SBR系统在低温条件下的废水生物除磷性能及除磷途径分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物除磷工艺是一种经济有效地控制水体富营养化的手段,在全世界范围的污水处理厂被广泛应用。但在实际工程中,生物除磷工艺稳定性较差。温度是影响生物除磷工艺的重要参数,在温度低于10℃的低温环境,有大量生物除磷失效的报道。本研究考察了低温运行的生物除磷系统的性能,分析低温条件下生物除磷反应器中的微生物群落结构、功能微生物、聚磷污泥活性以及磷去除途径的特异性,从生物去除和生物诱导的化学去除等方面分析低温对磷的去除机制的影响。
     在5℃条件下启动生物除磷反应器,发现低温条件下通过A/O方式运行的SBR可以实现聚磷菌在反应器中的富集,反应器启动所需的时间为31d。温度越低,反应器启动需要的时间和污泥龄越长。5℃的生物除磷反应器在稳定运行后,对磷酸盐的去除率在85%左右,15℃的SBR除磷效率为95%,而25℃的除磷反应器磷酸盐的平均去除率为78%。
     污泥龄对低温生物除磷系统的性能有很大影响。在5℃,将反应器的污泥龄从30d降到15d后,生物除磷的性能严重恶化,聚磷菌逐渐从反应器中被洗出。通过模型计算低温生物除磷反应器适宜的污泥龄,发现5℃时生物除磷反应器的洗出污泥龄为12d,稳定污泥龄为18d,即在5℃要获得稳定高效的生物除磷性能,必须保证反应器的污泥龄在18d以上。
     低温生物除磷系统中聚磷菌的代谢受到了pH的影响。厌氧释磷能力随着pH的升高而加强。pH在6和8之间变化时,乙酸吸收和PHB的合成能力也随着pH升高而加强,但是当pH升高到8.5时,聚磷酸盐分解释放的能量主要用于克服细胞膜两侧电势差(Δ? ),导致PHB合成动力不足,从而抑制了好氧段磷的吸收。在pH为8时,生物除磷系统实现了充分的释磷和吸磷,并取得了最好的除磷效果。在不同pH下长期运行生物除磷反应器,发现pH影响了生物除磷系统的微生物种群结构。在酸性条件下(pH为6)长期运行的生物除磷系统中聚糖菌大量存在;而pH为8时,聚磷菌在活性污泥中占有优势地位。
     发现低温条件下EPS对磷的去除起重要作用。5℃时,平均每个运行周期通过EPS去除的磷达到2.4mg,EPS去除的磷占磷去除总量的13%。而15和25℃通过磷酸盐沉淀在EPS表面富集而去除的磷分别占磷去除总量的4.2%和4.8%。低温条件下有利于磷酸根与金属结合生成沉淀并附着在EPS中。在不同温度生物除磷系统中,通过微生物代谢和聚磷菌过量吸收进行的胞内磷去除均占主导作用,达到磷去除总量的80%以上。在15℃,生物除磷系统通过微生物的胞内作用去除的磷最多,典型周期SBR反应器通过微生物的胞内作用去除的磷为18.2mg,除磷效率也达到了95%。
     应用分子生物学技术考察了低温运行的生物除磷系统在微生物群落结构和功能微生物的特异性。FISH技术结合反应器运行的结果显示,5℃条件下,较短的污泥龄(15d)容易造成聚磷菌洗出,维持较长的污泥龄有利于聚磷菌的富集。5℃,污泥龄为30d的生物除磷反应器中聚磷菌含量最高,在活性污泥微生物中约占64.3%。应用PCR-DGGE技术考察了温度对生物除磷系统功能微生物的影响,发现不同温度的生物除磷反应器功能微生物有差异,5、15和25℃条件下运行的的生物除磷反应器中都存在的功能微生物为Uncultured beta proteobacterium gene for 16S rRNA clone:OS1L-4和Gemmatimonas aurantiaca。Uncultured actinobacterium clone GCP18大量存在于25℃的生物除磷反应器中,在5℃的生物除磷反应器中,Tetrasphaera elongata的含量很高,可能为低温条件下起主要作用的功能菌。
     考察了温度对富磷污泥反应动力学的影响,发现聚磷菌的厌氧反应活性在25℃时最大,好氧反应活性在5-30℃随着温度的升高而提高。温度对生物除磷系统中微生物动力学反应有较大影响,生物除磷系统在低温运行时,聚磷菌的活性最差。厌氧乙酸吸收、PHB合成和磷酸盐释放的温度系数分别为1.056、1.047和1.053,好氧的磷酸盐吸收和PHB消耗的温度系数分别为1.057和1.066。
Biological phsophorus removal (BPR) process has been widely implemented in many wastewater treatment plants (WWTP) worldwide as a economical and effective method to control wastewater eutrophication. However, the lack of stability is still a noticeable problem. There were a lot of reports about the loss of phosphorus removal capability for BPR (biological phosphorus removal) processes operated at temperatures under 10 oC. Sludge characteristics, microbial community structure, kinetics and mechanism of P removal were investigated in BPR system operated at low temperature, and biological phosphate removal and biologically induced phosphorus precipitation characteristics was analysed at low temperature.
     In BPR reactors started up at 5°C, PAOs were acclimated in SBR when the reactor was operated at A/O mode under 5°C, and the start up time was 31d. Lower temperature resulted in longer start up time. When the BPR reactor was well started up, the phosphorus removal efficiency was ~85%. The phosphorus removal in this reactor was lower than that operated at 15°C, but larger than the reactor operated at 25°C.
     SRT had a great effect on performance of BPR system. For SBR operated at 5 oC, the phosphorus removal capability seriously deteriorated after the SRT reduced from 30 days to 15 days, and PAOs were simultaneously washed out from the reactor gradually. Wash-out SRT (or minimal SRT) and stable SRT for BPR at were calculated according to the model proposed by Brdjanovic. Wash-out SRT were 12 for BPR reactor operated at 5 oC, while stable SRT was 18 days. Longer stable SRT was demanded for BPR operated at lower temperature.
     Variation of pH had effects on PAOs metabolization characteristics in BPR operated at low temperature. Anaerobic phosphorus release capacity increased with pH at 5 oC in the range of 6 to 8.5. Anaerobic acetate uptake and PHB formation capacity enhanced with the pH increasing from 6 to 8. When the pH increased to 8.5, too much power supplied by degradation of poly-P was used to overcomeΔ? . Less poly-β-hydroxybutyrate (PHB) was synthesized in anaerobic phase inhibited consequent uptake of orthophosphate in aerobic phase. Highest phosphorus removal efficiency was obtained in batch tests at pH 8 accompany with typical phosphorus release and uptake. BPR performance and microorganisms were monitored in 5 oC SBR operated at pH 6 and 8 to investigate pH effect on microbial community structure of BPR at low temperature. Acidic condition (pH=6) favored the growths of GAOs, while PAOs take predominant roles in BPR systems at pH 8.
     It is the first time to investigate that extracellular polymeric substance (EPS) played an important role for phosphorus removal in BPR system. Phosphorus removed by EPS removal achieved the highest value at 5 oC (2.4 mg P per cycle). Low temperature was propitious to EPS phosphorus removal, accounting for 13 % of total phosphorus removal at 5 oC, which was much higher than that at 15℃(4.2%) and 25℃(4.8%). Phosphorus removed by intracellular absorption was demonstrated as the dominant part (>80%) in total phosphorus removal operated under different temperatures. Intracellular phosphorus contents reduced with the increase of temperature. At 15℃, the highest total phosphorus removal rate of 95 % was obtained due to the highest intracellular phosphorus absorption of 18.2 mg P in a typical cycle.
     Molecular techniques were applied to investigate the microbial community characteristics and founctional microbes at low temperature. Results of FISH showed that shorter SRT (15 days) was unfavorable at 5℃for BPR due to the wash-out of PAOs to some extent. At 5 oC and 30 days SRT, the highest PAOs content among total bacteria reached 64.3%. PCR-DGGE was applied to investigate the temperature effects on founctional microbes. Founctional microbes of BPR differed with temperature. Uncultured beta proteobacterium gene for 16S rRNA clone:OS1L-4.and Gemmatimonas aurantiaca existed in SBRs operated at 5, 15 and 25 oC as founctional microbes. Uncultured actinobacterium clone GCP18 existed in a large amount in BPR operated at 25 oC, while Tetrasphaera elongata, which had a large population in BPR reactor operated at 5 oC, might be the main founctional microbe at low temperature.
     Anaerobic specific phosphorus release rates (SPRR), specific acetate uptake rates (SCUR) and specific PHB formation rates increased with the temperature in the range of 5 to 25 oC, and decreased at 30 oC. Temperature coefficients for P-release, acetate uptake and PHB formation were 1.056, 1.047 and 1.053, respectively. Aerobic specific phosphorus uptake rates (SPUR) and specific PHB consumption rates increased with the temperature in the range of 5 to 30 oC, and temperature coefficients for these two aerobic reactions were 1.057 and 1.066.
引文
1邵林广,游映玖.控磷除磷在水体富营养化控制中的作用.环境与开发. 1999, 14(2):19-20
    2王宝贞,沈耀良.废水生物处理新技术-理论与应用.中国环境科学出版社, 1999
    3郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社, 1998
    4王宝贞,王琳.水污染治理新技术.科学出版社, 2003
    5郝晓地,汪惠贞,钱易等.欧洲城市污水处理技术新概念?--可持续生物除磷脱氮工艺(上).给水排水. 2002, 28(6):6-11
    6 J. Soller, A. Olivieri, D. Eisenberg, et al. Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal: Results from trials with different small-scale pilot plants, R. Gnirss, J. Dittrich, 72, 602 (2000). Discussion. Water Environment Research. 2002, 74(2):210-211
    7 M. Henze, P. Harremoes, J. la Cour Jansen, et al. Wastewater treatment: biological and chemical processes. Springer, 1997.
    8 G. A. Ekama, G. V. R. Marais, I. P. Siebritz, et al.. Theory, Design and Operation of Nutrient Removal Activated Sludge Processes. 1984
    9 G. Tchobanoglous, F. L. Burton, H. D. Stensel. Wastewater Engineering: Treatment and Reuse. Metcalf & Eddy Inc., McGraw-Hill Science Engineering, , 2002.
    10 G. Bortone, F. Malaspina, L. Stante, et al. Biological nitrogen and phosphorus removal in an anaerobic/anoxic sequencing batch reactor with separated biofilm nitrification. Water Science and Technology. 1994, 30(6 pt 6):303-313
    11 T. Kuba, M. C. M. Van Loosdrecht, J. J. Heijnen. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research. 1996, 30(7):1702-1710
    12 M. C. M. Van Loosdrecht, F. A. Brandse, A. C. De Vries. Upgrading of waste water treatment processes for integrated nutrient removal the BCFS process. Water Science and Technology. 1998, 37(9):209-217
    13 A. Britton, F. A. Koch, D. S. Mavinic, et al. Pilot-scale struvite recovery fromanaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant. Journal of Environmental Engineering and Science. 2005, 4(4):265-277
    14 X. D. Hao, M. C. M. van Loosdrecht. Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS). Water Science and Technology. 2006, 53:191-198
    15 P. Battistoni, B. Paci, F. Fatone, et al. Phosphorus removal from anaerobic supernatants: start-up and steady-state conditions of a fluidized bed reactor full-scale plant. Industrial and Engineering Chemistry Research. 2006, 45(2):663-669
    16 B. Lesjean, R. Gnirss, C. Adam. Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal. Desalination. 2002, 149(1-3):217-224
    17 F. Rogalla, T. L. Johnson, J. McQuarrie. Fixed film phosphorus removal - flexible enough? Water Science and Technology. 2006, 53(12):75-81
    18 J. L. Zilles, J. Peccia, D. R. Noguera. Microbiology of enhanced biological phosphorus removal in aerated-anoxic Orbal processes. Water environment research : a research publication of the Water Environment Federation. 2002, 74(5):428-436
    19 R. J. Zeng, Z. Yuan, J. Keller. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnology and Bioengineering. 2003, 81(4):397-404
    20 R. L. Meyer, R. J. Zeng, V. Giugliano, et al. Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: Mass transfer limitation and nitrous oxide production. FEMS Microbiology Ecology. 2005, 52(3):329-338
    21 E. Dulekgurgen, S. Ovez, N. Artan, et al. Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor. Biotechnology Letters. 2003, 25(9):687-693
    22 D. P. Cassidy, E. Belia. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research. 2005, 39(19):4817-4823
    23 M. K. De Kreuk, J. J. Heijnen, M. C. M. Van Loosdrecht. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology andBioengineering. 2005, 90(6):761-769
    24 M. K. De Kreuk, M. Pronk, M. C. M. Van Loosdrecht. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Research. 2005, 39(18):4476-4484
    25 R. Lemaire, R. Meyer, A. Taske, et al. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Journal of Biotechnology. 2006, 122(1):62-72
    26 P. S. Barker, P. L. Dold. Denitrification behaviour in biological excess phosphorus removal activated sludge systems. Water Research. 1996, 30(4):769-780
    27 G.. W. Fuhs, M. Chen. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb. Ecol. 1975, 2(2):119-138
    28由阳,袁志国,彭永臻.强化生物除磷系统中主要菌群的富集和培养.高技术通讯. 2009, 19(02):36-40
    29 K. Nakamura, A. Hiraishi, Y. Yoshimi, et al. Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. International Journal of Systematic Bacteriology. 1995, 45(1):17-22
    30 M. M. Santos, P. C. Lemos, M. A. M. Reis, et al. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Applied and Environmental Microbiology. 1999, 65(9):3920-3928
    31 R. J. Seviour, T. Mino, M. Onuki. The microbiology of biological phosphorus removal in activated sludge systems. Fems Microbiology Reviews. 2003, 27(1):99-127
    32 L. Stante, C. M. Cellamare, F. Malaspina, et al. Biological phosphorus removal by pure culture of Lampropedia spp. Water Research. 1997, 31(6):1317-1324
    33 A. M. Maszenan, R. J. Seviour, B. K. C. Patel, et al. Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. International Journal of Systematic and Evolutionary Microbiology. 2000,50:593-603
    34 A. M. Saunders. The physiology of microorganisms in enhanced biological phosphorus removal. University of Queensland. 2005.
    35 H. B. Lu, A. Oehmen, B. Virdis, et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Research. 2006, 40(20):3838-3848
    36 T. Fukase, Shibata, M., Miyaji, Y.,. The role of the anaerobic stage on biological phosphorus removal. Water Sci. Technol. 1985, 17:69-80
    37 J. S. Cech, P. Hartman, M. Macek. Bacteria and portozoa population-dynamics in biological phosphorus systems. Water Science and Technology. 1994, 29(7):109-117
    38 T. Mino, W. T. Liu, F. Kurisu, et al. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Science and Technology. 1995, 31(2):25-34
    39马民,陈银广,顾国维.污水处理过程中聚糖菌的富集培养.环境科学与技术. 2006, (6):1-4
    40 A. M. Maszenan, R. J. Seviour, B. K. C. Patel, et al. Amaricoccus gen. nov, a gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov, Amaricoccus tamworthensis sp. nov, Amaricoccus macauensis sp. nov, and Amaricoccus kaplicensis sp. nov. International Journal of Systematic Bacteriology. 1997, 47(3):727-734
    41 T. Shintani, W. T. Liu, S. Hanada, et al. Micropruina glycogenica gen. nov., sp, nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology. 2000, 50:201-207
    42 Y. H. Kong, M. Beer, R. J. Seviour, et al. Structure and functional analysis of the microbial community in an aerobic: Anaerobic sequencing batch reactor (SBR) with no phosphorus removal. Systematic and Applied Microbiology. 2001, 24(4):597-609
    43 S. Hanada, W. T. Liu, T. Shintani, et al. Tetrasphaera elongata sp nov., a polyphosphate-accumulating bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology. 2002, 52:883-887
    44 W. T. Liu, S. Hanada, T. L. Marsh, et al. Kineosphaera limosa gen. nov., sp nov., a novel Gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activat sludge. International Journal of Systematic and Evolutionary Microbiology. 2002, 52:1845-1849
    45 T. Mino, M. C. M. Van Loosdrecht, J. J. Heijnen. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research. 1998, 32(11):3193-3207
    46 W. T. Liu, K. Nakamura, T. Matsuo, et al. Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors - Effect of P/C feeding ratio. Water Research. 1997, 31(6):1430-1438
    47 Y. Comeau, K. J. Hall, R. E. W. Hancock, et al. Biochemical model for enhanced biological phosphorus removal. Water Research. 1986, 20(12):1511-1521
    48 M. C. Wentzel, L. H. Lotter, R. E. Loewenthal, et al. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal - a biochemical model. Water SA. 1986, 12(4):209-224
    49 T. Mino, V. Arun, Y. Tsuzuki, et al. Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Biological Phosphate Removal from Wastewaters. 1987:27-38
    50 H. Pereira, P. C. Lemos, M. A. M. Reis, et al. Model for carbon metabolism in biological phophorus removal processes based on in vivo 13C-NMR labeling experiments. Water Research. (1996), 30(9): 2128-2138.
    51 M. C. Wentzel, R. H. Lotter, G. A. Ekama, et al. Evaluation of biochamical models for biological excess phosphorus removal. Water Sci. Technol. 1991, 23: 567-576
    52 J. B. Copp, P. L. Dold. Confirming the nitrate-to-oxygen conversion factor for denitrification. Water Research. 1998, 32(4):1296-1304
    53 W. T. Liu, T. Mino, K. Nakamura, et al. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content. Journal of Fermentation and Bioengineering. 1994, 77(5):535-540
    54 C. D. M. Filipe, G. T. Daigger, C. P. L. Grady Jr. Effects of pH on the rates of aerobic metabolism of phosphate-accumulating and glycogen-accumulatingorganisms. Water Environment Research. 2001, 73(2):213-222
    55 C. D. M. Filipe, G. T. Daigger, C. P. L. Grady Jr. PH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms. Water Environment Research. 2001, 73(2):223-232
    56 S. G. Fischer, L.S. Lerman. Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell. 1979, 16:191-200
    57 G. Muyzer, E. C. Waal, A. G. Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplicied genes encoding for 16S rRNA. Applied and Environmental Microbiology. 1993, 59:695-700
    58 M. Onuki, H. Satoh, T. Mino . Analysis of microbial community that performs enhanced biological phosphorus removal in activated sludge fed with acetate. Water Science and Technology. 1997, 46:145-154
    59 Y. H. Ahn, R. E. Speece. Elutriated acid fermentation of municipal primary sludge. Water Research. 2006, 40(11):2210-2220
    60 A. J. Schuler, D. Jenkins. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, part I: Experimental results and comparison with metabolic models. Water Environment Research. 2003, 75(6):485-498
    61 A. T. Nielsen, W. T. Liu, C. Filipe, et al. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Applied and Environmental Microbiology. 1999, 65(3):1251-1258
    62 S. L. Yu, Y. N. Liu, G. L. Jing. Analysis of phosphate - accumulating organisms cultivated under different carbon sources with polymerase chain reaction - denaturing gradientgel electrophoresis assay. Journal of Environmental Sciences. 2005, 17:611~614
    63 G. Silyn-Roberts, G. Lewis. In situ analysis of Nitrosomonas spp. in wastewater treatment wetland biofilms. Water Research. 2001, 35(11):2731-2739
    64 P. L. Bond, J. Keller, L. L. Blackall. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control. Biotechnology and Bioengineering. 1999, 63(5):507-515
    65 J. Ahn, T. Daidou, S. Tsuneda, et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditionsusing polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Research. 2002, 36(2):403-412
    66 M. T. Wong, W. T. Liu. Microbial succession of glycogen accumulating organisms in an anaerobic-aerobic membrane bioreactor with no phosphorus removal. Water Science and Technology. 2006, 54:29-37
    67 A. Oehmen, A. M. Saunders, M. T. Vives, et al. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology. 2006, 123(1):22-32
    68 A. Oehmen, M. T. Vives, H. Lu, et al. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Water Research. 2005, 39(15):3727-3737
    69 M. Pijuan, A. Guisasola, J. A. Baeza, et al. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions. Journal of Biotechnology. 2006, 123(1):117-126
    70 K. Soejima, K. Oki, A. Terada, et al. Effects of acetate and nitrite addition on fraction of denitrifying phosphate-accumulating organisms and nutrient removal efficiency in anaerobi/aerobic/anoxic process. Bioprocess Biosystem Engineering. 2006, 29:305 - 313.
    71 H. Lua, A. Oehmena, B. Virdisa, et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Research. 2006, (40):3838 - 3848.
    72 G. J. F. Smolders, J. Van der Meij, M. C. M. Van Loosdrecht, et al. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnology and Bioengineering. 1995, 47(3):277-287
    73 C. D. M. Filipe, G. T. Daigger, C. P. L. Grady Jr. Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus-accumulating organisms at different pHs. Biotechnology and Bioengineering. 2001, 76(1):32-43
    74 N. Yagci, N. Artan, C. W. Randall, et al. Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions. Biotechnology and Bioengineering. 2003, 84(3):359-373
    75 G. J. F. Smolders, J. Van Der Meij, M. C. M. Van Loosdrecht, et al.Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnology and Bioengineering. 1994, 44(7):837-848
    76 R. J. Zeng, Z. Yuan, J. Keller. Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. Biotechnology and Bioengineering. 2003, 83(3):293-302
    77郑金伟,冉炜,钟增涛等.增强型生物除磷过程中聚磷酸盐积累微生物的研究进展.应用生态学报. 2004, 15(8):1487~1490
    78 G. J. Smolders M. C. M. van Loosdrecht, T. Kuba, et al. Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology. 1997, 71:109-116
    79 C. D. M. Filipe, G. T. Daigger, C. P. L. Grady Jr. A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: Stoichiometry, kinetics, and the effect of pH. Biotechnology and Bioengineering. 2001, 76(1):17-31
    80 R. Zeng, Z. Yuan, M. C. M. Van Loosdrecht, et al. Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions. Biotechnology and Bioengineering. 2002, 80(3):277-279
    81 R. J. Zeng, M. C. M. Van Loosdrecht, Z. Yuan, et al. Metabolic Model for Glycogen-Accumulating Organisms in Anaerobic/Aerobic Activated Sludge Systems. Biotechnology and Bioengineering. 2003, 81(1):92-105
    82 C. D. M. Fillipe, G. T. Daigger. Development of a revised metabolic model for the growth of phosphorus-accumulating organisms. Water Research. 1998, 70:67~79
    83 E. Murnleitner, T. Kuba, M. C. M. Van Loosdrecht, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnology and Bioengineering. 1997, 54(5):434-450
    84 S. C. F. Meijer, M. C. M. Van Loosdrecht, J. J. Heijnen. Metabolic modelling of full-scale biological nitrogen and phosphorus removing wwtp's. Water Research. 2001, 35(11):2711-2723
    85 M. Pijuan, J. A. Baeza, C. Casas, et al. Response of an EBPR population developed in an SBR with propionate to different carbon sources. Water Science and Technology. 2004, 50:131-138
    86 E. Tykesson, L. L. Blackall, Y. Kong, et al. Applicability of experience fromlaboratory reactors with biological phosphorus removal in full-scale plants. Water Science and Technology. 2006, 54:267-275
    87周群英,高廷耀.环境工程微生物学(第二版).高等教育出版社, 2000
    88 L. M. Whang, J. K. Park. Competition between polyphosphate- and glycogen-accumulating organisms in biological phosphorus removal systems - Effect of temperature. Water Science and Technology. 2002, 46:191-194
    89 U. G. Erdal, Z. K. Erdal, C. W. Randall. The mechanism of enhanced biological phosphorus removal washout and temperature relationships. Water Environment Research. 2006, 78(7):710-715
    90 T. Panswad, A. Doungchai, J. Anotai. Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research. 2003, 37(2):409-415
    91 C. Helmer, S. Kunst. Low temperature effects on phosphorus release and uptake by microorganisms in EBPR plants. Water Science and Technology. 1998, 37(4-5):531-539
    92 M. Okada, C. K. Lin, Y. Katayama, et al. Stability of phosphorus removal and population of bio-P-bacteria under short term disturbances in sequencing batch reactor activated sludge process. Water Science and Technology. 1992, 26(3-4):483-491
    93 S. Marklund, S. Morling. Biological phosphorus removal at temperatures from 3-degrees-C to 10-degrees-C-a full-scale study of a sequencing batch reactor unit. Canada Journao of Civil Engineering. 1994, 21(2):81-88
    94 D. Brdjanovic, M. C. M. Van Loosdrecht, C. M. Hooijmans, et al. Temperature effects on physiology of biological phosphorus removal. Journal of Environmental Engineering. 1997, 123(2):144-152
    95 C. Krishna, M. C. M. van Loosdrecht. Effect of temperature on storage polymers and settleability of activated sludge. Water Research. 1999, 33(10):2374-2382
    96 A. Converti, M. Rovatti, M. Del Borghi. Biological removal of phosphorus from wastewaters by alternating aerobic and anaerobic conditions. Water Research. 1995, 29(2):263-269
    97 E. Choi, D. Rhu, Z. Yun, et al. Temperature effects on biological nutrient removal system with weak municipal wastewater. Water Science and Technology. 1998, 37(9):219-226
    98 C. Euiso, R. Daewhan, Y. L.Euisin. Temperature Effects on Biological Nutrient Removal System with Weak Municipal Wastewater. Water Science and Technology. 1998,, 37(9):219~226
    99 S. Knoop, S. Kunst. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella.. Water Science and Technology. 1998, 37(4-5):27-35
    100 D. Mamais, D. Andreadakis, C. Noutsopoulos, et al. Causes of, and control strategies for, Microthrix parvicella bulking and foaming in nutrient removal activated sludge systems. Water Science and Technology. 1998, 37(4-5):9-17
    101 D. H Eikelboom, A. Andreadakis, K Andreasen. Survey of filamentous populations in nutrient removal plants in four European countries. Water Science and Technology. 1998, 37(4-5):281-289
    102祝贵兵,彭永臻.生物除磷设计与运行手册.中国建筑工业出版社, 2002
    103 C. P. L. Jr. Grady, G. T. Daigger, H. C. Lim. Biological wastewater treatment 2nd edition. Marcel Dekker , Inc., 1999
    104 F. Kargi, A. Uygur. Nutrient removal performance of a sequencing batch reactor as a function of the sludge age. Enzyme and Microbial Technology. 2002, 31(6):842-847
    105 S. McClintock, C. W. Randall, V. Pattarkine. The effects of temperature and mean cell residence time on enhanced biological phosphorus removal. Environmental Engineering, 1991 Specialty Conference on Environmental Engineering, 1992. ASCE,
    106 D. Mamais, D. Jenkins. The effects of MCRT and temperature on enhanced biological phosphorus removal. Water Science and Technology. 1992, 26,(5-6):955-965
    107 D. Baetens, P. A. Vanrolleghem, M. C. M. Van Loosdrecht, et al. Temperature effects in Bio-P removal. Water Science and Technology. 1999, 39:215-225
    108 D. Brdjanovic, M. C. M. Van Loosdrecht, C. M. Hooijmans, et al. Minimal aerobic sludge retention time in biological phosphorus removal systems. Biotechnology and Bioengineering. 1998, 60(3):326-332
    109 D. Brdjanovic, M. C. M. Van Loosdrecht, P. Versteeg, et al. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder. Water Research. 2000, 34(3):846-858
    110 D. Brdjanovic, M. C. M. vanLoosdrecht, C. M. Hooijmans, et al. Temperatureeffects on physiology of biological phosphorus removal. Journal of Environmental Engineering-Asce. 1997, 123(2):144-153
    111 B. M. Kumar, S. Chaudhari. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source. Water Science and Technology. 2003, 48:73-79
    112 K. Johnson, J. van Geest, R. Kleerebezem, et al. Short- and long-term temperature effects on aerobic polyhydroxybutyrate producing mixed cultures. Water Research. 2010, 44(6): 1689-1700
    113 D. Baetens, P. A. Vanrolleghem, M. C. M. van Loosdrecht, et al. Temperature effects in bio-P removal. Water Science and Technology. 1999, 39(1):215-225
    114 H. Okuyama. Homeoviscous adaptation in psychrophilic bacterium, Vibrio sp. Strain ABE-1. Journal of General and Applied Microbiology. 1986, 32(6):473-482
    115 E. Fodor. Lipids of Xenerhabdus nemathopilus and Fotorhabdus limunescence symbiotic bacteria. American Society for Microbiology. 1997, 63(7):2823-2831
    116 G. J. F. Smolders, J. Van der Meij, M. C. M. Van Loosdrecht, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnology and Bioengineering. 1994, 43(6):461-470
    117 W. T. Liu, T. Mino, K. Nakamura, et al. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Water Research. 1996, 30(1):75-82
    118 W. T. Liu, T. Mino, T. Matsuo, et al. Biological phosphorus removal processes - Effect of pH on anaerobic substrate metabolism. Water Science and Technology. 1996, 34:25-32
    119沈耀良.一种改进的AB工艺.江苏环境科技. 1997, (1):20~22
    120何国富,张波,华光辉, et al.强化AB法的脱氮除磷功能研究.中国给水排水. 2002, (9):57~60
    121杜红,邹利安,王宝贞.深圳市罗芳污水处理厂AB工艺的运行控制与维护管理.给水排水. 2004, 30(10):13~16
    122邵林广.深圳市罗芳污水处理厂一期工程试运行简评.给水排水. 2000, 26(1):6~10
    123张秀华.脱氮型AB工艺在滕州市污水处理厂设计中的应用.污水脱氮除磷技术研究与实践.155~157
    124陈立,杨坤,鲍宪枝.二段法改良工艺处理高浓度难降解城市污水.中国给水排水. 2001, 17(8):50~52
    125中国城市污水处理现状及规划. 2003.中国环保产业CEPI. (1):32~35
    126邵林广.南方城市污水处理工艺的选择.给水排水. 2000, 26(6):32~34
    127喻昌勇,郭迎庆.潮州市第一污水处理厂设计与运行体会.给水排水. 2003, 29(10):12~15
    128周国成.我国污水处理A/O、A2/O工艺技术在生物脱氮除磷技术的实验研究、应用与发展.化工给排水设计. 1997, (1):1~11
    129李激,邱岩. A2O工艺污水处理运行与调试效果的研讨.江苏环境科技. 1998, (4):24~27
    130国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.第3版.中国环境科学出版社, 1989
    131 K. J. Hall, Y. Comeau, W. K. Oldham. Determination of poly-hydroxybutyrate and poly-hydroxyvaleration in activated sludge by gas-liquid chromatography. Applied and Environmental Microbiology. 1988, 54(9):2325-2327
    132周岳溪.废水生物除磷机理及间歇式生物处理工艺的研究.清华大学博士学位论文. 1991:53
    133 T. Okuda, A. U. Baes, W. Nishijima, et al. Isolation and characterization of coagulant extracted from moringa oleifera seed by salt solution. Water Research. 2001, 35(2):405-410
    134 B. Fr?lund, R. Palmgren, K. Keiding, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research. 1996 5:369-389
    135 B. Fr?lund, T. Griebe, P. H. Nielsen. Enzymatic- activity in the activated -sludge floc matrix. Applied Microbiology and Biotechnology. 1995, 43(4):755-761
    136北京大学生物系生物分子学教研室.生物化学实验指导.人民教育出版社, 1979
    137 R. I. Amman, B. J. Binder, R. J. Olson. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology. 1990, 56:1919-1925
    138 H. Daims, A. Bruhl, R. Amann, et al. The domainspecific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of amore comprehensive probe set Syst Appl Microbiol. 1999, 22:434-444
    139 G. R. Crocetti, P. Hugenholtz, P. L. Bond, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Applied and Environmental Microbiology. 2000, 66(3):1175-1182
    140 M. T. Wong, F. M. Tan, W. J. Ng, et al. Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge porcesses. Microbiology. 2004, 150:3741-3748.
    141 D. Brdjanovic, S. Logemann, M. C. M. Van Loosdrecht, et al. Influence of temperature on biological phosphorus removal: Process and molecular ecological studies. Water Research. 1998, 32(4):1035-1048
    142 E. Murnleitner, T. Kuba, M. C. M. vanLoosdrecht, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnology and Bioengineering. 1997, 54(5):434-450
    143 L. M. Whang, C. D. M. Filipe, J. K. Park. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms. Water Research. 2007, 41(6):1312-1324
    144 A. J. Schuler, D. Jenkins. Effects of pH on enhanced biological phosphorus removal metabolisms. Water Science and Technology. 2002, 46:171-178
    145 A. Oehmen, M. Teresa Vives, H. Lu, et al. The Effect of Ph on the Competition between Polyphosphate-Accumulating Organisms and Glycogen-Accumulating Organisms. Wat. Res. 2005, 39:3727-3737
    146 T. Zhang, Y. Liu, H. H. P. Fang. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process. Biotechnology and Bioengineering. 2005, 92(2):173-182
    147 M. Maurer, D. Abramovich, H. Siegrist, et al. Kinetics of biologically induced phosphorus precipitation in waste-water treatment. Water Research. 1999, 33(2):484-493
    148 W. T. Liu, D. L. Katrina, K. Nakamura. Microbial Community Changes in Biological Phosphate-Removal Systems on Altering Sludge Phosphorus Content. Environment microbiology. 2000, 146:1099~1107
    149李勇智.短程生物脱氮和反硝化除磷的基础研究.哈尔滨工业大学. 2003
    150 J. Wang, C. Chen. Biosorbents for heavy metals removal and their future. Biotechnology Advances. 27(2):195-226
    151 T. E. Cloete, D.J. Oosthuizen. The role of extracellular exopolymers in the removal of phosphorus from activated sludge. Water Research. 2001, 35:3595-3598
    152 D. J. Barker, David.C. Stuckey. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research. 1999, 33:3063-3082
    153 S. Rosenberger, C. Laabs, B. Lesjean, et al. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Research. 2006, 40:710-720
    154 Y. Liu, S. Yu, G. Xue, et al. Role of extracellular exopolymers in biological phosphorus removal. Water Science and Technology. 2006, 54:257-265
    155 U. Nuebel, B. Engelen, A. Felske. Sequence Heterogeneities of Genes Encoding
    16S rRNAs in Paenibacillus Polymyxa Detected by Temperature Gradient Gel Electrophoresis. 178. 1996, Journal of Bacteriol:5636-5643
    156 M. Onuki, H. Satoh, T. Mino. Analysis of microbial community that performs enhanced biological phosphorus removal in activated sludge fed with acetate Water Science and Technology. 2002, 46:145-154
    157 S. Hanada, W. T. Liu, T. Shintani, et al. Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology. 2002, 52(3):883-887
    158 W. T. Liu, A. T. Nielsen, J. H. Wu, et al. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environmental Microbiology. 2001, 3(2):110-122
    159 G. R. Crocetti, J. F. Banfield, J. Keller, et al. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology. 2002, 148(11):3353-3364
    160 E. V. Pikuta, R. B. Hoover, D. Marsic, et al. Proteocatella sphenisci gen. nov., sp. nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano. International Journal of Systematic and Evolutionary Microbiology. 2009, 59(9):2302-2307
    161 S. T. Khan, Y. Horiba, M. Yamamoto, et al. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic - 117 -approach. Applied and Environmental Microbiology. 2002, 68(7):3206-3214
    162 S. G. Tringe, C. von Mering, A. Kobayashi, et al. Comparative metagenomics of microbial communities. Science. 2005, 308:554-557
    163 S. Onda, S. Takii. Isolation and characterization of a Gram-positive polyphosphate-accumulating bacterium. Journal of General and Applied Microbiology. 2002, 48(3):125-133
    164 C. Yeates, A. M. Saunders, G. R. Crocetti, et al. Limitations of the widely used GAM42a and BET42a probes targeting bacteria in the Gammaproteobacteria radiation. Microbiology. 2003, 149(5):1239-1247
    165 M. Beer, Y. H. Kong, R. J. Seviour. Are some putative glycogen accumulating organisms (GAO) in anaerobic: aerobic activated sludge systems members of theα-Proteobacteria? Microbiology. 2004, (150):2267-2275
    166 A. T. Nielsen, W. T Liu, C. Filipe. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Applied and Environmental Microbiology. 1999, 36:1251-1258
    167贺延龄,陈爱侠.环境微生物学.中国轻工业出版社, 2001