生物腐植酸对新疆甘草种植区产地环境综合作用效果评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆荒漠化土地总面积达7.96×10~5km~2,约占新疆国土面积的47.7%,土地荒漠化已逐步成为新疆土地退化的重要表现之一,亟待治理。新疆是我国甘草的重要产区,提高甘草产量与改善甘草产地环境防止土壤沙退化具有重要的社会、经济和环境效益。首先在温室条件下,以沙退化土壤为研究对象,通过正交试验和生物腐植酸(BHS)施用量梯度试验对土壤有机质含量、土壤微生物数量以及紫花苜蓿生物量等指标进行了考察,验证了生物腐植酸的修复效果,进一步通过新疆田间小区试验,考察了施入生物腐植酸后连续三年甘草生物量的变化,较全面系统地研究了不同施用量生物腐植酸对甘草种植区产地土壤质量的改良效果,分析了施用生物腐植酸后第90d、110d、130d、150d和190d时土壤各指标的变化规律和指标间的相互关系,验证了生物腐植酸的增产作用以及对产地环境的改善作用。通过主成分分析与聚类分析对作用效果进行了系统性评价,初步建立了适合于新疆甘草产地土壤质量的综合指标评价体系。全文主要得出了以下结论:
     1.室内生物腐植酸修复效果验证试验
     施入生物腐植酸后,沙退化土壤质量得到了很大改善,土壤有机质含量、土壤微生物数量和紫花苜蓿生物量得到了较快而显著地提高。初步明确了腐植酸与微生物的相互关系及对修复的贡献:微生物单独作用时修复效果不明显,腐植酸单独作用时具有一定的修复效果,微生物显著提高了腐植酸的作用效果,即生物腐植酸作为整体修复效果最好。
     2.新疆甘草种植区实地修复试验
     (1)从甘草植株高度、单株地上鲜重和产量三个方面考察了不同施用量生物腐植酸对三年内甘草生长状况的影响。结果表明,生物腐植酸对甘草产量的影响明显大于对植株高度和单株地上鲜重的影响。中量(450kg·hm~(-2))生物腐植酸对甘草植株高度、单株地上鲜重和产量(干重)的作用效果最好。以2009年为例,各指标分别达到80.80cm、137.5g和18412.95kg·hm~(-2),分别比对照提高了8.2%、6.9%和29.1%,差异达显著或极显著水平。
     (2)与对照相比,施用生物腐植酸能够显著促进土壤质地的改善,作用效果随施用量的增加而增强,土壤粗砂粒含量显著下降,粘粉粒和粘粒含量显著提高;90d-150d的过程中,土壤pH变动不大,150d-190d的过程中有所下降,但保持弱碱性;土壤全氮和有机碳含量显著提高,最佳施用量为450kg·hm~(-2),190d时,分别由对照的0.758g·kg-1和7.55 g·kg-1增加至0.922g·kg-1和8.75 g·kg-1,分别增加了21.6%和15.9%;土壤全磷含量有增加的趋势,全钾含量则有下降的趋势。
     (3)土壤可提取腐殖质碳(EH-C)、富里酸碳(FA-C)、胡敏酸碳(HA-C)含量显著提高,最佳施用量为450 kg·hm~(-2)。190d时,EH-C、FA-C和HA-C含量分别达到4.15g·kg-1、2.16g·kg-1和1.99g·kg-1,分别比对照提高了21.0%、17.4%和20.1%。
     (4)土壤脲酶、碱性磷酸酶、过氧化氢酶活性显著提高,最佳施用量为450 kg·hm~(-2)。190d时,土壤脲酶、碱性磷酸酶、过氧化氢酶活性分别达到187.12mg·kg-1·3h-1、26.33mg·kg-1·h-1和3.62mL 0.1 mol·L-1 KMnO4·g-1·20min-1,分别比对照提高了57.6%、20.3%和11.9%。
     (5)土壤细菌和放线菌数量、可培养微生物总数、氨化细菌和自生固氮菌数量,微生物生物量碳含量以及微生物商显著提高,最佳施用量为450kg·hm~(-2)。对130d时该施用量下平板分离的细菌菌种进行16SrDNA分子鉴定的结果表明,绝大多数为芽孢杆菌。
     (6)相关性分析表明,各指标之间的相关性以施用生物腐植酸后的第190d时最好。综合来看,土壤粘粉粒含量(<0.005mm)、粘粒含量(<0.002mm)、土壤全氮、碱解氮、速效磷、速效钾、有机碳、可提取腐殖质碳、富里酸碳、胡敏酸碳、土壤酶活性、除真菌外的土壤微生物学指标之间呈极显著或显著正相关。甘草产量与微生物生物量碳和微生物商呈显著正相关。
     (7)分别采用土壤机械组成、化学指标、土壤酶活性指标、土壤微生物学指标的原始指标、主成分指标和主成分综合评分指标进行聚类分析,结果表明:采用各种指标均可对目标土壤进行有效的划分。按不同处理的效果进行排序,结果如下:450kg·hm~(-2)>750kg·hm~(-2)> 600kg·hm~(-2)> 300kg·hm~(-2)>150kg·hm~(-2)>对照。初步建立了新疆甘草种植区土壤质量评价体系,具体评价指标为植物生物量、土壤机械组成、土壤全氮、碱解氮、速效磷、速效钾、有机碳、碳氮比、可提取腐殖质碳、富里酸碳、胡敏酸碳、脲酶活性、碱性磷酸酶活性、过氧化氢酶活性、细菌、放线菌、真菌的数量、氨氧化菌和自生固氮菌的数量、可培养微生物总数、微生物生物量碳、微生物商等。
The total area of Xinjiang desertified land is 7.96×10~5km~2, which takes up 47.7% of Xinjiang total area. Desertification has become the main presentation of Xinjiang soil degradation, which needs immediate restoration. Furthermore, Xinjiang is one of the most important Glycyrrhiza uralensis production areas in China. Improving the yield and modifying the production environment to prevent soil degradation and desertification have great social, economical and environmental profits. The in-house restoration effect verification test of bio-active humic substances (BHS) was first conducted, which verified the marvelous restoration effect of BHS on the desertification-caused degraded soil and made it relatively clear the relationship between humic acids and microorganisms. The effects of BHS at different rates on the soil quality of Glycyrrhiza uralensis production area were systematically studied through in-situ restoration test in Xinjiang. The dynamic changes of the soil mechanical composition, main nutrients, humus composition, enzymatic activities and microbial indices were analyzed and the restoration effects of BHS were verified. Systematic evaluation of the restoration effect was conducted through principal component and cluster analysis, and the comprehensive evaluation system fitting for evaluating the soil quality of Xinjiang Glycyrrhiza uralensis production area was established. The following conclusions were mainly drawn:
     1. In-house BHS restoration effect verification test
     The quality of the BHS-treated soil has been greatly improved. The content of soil organic matter, the quantity of soil microbes and the biomass of Medicago sativa L. have rapidly and significantly increased. The relationship between humic acid and microbes and their respective contributions to the restoration were analyzed: the restoration effect was not obvious if microbes acted by itself.The humic acid itself played a more important role in restoration and microbes significantly improved the restoration effect of humic acid.The bio-active humic substances, as a whole, had the best restoration effect .
     2. In-situ restoration test of Xinjiang Glycyrrhiza uralensis production area
     (1) The height, aboveground fresh weight per plant and yield were examined to evaluate the effect of BHS at different rates on the growth status of Glycyrrhiza uralensis. The results showed that the effects of BHS were significantly different due to their rates. Medium and low rates of BHS contributed more to the increase of plant height and the aboveground fresh weight per plant. The former reached 80.8cm and 79.4cm and increased by 8.2% and 6.3%,respectively,the latter reached 137.5g and 134.7g and increased by 6.9%和4.7%,respectively,while the treatment of high rates of BHS showed little difference compared with the control. The yield reached 18412.95kg·hm~(-2)·dry weight and 16666.05kg·hm~(-2)·dry weight with the application of medium and high rates of BHS, respectively, increased by 29.1% and 16.9%,while the yield under the treatment of low rates of BHS was lower than the control with no BHS incorporation.
     (2)The soil texture was significantly promoted with the application of BHS,compared with the control with no BHS incorporation. The contents of coarse and fine sand decreased sharply with the increasing rates of BHS, while the silt and clay content increased significantly. During the first 150 days after application of BHS, soil pH showed little change and was in the range of 8.53-8.92.From the 150th to 190th day, the soil pH dropped obviously and fluctuated in the range of 7.80-8.19.The pH of the soil treated by BHS was slightly higher than that of the control. The contents of soil total nitrogen and organic carbon were significantly improved with the application of BHS and the best application rate was 450kg·hm~(-2), at which the contents at the190th day increased by 21.6%, from 0.758g·kg-1 to 0.922g·kg-1 and 15.9%, from 7.55 g·kg-1 to 8.75 g·kg-1, respectively. There was an increasing trend for total phosphorus content and a descending trend for the total potassium.
     (3) The contents of extractable humus carbon(EH-C), fulvic acid carbon(FA-C) and humic acid carbon(HA-C) were greatly improved with the application of BHS, especially at the rate of 450kg·hm~(-2),which reached 4.15g·kg-1, 2.16g·kg-1 and 1.99g·kg-1, respectively and increased by 21.0%, 17.4% and 20.1% correspondingly, compared with the control.
     (4)The soil urease, alkaline phosphatase and catalase activity were significantly improved after application of BHS. The best rate was 450kg·hm~(-2) and the soil urease, alkaline phosphatase, catalase activities reached 187.12 mg·kg-1·3h-1, 26.33 mg·kg-1·h-1 and 3.62 mL 0.1mol·L-1KMnO4·g-1·20min-1, respectively and increased by 57.6%, 20.3% and 11.9%, compared with the control.
     (5) The numbers of soil bacteria, actinomycetes, total cultivatable microbes,ammonia-oxidizing bacteria and azotobacter, microbial biomass carbon content and microbial quotient were significantly improved after application of BHS and basically the application rate 450 kg·hm~(-2) was the best, at which the strains separated from the plates at the 130th day were identified based on the 16SrDNA sequences.The results showed that the prevailing bacteria were Bacillus sp and the strains were identified as Bacillus pumilus, Bacillus amyloliquefaciens, Bacillus gibsonii, Bacillus simplex, endogenous Bacillus, Bacillus megaterium, Bacillus subtilis,Georgenia ferrireducens and Kocuria sp.
     (6) Correlation analysis showed that the indices were best correlated at the 190th day.Generally, the soil clay and silt content (<0.005mm), clay content (<0.002mm), total nitrogen, available nitrogen, available phosphorus, available potassium, organic carbon, extractable humus carbon, fulvic acid carbon, humic acid carbon, soil enzyme activity and microbial indices with the exception of fungi presented significant or extremely significant positive correlation, which indicated that the BHS had much influence on soil physical, chemical,biochemical and microbial indicators. There was positive correlation between the yield and other soil indices (except soil fungi), especially the microbial biomass carbon and microbial quotient,which presented significant positive correlation. The improvement of soil quality was the comprehensive embodiment of various soil characters. Combined with the indices analyzed above and the data of the yield, 450kg·hm~(-2) was defined as the best application rate.
     (7)The original, principal component and principal component comprehensive score of soil physical, chemical, biochemical and microbial indices were used to conduct cluster analysis. The objective soils were well classified according to the restoration effects, which were as follows: 450kg·hm~(-2)>750 kg·hm~(-2)> 600 kg·hm~(-2)>300 kg·hm~(-2)> 150 kg·hm~(-2)> control.According to the changes of indices after application of BHS and the result of principal component and cluster analysis, The soil quality evaluation system for Xinjiang Glycyrrhiza uralensis production area was established. The specific indices consist of soil mechanical composition, total nitrogen, available nitrogen, available phosphorus, available potassium, organic carbon, C/N ratio, extractable humus carbon, fulvic acid carbon, humic acid carbon, activities of urease, alkaline phosphatase and catalase, numbers of bacteria, actinomycetes and fungi, numbers of ammonia-oxidizing bacteria and azotobacter, total numbers of cultivatable microorganisms, microbial biomass carbon and microbial quotient.
引文
1.蔡晓布,钱成,张永青,等.秸秆还田对西藏中部退化土壤环境的影响[J].植物营养与肥料学报.2003,9(4):411~418.
    2.蔡晓布,钱成,张元,等.西部中部地区退化土壤秸秆还田的微生物变化特征及其影响[J].应用生态学报,2004,15(3):463~468.
    3.柴发熹,陈晓妮.退耕还林(草)成效主要限制性因子筛选研究[J].经济林研究.2003,21(2):8~11.
    4.陈宝书.退耕还草技术指南[M].金盾出版社,2002.
    5.陈恩凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49~53.
    6.陈恩凤,周礼凯,邱凤琼.土壤肥力实质的研究Ⅱ.棕壤[J].土壤学报,1985,22(2):113~119.
    7.陈恩凤,周礼凯,邱凤琼.土壤肥力实质的研究I.黑土[J].土壤学报,1984,21(3):229~237.
    8.陈恩凤,周礼恺,武冠云.微团聚体的保肥性能及其组成比例在评判土壤肥力中的作用[J].土壤学报,1994,31(1):18~28.
    9.陈恩凤.土壤酶与土壤肥力研究[M].北京:科学出版社,1979,54-61.
    10.陈华癸,樊庆笙.微生物学[M].北京:农业出版社,1980.
    11.陈杰瑢,颜景莲,张云泽.功能高分子材料在改善西部荒漠化中的应用[J].塑料,2002,(1):
    12.陈梦熊.西北干旱区荒漠化成因分析与防治对策[J].国土资源科技管理,2004,6:9~13
    13.陈祝春.沙丘结皮层形成过程的土壤微生物和土壤酶活性[J].环境科学,1991,12(1):19~23.
    14.崔晓勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):315~325.
    15.窦森,肖彦春,张晋京.土壤胡敏素各组分数量及结构特征初步研究.土壤学报,2006,43(6):934~940.
    16.窦森.土壤腐殖物质形成转化及其微生物学机理研究进展[J].吉林农业大学学报,2008,30(4):538~547.
    17.冯元琦.腐植酸物料绿化荒漠化土地[J].腐植酸,2004,(4)1~5.
    18.傅华,陈亚明,周志宇,等.阿拉善荒漠草地恢复初期植被与土壤环境的变化[J].中国沙漠,2003,23(6):661~664.
    19.高树清,王宝申,韩英群.腐植酸及不同原料对土壤脲酶活性及氮素的影响研究[J].腐植酸,2004,(6):32~36.
    20.关桂兰,郭沛新,王卫卫.新疆干旱地区根瘤菌资源研究:II根瘤菌抗逆性及生理生化反应特性[J].微生物学报,1992(5):346~352.
    21.关连珠,张伯泉.不同肥力黑土-棕壤微团聚体组成及其胶结物质的研究[J].土壤学报,1991,28(3):260~267
    22.关松荫.土壤酶及其研究方法[M].北京:中国农业出版社,1987.
    23.韩建国,韩永伟,孙铁军,等.农牧交错带退耕还草对土壤有机质和氮的影响[J].草业学报,2004,13(4):21~28.
    24.韩永伟,韩建国,张蕴薇,等.农牧交错带退耕还草对土壤微生物量C,N的影响[J].农业环境科学学报,2004,23(5):993~997.
    25.何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997(2):61~70.
    26.和文祥,朱铭莪.陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报,1997,34(4):392-398.
    27.黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    28.君国平,农韧钢,刘革宁.高吸水剂在我国林业上的应用[J].世界林业研究,2001,14(2):50~54.
    29.李潮海,王小星,王群,等.不同质地土壤玉米根际生物活性研究[J].中国农业科学,2007,40(2):412-418.
    30.李洪彬,索菲娅.新疆特殊生境下微生物资源[J].干旱地区农业研究,2004,22(4):198~202.
    31.李立科.小麦留茬少耕秸秆全程覆盖新技术[J].陕西农业科学,1999(4):40~41.
    32.李瑞波.生物腐植酸-有机肥高效发酵剂.第四届全国绿色环保肥料新技术、新产品交流会论文集,2004.
    33.李瑞雪.黄土高原沙棘、刺槐人工林对土壤的培肥效应及其模型[J].土壤侵蚀与水土保持学,1998,4(1):14~21
    34.李世东.中国退耕还林研究[M].科学出版社.2004:54~55.
    35.李相玺.花岗岩侵蚀区植被层次结构优化模式研究[J].水土保持研究,1997,4(1):202~207.
    36.李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591~1599
    37.李学垣.土壤化学[M].北京:高等教育出版社,2001.1~56,406.
    38.李永红.放牧空间梯度上和恢复演替时间梯度上羊草草原的群落特征与其对应性[M].草原生态系统研究(第4集).北京:科学出版社,1992:1~8.
    39.梁一民,侯喜禄,李代琼.黄土丘陵区林草植被快速建造的理论与技术[J].土壤侵蚀与水土保持学报,1999,5(3):1~5
    40.梁远.秸秆残茬覆盖在北方寒地的应用分析[J].农机化研究,2005(7):25~26.
    41.林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志.1999,18(2):63~66.
    42.刘志恒.放线菌现代生物学与生物技术[M].北京:科学出版社,2004:275~276.
    43.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,1999.
    44.潘惠霞,程争鸣,张雪梅,等.干旱荒漠区寡营养细菌及其生态特性的研究[J].中国科学D辑地球科学,2006,36(增刊II):119~125.
    45.戚容怡,秦景明,吴葆荣,戴朝寿.农用正交试验法[M].江苏科学技术出版社,1979.
    46.饶小莉,沈德龙,李俊,等.甘草内生细菌的分离及拮抗菌株鉴定[J].微生物学通报,2007,34(4):700~705.
    47.任天志,Grego S.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):1~9.
    48.邵玉琴,赵吉,包青海.库布齐固定沙丘土壤微生物数量的垂直分布研究[J].中国沙漠,2001,21(1):88~92.
    49.邵玉琴,赵吉.库布齐固定沙丘土壤微生物数量与土壤生态因子的研究[J].内蒙古大学学报(自然科学版),1997,28(5):715~719.
    50.舒强.新疆土地退化的成因分析与防治对策-着重于土地的荒漠化[J].新疆环境保护,2000,22(3):149~154.
    51.苏永中,赵哈林,张铜会,等.科尔沁沙地旱作农田土壤退化的过程和特征[J].水土保持学报,2002,16(1):25~28.
    52.孙波,赵其国,张桃林,等.土壤质量与持续环境III.土壤质量评价的生物学指标[J].土壤,1997,29:225~234.
    53.孙娟,蒋文兰,陈全功,等.基于GIS的退耕还草专家系统的研制与开发[J].农业工程学报,2004,20(2):259~263.
    54.唐立松,王周琼,张佳宝.草炭保水机制的初步研究[J].干旱区研究,2002,19(2):47~51
    55.王葆芳,刘星晨,王君厚,等.沙质荒漠化土地评价指标体系研究[J].干旱区资源与环境,2004,18(4):23~28.
    56.王冬梅,王春枝,韩晓日.长期施肥对棕壤主要酶活性的影响[J].土壤通报,2006,37(2):263~267.
    57.王小彬,蔡典雄.旱作农田保护性耕作-液膜-施肥综合技术研究[J].农业工程学报,2005,(21):22~25.
    58.文启孝.土壤有机质研究法[M].北京:农业出版社,1984.
    59.吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:54~78.
    60.夏晓东,吴崇友.保护性耕作与节水补灌技术组合应用[J].农机科技推广,2005(4):19~20.
    61.肖晶晶,郭萍,田云龙,等.不同腐植酸原料中的微生物分离与鉴定(上)[J].腐植酸,2007,(2):9~14.
    62.肖晶晶,郭萍,田云龙,等.不同腐植酸原料中的微生物分离与鉴定(下)[J].腐植酸,2007,(3):17~21.
    63.许秀成,王好斌.包裹型缓释/控制释放肥料专题报告[J].磷肥与复肥,2000,15(3):1~6.
    64.杨俊萍,闫永旺.锡林郭勒草原自然保护区退化草地恢复示范区实验效果研究[J].内蒙古环境保护,1999,11(3):19~23.
    65.杨学明,张晓平,方华军,等.北美保护性耕作及对中国的意义应用[J].生态学报,2004,15(2):335~340.
    66.于红伟,安志东,王胜兴,等.土地沙化荒漠化成因分析及治理对策.以正镶白旗为例[J].内蒙古林业调查设计.2007,30(4):10,14.
    67.于江,郭萍,田云龙,等.生物腐植酸修复沙化退化土壤效果研究//朱昌雄.农业生物资源与环境调控[M].北京:中国农业科学技术出版社,2007:110~117.
    68.俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413~422.
    69.袁红莉,王风芹,李宝珍,等.微生物降解褐煤产生的腐植酸的生物活性研究[J].土壤学报,2002,39(增刊):129~134
    70.翟瑞常.耕作对土壤生物C动态变化的影响[J].土壤学报,1996,33(2):201~210.
    71.张海林,陈阜,秦耀东,等.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):36~40.
    72.张敏,沈德龙,饶小莉,等.甘草内生细菌多样性研究[J].微生物学通报,2008,35(4):524~528.
    73.张伟华,关世英,李跃进,等.不同恢复措施对退化草地土壤水分和养分的影响[J].内蒙古农业大学学报,2000,21(4):31~35.
    74.张小磊,安春华,马建华,等.长期施肥对城市边缘区不同作物土壤酶活性的影响[J].土壤通报,2007,38(4):667~671.
    75.张新全,杨春华,张锦华,等.四川省坡耕地退耕还草与农业综合开发的探讨[J].草业科学,2002,19(7):38~41.
    76.张雪梅,王纯利,牟书勇,等.新疆干旱荒漠地区五株低营养细菌的理化特性研究[J].干旱区地理,2005,28(6):831~835.
    77.张雪梅.新疆干旱荒漠地区寡营养细菌及其胞外多糖的研究[D].乌鲁木齐:新疆农业大学,2006:28~43.
    78.张燕,王继永,刘勇,等.氮肥对乌拉尔甘草生长及有效成分的影响[J].北京林业大学学报,2005,27 (3) :57~60.
    79.赵哈林,黄学文,何宗颖.科尔沁沙地农田沙漠化演变的研究[J].土壤学报,1996,33(3):242~248.
    80.赵哈林,周瑞莲,苏永中,等.科尔沁沙地沙漠化过程中土壤有机碳和全氮含量变化[J].生态学报,2008,28(3):976~983.
    81.中国科学院数学研究所数理统计组.正交试验法[M].人民教育出版社,1975.
    82.周集体,王竞,杨凤林.微生物固定CO2的研究进展[J].环境科学进展,1999,7(1):1~9.
    83.周礼恺.土壤酶学[M].北京:科学出版社.1987.
    84.周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2000:176~177.
    85.朱俊凤,朱震达.中国沙漠化防治[M].北京:中国林业出版社,1999.
    86. Abdel W A M. Nitrogen fixation by bacillus strains isolated from the rhizosphere of Ammophila arenaria[J]. Plant and soil,1975,42:703~708.
    87. Albiach R, Canet R, Pomares F, Ingelmo F.: Organic matter components, aggregate stability and biological activity in a horticultural soilfertilized with different rates of two sewage sludges during ten years. Biores. Technol[J].2001,77:109~114.
    88. Arancon N Q, Edwards C A, Bierman P, et al.Influences of vermicomposts on field strawberries: 1. Effects on growth and yields[J]. Bioresource Techn. 2004,93:145~153.
    89. Amann R I, Ludwig W, Schleifer K H.Phylogenic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Review, 1995, 59:143~169.
    90. Avena M J, Vermeer A W P, Koopal L K. Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects[J].Colloid and Interface Sci. 1998, 151: 213~224.
    91. Bailey V L, Smithand J L,Bolton H.Fungal to bacterial ratios in soils investigated for enhanced C sequestration[J].Soil Biol. Biochem., 2002, 34:997~1007.
    92. Balesdent J.Effects of tillage on soil organic carbon mineralization estimated from 13 C abundance in maize fields[J]J Soil Sci,1990,41(4):587~598.
    93. Balloni W, Favilli F. Effects of agricultural practices on the physical, chemical and biological properties of soils: Part I Effect of some agricultural practices on the biological soil fertility[A]. Barth H.L., Hermite P.(eds.).Scientific basis for soil protection in European community [C].Barking, Essex U.K.:Elsevier ASP,1987.
    94. Bardgett R D, Hobbs P J, Frosteg?rd A. Changes in soil fungal:bacterial biomass ratios following reduction in the intensity of management of an upland grassland[J].Biol. Fertil. Soils, 1996, 22: 261~264.
    95. Basis for Soil Protection in the European Community[C].Elsevier ASP, Barking, Essex, 1987, 161~179.
    96. Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J].Canadian Journal of Biochemistry Physiology, 1959, 37: 911~917.
    97. Bongiovanni M D,Lobartini J C.Particulate organic matter,carbohydrate,humic acid contents in soil macro-and microaggregates as affected by cultivation[J].Geoderma,2006,136:660~665.
    98. Brant J B, Sulzman E W, Myrold D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J].Soil Biol. Biochem,2006, 38:2219~2232.
    99. Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals [J]. Biology and Fertility of Soils, 1995, 19: 269~279.
    100. Brunello C,Serena D,Cristina M,et al.Characterization of stable humic-enzyme complexes of different soil ecosystems through analytical isoelectric focusing technique(IEF)[J].Soil Bio.&Biochem,2008,(40):2174~2177.
    101. Brussaard L. An appraisal of the dutch programme on soil ecology of arable farming systems (1985~1992) [J]. Agric. Ecosystems Environ.,1994,51:1~6.
    102. Campbell C A ,Lafond G P,Biederbeck V O, et al. Effect of crop rotation and culture practices on soil organic matter,microbial biomass and respiration in a thin black chernozem[J]. Canada Journal of Soil Science.1991,71:363~376.
    103. Campbell, C A, Bowren K E, Schnitzer M,et al.Effect of crop rotations and fertilization on soil biochemical properties in a thick Black Chernozem[J]. Canadian Journal of Soil Science1991,71:377~387.
    104. Carter M R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions[J]. Journal of Agronomy,2000,94: 38~47.
    105. Ceccanti B,Masciandaro G.Stable humus-enzyme nucleus:the last barrier against soil desertification.In:Lobo M.C.,Ibanez J.J.(Eds.).Preserving soil quality and soil biodiversity-the Role of Surrogate Indicators.CSIC-IMIA.,Madrid,2003:77~82.
    106. Chabot R,Antoun H.Growth promotion of maizeand lettuce by phosphate-solubilizing Rhizobium leguminosrum biovar[J]. Plant and Soil,1996, 184:311~321.
    107. Chen Y. Humic substances originating from rapidly decomposing organic matter: properties and effects on plant growth.In:N.Senesi(Editor), Humic Substances in the Global Environment and Implications in Human Health.Proc.6th IHSS Meeting. 1992 :77~78.
    108. David P H, Lejon, Julien S, et al. Relationships between soil organic status and microbial community density and genetic structure in two agricultural soils submitted to various types of organic management[J].Microbial Ecology,2007,53:650~663.
    109. Dell’Agnola G, Nardi S. Hormone-like effect and enhanced nitrate uptake induced by depolycondensed humic fractions obtained from Allolobophara rosea and A.caliginosa faeces[J]. Biol.Fertil. Soil, 1987,4:115~118.
    110. Díaz-Zorita M, Buschiazzo D E, Peinemann N. Soil organic matter and wheat productivity in the semiarid Argentina Pampas[J]. Agron. J. 1999, 91:276~279.
    111. Dominy C S, Haynes R J. Influence of agricultural management on organic matter content, microbial activity and aggregate stability in the profiles of two oxisols[J]. Biol. Fertil. Soils,2002, 36:298~305.
    112. Dormaor J F, Somliak L. Recovery of vegetative cover and soil organic matter during revegetation of abandoned farmland in a semiarid climate[J].Journal Range Management,1985,38:487~497.
    113. Eladia M. Pe?a-Méndez, Josef Havel, Ji?íPato?ka.Humic substances compounds of still unknown structure:applications in agriculture, industry, environment, and biomedicine[J].Journal of Applied biomedicine,2005,3:13-24.
    114. Garcia C, Hernander T. Biological and biochemical indicators in derelict soils subject to erosion[J]. Soil Biol. Biochem., 1997,29 (2): 171~177.
    115. Garcia D, Cegarra J, Roig A, Abad M.Effects of the extraction temperature on the characteristics of a humic fertilizer obtained from lignite[J].Biores. Technol.1994, 47:103-106.
    116. Greene R S B,Chanres C J. The effect of fire on the soil of the degraded semiarid woodland. I Cryptogam cover and physical and microphological properties[J] Australian J Soil Res,1990:755~777.
    117. Gregorich E G, Carter M R, Anger D A, et al. Towards a minimum data set to assess soil organic matter quality in Agricultural soil [J]. Can J Soil Sci, 1994,74:367~385.
    118. Hertkorn N, Permin A, Perminova I, et al. Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear resonance spectroscopy[J]. Environ.Qual, 2002, 31: 375~387.
    119. H?gberg M N, Chen Y, H?gberg P. Gross nitrogen mineralisation and fungi to-bacteria ratios are negatively correlated in boreal forests[J]. Biology and Fertility of Soils,2007, 44: 363~366.
    120. Karlen D A, Cambandella C A. Conservation strategies for improving soil quality and organic matter storage[C].In: Lal R. and Stewart B A.(Ed.) Struture and organic matter storage in agriculture soils. Adv. Soil Sci. Lewis Publ. Boca Raton F.L.1996, 395~420.
    121. Kennedy A C,Smith K L. Soil microbial diversity and the sustainability of agricultural soils[J].Plant Soil,1995,170:75~86.
    122. Klavins M, Serzane J.Use of humic substances in remediation of contaminated environments. Conference of Bioremediation of Contaminated Soils[C].New York:Marcel Dekker,2000:217~236.
    123. Lakay F M,Botha A,Prior B A.Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils[J].Journal of Applied Microbiology, 2006,3:265~273.
    124. Lal R.Carbon sequestration in dryland[J]. Annuals of Arid Zone,2000,39(1):1~10.
    125. Madejón E, López R, Murillo J M, Cabrera F.:Agricultural use of three (sugar-beet) vinasse composts: effect on crops and chemical properties of a Cambisol soil in the Guadalquivir river valley (SW Spain)[J]. Agric.Ecosyst. Environm. 2001,84: 55~65.
    126. Manuela M. Valdrighi, Antonio Pera,et al. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant ( Cichoriumintybus)-soil system: a comparative study. Agriculture, Ecosystems and Environment. 1996, 58: 133-144.
    127. Marinari S, Masciandaro G, Ceccanti B,et al.Influence of organic and mineral fertilizers on soil biological and physical properties[J].Bioresource Technology,2000 ,72:9~17.
    128. Marinari S,Liburdi K,Masciandaro G,et al.Humification mineralization pyrolytic indices and carbon fractions of soil under organic and conventional management in central Italy[J].Soil and Tillage Research,2007,92:10~17.
    129. Masciandaro G,Ceccanti B, Benedico S,et al. Enzyme activity and C and N pools in soil following application of mulches[J]. Canadian Journal of Soil Science,2004,84:19~30.
    130. Masciandaro G,Ceccanti B,Gallardo-Lancho G F. Organic matter properties in cultivated versus set-aside arable soils[J]. Agriculture, Ecosystems and Environment,1998,67:267~274.
    131. Masciandaro G,Ceccanti B.Assessing soil quality in different agro-ecosystems through biochemical and chemical structural properties of humic substances[J]. Soil and Tillage Research, 1999, 51: 129~137.
    132. Mylonas V A, Mccants C B. Effects of humic acids and fulvic acids on growth of tobacco[J].Plant and soil,1980,54:485~490.
    133. Norman Q, Arancon, Clive A,et al.Effects of humic acids from vermicomposts on plant growth[J].European Journal of Soil Biology,2006,42:65~69.
    134. Pallo F J P.Evolution of organic matter in some soils under shifting cultivation practices in BurkinaFaso.In:Mulongoy K,Merckx R. Eds.Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture.Chichester,U.K:John Wiley and Sons, 1993:77~88.
    135. Paul S.Humus:Still a Mystery[M].Northeast Organic Farming Association,2002.
    136. Paustian K, Collins H P, Paul E A. Management controls on soil carbon. In: Paul E A, Paustian K, Elliott E T, Cole CV. (Eds.), Soil Organic Matter in Temperate Agroecosystems. CRC Press, Boca Raton F L, 1997:15~49.
    137. Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation [J]. Soil Biology and Biochemistry, 1987,19:159~164.
    138. Rivero C, Chirenje T, Ma L Q, et al. Influence of compost on soil organic matter quality under tropical conditions[J].Geoderma,2004(123):355~361.
    139. Sakamoto K, Oba Y. Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass[J].Biology and Fertility of Soils, 1994,17:39~44.
    140. Samson G, Visser S A. Surface-active effects of humic acids on potato cell membrane properties[J]. Soil Biol. Biochem. 1989,2:343-347.
    141. Sean F B. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules[J].Nature Protocols,2007,2 (5):1297~1305.
    142. Singer M J,Munns D N.Soils, An Introduction.4th Ed.New Jersey:Prentice-Hall,Inc.,1999.
    143. Six J, Frey S D, Thiet R K, et al.Bacterial and fungal contributions to carbon sequestration in Agroecosystems[J]. Soil Sci. Soc. Ame. J., 2006, 70:555~569.
    144. Smith J L, Paul E A. The significance of soil microbial biomass estimations[A]. Bollag J M, Stotzky G. Soil Biochemistry [C]. NewYork: Marcel Dekker,1990. 357~398.
    145. Solberg E D, Nyborg M, Izaurralde R C, et al.Carbon storage in soils under continuous cereal grain cropping: N fertilizer and straw. In: Lal R, Kimble J M, Follett R F, Stewart B A (Eds.), Management of Carbon Sequestration in Soil. CRC Press, Boca Raton F L, 1997:235~254.
    146. Spaccini R, Piccolo A, Conte P,et al. Increased soil organic carbon sequestration through hydrophobic protection by humic substances[J]. Soil Boil Biochem.2002,(34):1839~1851.
    147. Staley T E. Soil microbial biomass and organic component alteration in a no tillage chrono sequence[J]Soil Sci Soc Am J,1988,52(4):998~1005.
    148. Stevenson F J.Humus Chemistry:Genesis,Composition,Reactions[M].New York:John Wiley and Sons,1982.
    149. Vance E D. An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987,19:703~707.
    150. Vacca D J,Bleam W F,Hickey W J. Isolation of Soil Bacteria Adapted to Degrade Humic Acid-sorbed Phenanthrene[J].Applied and Environmental Microbiology.2005,7:3797~3805.
    151. Valdrighi M M, Pera A,Scatena S,et al.Effects of humic acids extracted from mined lignite or composted vegetable residues on plant growth and soil microbial populations[J].Compost Sci.Util., 1995,3(1):30~38.
    152. Varanini Z,Pinton R,De Biasi M G,et al. Low molecular weight humic substances stimulate H+-ATPase activity of plasma membrane vesicies from oat(Avena sativa L.)root[J]. Plant Soil, 1993,153:61~69.
    153. Visser S A. Effects of humic acid on number and activities of microorganisms within physiological groups[J]. Org.Geochem., 1985a, 8:81~85.
    154. Visser S A.Physiological action of humic substances on microbial cells[J]. Soil Biochem., 1985b,17:457~462.
    155. Wilkinson S C, Anderson J M.Spatial patterns of soil microbial communities in a Norway[J]. Microbial Ecology,2001,2:248~255.
    156. Zhang M, Z He: Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China[J].Geoderma,2004,118:167~179.