunaga, Y. Namba, T. Nakajima. Electrochemical sterilization of microbial cells. Bioelectrochemistry and Bioenergetics. 1984, 13(4):393-400
    208 L. Y. Wick, L. Shi, H. Harms. Electro-bioremediation of hydrophobic organicsoil-contaminants: A review of fundamental interactions. Electrochimica Acta. 2007, 52(10):3441-3448
    209 G. C. C. Yang, C. Y. Liu. Remediation of TCE contaminated soils by in situ EK-Fenton process. Journal of Hazardous Materials. 2001, 85(3):317-331
    210 R. Bellandi. Innovative engineering technologies for hazardous waste remediation. Van Nostrand Reinhold Company, 1995, 3:78-84
    211 R. M. Atlas. Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin. 1995, 31(4-12):178-182
    212马放,任南琪,杨基先.污染控制微生物学.哈尔滨工业大学出版社, 2004:141-147
    213戚以政,汪叔雄.生化反应动力学与反应器.化学工业出版社,北京, 1996:129-133
    214 P. F. Verhulst. Notice sur la loi que la population suit dans son accroissement. Corr. Math. et Phys. 1838, 10:113–121
    215 J. H. M. Thornley, J. France. An open-ended logistic-based growth function. Ecological Modelling. 2005, 184(2-4):257-261
    216马文漪,杨柳燕,顾宗濂.环境微生物工程.南京大学出版社, 1998,67-74
    217张秀霞,单宝来,张剑杰等.降解菌HJ-1降解石油动力学.中国石油大学学报:自然科学版. 2009, 5:140-143
    218马宏瑞,赵敏,张景飞.假单胞菌DS—Ⅲ的脱氢酶活性与石油烃降解动力学特性.农业环境科学学报. 2007, 26(2):559-562
    219杨国君,宋若海,华兆哲等.两株假单胞菌对烷烃的摄取和降解.过程工程学报. 2005, 5(2):188-192
    220冷凯良,楚晓珉,张辉珍等.微生物对石油烃降解代谢产物的分析方法研究. 2008. 22(2):77-81
    221潘冰峰,徐国梁.生物表面活性剂产生菌的筛选.微生物学报. 1999, 39(3):264-267
    222丁立孝,何国庆,栾明川等.脂肽生物表面活性剂摇瓶发酵条件的研究.中国食品学报. 2005, 5(1):10-15
    223 F. M. Ghazali, Rnza Rahman, A. B. Salleh, et al. Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation. 2004, 54(1):61-67
    224方开泰,马长兴.正交与均匀试验设计.科学出版社, 2001:144-156