木材含碳率的测定与碳素储存数据库研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对全球气候变化,人类可以从应对和减缓两个方面来尽量降低其对人类生存所造成的影响,而通过森林树木的固碳功能开展间接减排来减缓和应对全球气候变化是一条行之有效的途径,并具有高效、环保、低成本、可行性高的特点。
     森林作为陆地生态系统的主要部分,起着维持陆地生态平衡的重要的作用。而森林的主要生物质是树木,树木可以通过光合作用吸收大气中的二氧化碳,释放出氧气。木材来源于树干,是树木的主体,通过对木材含碳率的准确测定进而估算木材的碳储量对于森林生态效益的取得与生态环境的可持续发展具有重要价值,通过木材碳储量的预测对国家气候谈判的成效也具有指导意义。
     本研究以帽儿山林场的8个主要树种木材为研究对象,在进行资料收集整理和实验室测定的基础上研究了各树种含碳率的无损取样方法和含碳率的测定,探讨了木材含碳率与木材碳储量的计量关系,提出可以通过数据库的方式将木材含碳率等数据进行归纳为今后的相关研究工作提供数据基础。本文主要进行了以下的研究:
     (1)通过木材的天然属性,进一步分析了木材生物学属性的变化及其与环境的关系,确定了木材对全球气候变化在材料方面的积极意义。通过木材与人类环境的关系的调查显示了木材的使用对自然资源是一种间接的保护。木材与其他材料合理协调利用才能取得预想的节能效果,在研究其固碳作用的同时应结合国际碳排放谈判,结合本国国情制定碳排放清单。
     (2)通过直径、坡向和光照方向几个角度,测定了帽儿山林场主要树种的基本含碳率,并分析了帽儿山林场各树种不同直径、坡向和光照方向整体的含碳率,探索了期间的规律,将8个树种木材分为2组,两种针叶材和两种阔叶材为一组,从15cm直径进行取样的其他4种树种木材为另外一组,分析针叶材和阔叶材在不同直径、坡向和光照方向的相关规律。通过各树种样品与其所处条件下的平均值对比分析针阔叶树种木材含碳率随着直径和树龄的增加而存在的变化规律。
     (3)通过森林碳储量的基本方法,计算了帽儿山林场主要树种木材的碳储量。根据木材碳储量为该树种的蓄积量与木材密度和含碳率的计算公式可推算出帽儿山林场各树种木材总的碳储量,进一步粗略估算我国2020年和2050年我国木材碳储量,由于条件所限,各树种木材密度和含碳率两个因素没有进行每样实地调查,采用了统计数据平均值的方法进行最终计算,同时将我国森林蓄积量进行了综合计算,没有进行各树种的蓄积量的计算,因此,可能会造成计算结果存在一定的误差,但帽儿山林场的实验思路能够以点带面,在今后的研究中以此思路为基础可以进一步细化各计量因素进而使结果更加精确。
     (4)从木材含碳率的层面以帽儿山林场的8个主要树种的数据为基本内容进行数据库的建立,通过数据库的建立将现有的文献和资料中涉及到有关木材碳素储存的基础数据通过合并同类项的方式进行集合的确立,在引用该数据时能够快速、准确的获得,提高了科研工作效率。数据平台的建立更为直观,实现了图文并茂,数据更为明了,分类更为细致,操作感更强:通过对我国木材碳素储存数据库的建立可以确立我国木材与碳素储存有关的涉及到气候谈判的量化指标,从而为我国在气候谈判中获得一定的主动权和利益提供了保障,最后介绍了数据库的基本原理、界面和检索、查询等使用功能。以帽儿山林场主要树种木材含碳率为主要数据的碳素储存数据库的建立,为今后建立动态的、多维度的木材固碳数据库提供了基本思路。
In the face of the global climate change, human beings could reduce its impact to human survival from the two aspects of coping and relief. It is an effective approach to cope and relieve the global climate change from indirect emission reduction with carbon sequestration of forest woods, the features of this method are the efficiency, environmental protection, inexpensiveness and high feasibility.
     The forest is the main body of the land ecological system, which plays an important part to the function of land ecological system's balance keeping. The trees are the main biomass of forest system. It could release the oxygen from the photosynthesis to absorb carbon dioxide from the atmosphere. The wood is coming from the trunk, is the main body of the trees. It has a important value to the forest ecological benefits' acquirement and the sustainable development of ecological environment through the estimation of wood carbon reserves by the accurate measurement of wood carbonic contents rate. It is also has a fundamental significant to the national climate's negotiations'achievements by the predication of wood carbon reserves.
     The main study objects are the wood of8main trees species. We have went on the work with the material collection and compiling, outdoor investigation and sample acquirement and laboratory testing, then we studied every kinds of trees of its carbon contents rate with the methods of lossless and carbonic contents rate testing, to discuss the metering relationship between the carbonic contents rate of the wood and wood carbon reserve, put the conclusion that we would sum up the data of wood carbonic contents rate by the method of database, in order to provide the data's base to the future relative studies. In this paper,the following items are studied.
     (1) Go further with the analysis of the relationship between the wood biological attribute change and its growth environment, to confirm the active significance of the influence of wood to the global climate change in the aspect of material. The result displayed that it is a kind of indirect protection of the wood usage. This conclusion is summarized by the investigation of the relationship between the wood and human environment. The preconceived energy conservation effect would be achieved only as if the reasonable coordinated use of the wood and other material be realized. The national carbon emission negotiation should be sited in the study of carbon sequestration, and the carbon emission inventory should be established in the light of its own national conditions.
     (2) To analyze the basic principle through the way of the basic carbonic contents rate's measurement of Maoershan foresty main trees species from the several aspects of diameters, exposures and lighting direction. To analyze the integral carbonic contents rate of all kinds of trees species'different diameter, sunny slope and illumination direction of Maoershan foresty, and explore the regular laws during the study period. We have divided the8trees species into2group, to take two kinds of softwood and two kinds of broadleaf's forest as a group, and the other4kinds of tree species wood to form the other group from the sample of15cm diameter, then analyzed the relative regular laws of softwood and the broadleaf with different diameter, exposure and lighting direction from the data. Though the average value of all kinds of trees sample and it growth condition to make the contrastive analysis, in order to get the carbonic contents rate's changing laws of softwood and broadleaf wood in the increasing of the diameters and tree-age.
     (3) To calculate the wood carbon reserves of main trees species on the Maoershan by the basic method of forest carbon reserves calculation. All kinds of the trees'total wood carbon reserves of Maoershan foresty would be calculated by the computational formula of the stand volume, the wood density and the carbonic contents rate as well as the wood carbon reserves, in order to roughly estimate the national wood carbon reserves of the years of2020and2050. In the sake of limited conditions, the two factors of all kinds of wood density and carbonic contents rate has not been field investigation, but adopted the statistical data's average value method to go with the final calculation, and comprehensive calculated the national forest growing stock without the breakdown calculation of every trees species. Therefore, the calculation results may have the existing of certain deviation. However, the experimental thought would be with an expectation that taking this sample to get a general idea. In this case, based on the though of method, the future study would go further with the accurate results with the detailing every metering factors.
     (4) To found the database based on the8main trees species" data of Maoer forest field from the aspect of wood carbon contents rate. Though the database's establishment to establish the numeric set by the method of combining like terms of the basic data of current existing literature and material which is related to the wood carbon reserves, this method would bring convenience to the swift and accurate acquirement in the data site work, thus enhances the working efficiency of scientific research. The data platform's establishment would be better with audio-visual effect that realizes the excellent combination of pictures and the corresponding essays, the data would be with better definition, the classification would be more meticulous, the operable sense would be more available. Our nation's wood and carbon reserve which are related to the quantitative index of climate negotiation through the establishment of national wood carbon reserve database, thus it would provide guarantee to the certain initiative and benefits in the climate negotiation of our country. The database's basic principle, interface and retrieval/inquire function has been introduced at last.
引文
[1]IPCC. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,Cambridge, United Kingdom and New York, USA
    [2]21世纪经济报道:2007.4.18
    [3]李坚.木材的碳素储存与环境效应.中国林学会木材科学分会第十一次学术研讨会论文集.2007:535~539
    [4]Jingyun Fang, Anping Chen, Changhui Peng, etal. Forest Biomass Carbon Storage in China Between1949-1998[J]. Seience,2001,291:2320-2322
    [5]Min Xu,Xingjiang Li,Jian Li.The research Of carbon stock exchange and protect in wood[J].Twelfth Annual Meeting of China Association for Science and Technology (Vol.Ⅰ).
    [6]王明星,张仁建,郑循华.温室气体的源与汇.气候与环境研究.2011,5(1):75~76
    [7]高吉喜,王家骥,张林波.1997.对全球气候变化原因及发展趋势之浅见.农村生态环境,13(4):43~47
    [8]刘亚翠,杨春瑰.马克思主义自然观哲学意蕴下的全球气候变化原因探析.阅江学刊,2011,30~35
    [9]尹荣楼,王玮,尹斌.全球温室效应及其影响.北京:文津出版社,1993
    [10]叶笃正.中国的全球变化预研究.北京:气象出版社,1992
    [11]陈泮勤,郭裕福.全球气候变化的研究与进展.环境科学,1993,14(4):16~23
    [12]Siegenthaler U, Oeschger H. Biospheric CO2 emissions during the past 200 years r econstructed by deconvolution of ice data.Tellus,1987,38B:140-154
    [13]Friedli H, et al. Ice core record of 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature,1987,324:231-238
    [14]李怒云.中国林业碳汇.北京:中国林业出版社,2007:90~150
    [15]白彦锋.2010.中国木质林产品碳储量.中国林业科学研究院博士论文.北京:34
    [16]“联合国气候变化框架公约”.http://unfccc.int/resource/docs/convkp/convchin.pdf
    [17]www.hudong.com
    [18]窦鲁星,冯乐,张顺.2011.根据最新统计数据对中国化石能源现况的解读.山西焦煤科技,12:36~38
    [19]万钢.积极应对全球气候变化.资源环境与发展,2008:1:1-2
    [20]张卓.积极应对全球气候变化——从发展经济学角度解析“十二五”环境规划.集体经济,2001:7:37~38
    [21]国家发展改革委应对气候变化司.积极应对全球气候变化——对“十二五”规划纲 要气候变化部分的解读.中国科技投资,2001,7:21-25
    [22]陈剑锋.依靠科学技术应对全球气候变化的挑战.重庆科技学院学报(社会科学版),2010,1:92~94
    [23]FAO. FAO Publishes Key Findings of Global Forest resources Assessment 2010. Rome.http://www. fao.org/Forestry/static/data/fra2010/Key Findings-en.pdf
    [24]张小泉,武曙红,何英,侯振宏.森林、林业活动与温室气体的减排增汇.林业科学,2005,41(6):150~156
    [25]张明旭.全球气候变化背景下长白山森林生态系统的响应.通化师范学院学报,2011,32(6):48~49
    [26]蒋高明,韩兴国,林光辉.大气C02浓度升高对植物的直接影响——国外十余年来模拟实验研究之主要手段及基本结论.植物生态学报,1997,21(6):489~502
    [27]杨玉坡.全球气候变化与森林碳汇作用.四川林业科技,2010,31(1):14~17
    [28]张萍.北京森林碳储量研究.北京林业大学博士论文.2009:1-3
    [29]周国逸.广州市林业碳汇措施——从近10年森林碳汇动态谈起.中国城市林业,2007,5(6):24~27
    [30]钱杰.大都市碳源碳汇研究——以上海市为例.华东师范大学博士论文.2004:1~5
    [31]JH PAN. Carbon Sinks:an Opportunity for a Prosperous and Sustainable Forestry Sector. 21 Century Forum-Green& Environment Protection,Beijing,National Committee Chinese People's Political Consultative Conference,2001:4-6
    [32]郭明辉,关鑫,李坚.中国木质林产品的碳素储存与碳排放.中国人口·资源与环境,2010,20(5):19-21
    [33]阮宇,张小泉,杜凡.中国木质林产品碳储量.生态学报,2006.26(12):4212~4217
    [34]白彦锋.中国木质林产品碳储量.中国林业科学研究院博士论文.2010.:1~5
    [35]Ingolf Profft. Forest management and carbon sequestration in wood products. Eur J Forest Res,2008,128:399-413
    [36]Winjum J K, Brown S, Schlamadinger B. Forest harvests and wood products:sources and sinks of atmospheric carbon dioxide. Forest Science,1998,44(2):272-284
    [37]陈遐林.华北主要森林类型的碳汇功能研究.北京林业大学博士论文.2003:1~3
    [38]马钦彦,陈遐林,工娟.华北主要森林类型建群种的含碳率分析.北京林业大学学报,2002,24(5/6):96~100
    [39]张宏芝,陆贵巧,原占国.太行山区天然次生林碳储量的研究.河北林果研究,2005,20(1):11~13
    [40]尉海东,马祥庆.中亚热带不同发育阶段杉木人工林生态系统碳贮量研究.江西农业大学学报,2006,28(2):239~243
    [41]李燕.福建彰武杉木成熟林碳储量研究.中国林业科学研究院博士论文.2010:1-4
    [42]程堂仁,冯菁,马钦彦.甘肃小陇山森林植被碳库及其分配特征.生态学报,2008, 28(1):33~44
    [43]张坤.森林碳汇计量和核查方法研究.北京林业大学硕士论文.2007:1-2
    [44]毛子军.森林生态系统碳平衡估测方法及其研究进展.植物生态学报,2002,26(6):731~738
    [45]许文强.森林碳汇价值评价——以黑龙江省三北工程人工林为例.西南林学院硕士论文.2006.:1-2
    [46]李建华.碳汇林的交易机制、监测及成本价格研究.南京林业大学博士论文.2008:1
    [47]林德荣.森林碳汇服务市场化研究.中国林业科学研究院博士论文.2005:1
    [48]陈叙图.我国林业碳汇供给制度研究.北京林业大学硕士论文.2010:1
    [49]曹开东.中国林业碳汇市场融资交易机制研究.北京林业大学硕士论文.2008:1
    [50]DENNIS M.KING.Trade-Based Carbon Sequestration Accounting.Environmental Management,2004,33(4):559-571
    [51]ANDREW J. PLANTINGA,THOMAS MAULDIN. A METHOD FOR ESTIMATING THE COST OF CO2 MITIGATION THROUGH AFFORESTATION.Climatie Change.2001,49:21-40
    [52]S.H. Lamlom, R. A. Savidge. A reassessment of carbon content in wood:variation within and between 41 North American species. Biomass and Bioenergy,2003,25(4):381-388
    [53]唐宵,黄从德,张健.四川主要针叶树种含碳率测定分析.四川林业科技,2007,28(2):20~23
    [54]工妍,刘杏娥.木材碳封存研究进展.吐界林业研究,2009,22(1):54~58
    [55]陈红林,曹健,黄发新.提高木材碳汇的林木育种技术初探.湖北林业科技,2008,6:42~46
    [56]方楷,邓习金,杨清培.木材含碳量变异研究进展.江西林业科技,2011,1:21-24
    [57]S C Thomas, G Malczewski. Wood carbon content of treespecies in eastern China: interspecific variability and the importance of the volatile fraction. Journal of Environmental Management,2007-85:659-662
    [58]张坤.森林碳汇计量和核查方法研究.北京林业大学博士论文.2007:18-35
    [59]姚守平.林业碳汇知识.云南林业.2010,31(1)
    [60]Food and Agriculture Organization of the United Nations (FAO). Classification and Definitions of Forest Products. Rome.1982:27-36
    [61]曹吉鑫,田赞,王小平,孙向阳.森林碳汇的估算方法及其发展趋势.生态环境学报,2009,18(5):2001~2005
    [62]YANG Hongxiao WU Bo, ZHANG Jintun, et al. Progress of research into carbon fixation and storage of forest ecosystems[J]. Journal of Beijing Normal University:Natural Science,2005,41(2):172-177
    [63]方昕,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分.林业科学,2002, 38(3):14~19
    [64]林裕仁,刘琼霦,林俊成.台湾地区主要用材比重与碳含量测定.台湾林业科学,2002,17(3):291~199
    [65]中国林业网http://www.forestry.gov.cn
    [66]毛留喜,孙艳玲,延晓东.陆地生态系统碳循环模型研究概述.应用生态学报,2006,17(11):2189~2195
    [67]David Schimel, Jerry Melillo, Hanqin Tian,et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States.Science,2000,287(5460): 2004-2006
    [68]汪业勖,赵士洞.陆地碳循环研究中的模型方法.应用生态学报,1998,9(6):658~665
    [69]张海清,刘琪璟,陆佩玲,于强.陆地生态系统碳循环模型概述.中国科技信息,2005,13:25~26
    [70]Bugmann HKM, Solomon AM. The use of a European forestmodel inNorthAmerica:A study of ecosystem response to climate gradients.Journal of Biogeography,1995,22: 477-484
    [71]Thomas Hickler, Benjamin Smith, Martin T. Sykes, et al. Using a generalized veg etationmodel to simulate vegetation dynamics in northeastern USA.Ecology,2004,85: 519-530
    [72]Yan X-D Zhao J-F Establishing carbon budgetmodel FORCCHN of forest ecosystem in China based on individual and validation.Acta Ecologica Sinica,2007,27(7):2684-2694
    [73]ItoA, OikawaA. A simulationmodel of the carbon cycle in land ecosystems (SIM-CYCLE):A description based on dry-matterproduction theory and plot-scale validati on.EcologicalModelling,2002,151:143-176
    [74]KingAW, PostWM, Wullschleger SD,et al. The potential response of terrestrial carbon storge to changes of climate and atmospheric CO2.Climate Change,1997,35:199-227
    [75]Frolking S, Govlden ML, Wofsy SC,et al. Modeling temporal variability in the carbon balance of a spruce/moss boreal forest.Global Change Biology,1996,2:343-366
    [76]K.Pingoud,A.-L. Perala, A. Pussinen.Carbon Dynamics In Wood Products.Mitigation and Adaptation Strategies for Global Change,2001,6(2):91-111
    [77]李坚.木材的生态学属性——木材是绿色环境人体健康的贡献者.东北林业大学学报,2010,38(5):1-8
    [78]郭明辉,李坚,关鑫.木材碳学.北京:科学出版社,2012:274~275
    [79]王晓军,王滔,蒋松林.国外木结构房屋的生产现状.人造板通讯,2005(8):1~4
    [80]Eriksson L.O., Gustavsson L., H3/4 nninen R., et all Climate Implications of Increased Wood Use in the Const ruction Sector[J]1 Epsilon-electronic publishing at the SLU 2009,25(7):67-71
    [81]清华大学中国术结构建筑与其它结构建筑能耗和环境影响比较研究报告.国际工程项目管理研究院建筑环境与设备研究所,2006:4-8,23-30
    [82]张忠潮,白宏兵.《京都议定书》对中国社会经济发展的启示[J].西北农林科技大学学报(社会科学版),2006(4):92~96
    [83]谢力生.日本木结构的发展历程与现状.木材工业.2009,23(3):20-23
    [84]Gustavsson L., Madlener R., Hoen H.F., et al. The role of wood material for gree nhousegas mitigation [G] 1//Mitigation and Adaptation St rategies for Global Ch nge,ostersund, Sweden,2004:41-42
    [85]恒次佑子.关于木材利用的环境影响评价[J].[日]木材工业,2005(1):8~11
    [86]Leif Gustavsson, Kim Pingoud, Roger Sathre.Carbon Dioxide Balance Of Wood Substitution:Comparing Concrete And wood Framed Buildings, Mitigation and Adaptation Strategies for Global Change.2006.11:667-691
    [87]白彦锋.中国木质林产品碳储量.中国林业科学研究院博士论文.2010:80~88
    [88]徐哲民.传统木建筑材料在现代建筑设计中的运用研究.建筑设计研究,2012,4:41~43
    [89]曹赢超.中国家具年鉴,2004:123~130
    [90]气候变化国家评估报告.北京:科学出版社,2007:334~345
    [91]陈遐林.华北主要森林类型的碳汇功能研究.北京林业大学博士论文.2003:36
    [92]吴良欢,陶勤南.植物有机碳改进测定方法研究.土壤通报,1993,24(6):286~287
    [93]唐宵,黄从德,张健,宁远超.四川主要针叶树种含碳率测定分析.四川林业科技,2007,28(2):20~23
    [94]刘维,张晓丽,马菁.鹫峰国家森林公园主要乔木树种含碳率分析.西北林学院学报,2011,26(5):214~218
    [95]张坤.森林碳汇计量和核查方法研究.北京林业大学博士论文.2007:22~23
    [96]翟石艳,王铮,马晓哲,黄蕊,刘昌新,朱永彬.区域碳排放量的计算——以广东省为例.应用生态学报,2011,22(6):1543~1551
    [97]Jeffrey A Baldock,Ronald J Smernik.Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood[J].Organic Geochemistry, 2002,33:1093-1109
    [98]H Pereira, Lisboa, Portugal.Chemical composition and variability of cork from Quercus suber L. [J]. Wood Science and Technology,1988,22:211-218
    [99]Eitaro Fukatsu, Yoko Fukuda, Makoto Takahashi, et al. Clonal variation of carbon content in wood of Larix kaempferi (Japanses larch)[J]. J Wood Sci.,2008,54:247-181
    [100]Marlene Elias, Catherine Potvin. Assessing inter and intra specific variation in trunk carbon concentration for 32 neotropical tree species [J]. Can J For Res, 2003,33:1039-1045
    [101]Devaki Raj, Diddahally Govindaraju, Colin Orians. Genetic variation among pitch pine (Pinus rigida) families from Walden woods:heritability and path analysis of developmental variation of phenotypic traits[J]. Rhodora,2006,108(936):356-369
    [102]Didier Bert, Frederic Danjon. Carbon concentration variations in the roots, stem a nd crown of mature Pinus pinaster (A it.)[J]. Forest Ecology and Management,200 6,222:279-295
    [103]Bergstrom B. Chemical and structural changes during heartwood formation in Pinus sylvestris [J]. Forestry,2003,76 (1):45-53
    [104]Frederique Bertaud, B jarne Holmbom. Chemical composition of early wood and latewood in Norway spruce heartwood, sap wood and transition zone wood [J]. Wood Sci Technol,2004,38:245-186
    [105]Pierre Meerts. Mineral nutrient concentrations in sapwood and heartwood[J]. Ann. For. Sci.,2002,59:713-422
    [106]S Lamlom, R Savidge.Managing softwood carbon content through silviculture [J]. Journal of Science and Its Applications,2007,1(2):32-44
    [107]Yu Q, Pulkkinen P, Rautio M, et al. Genetic control of wood physicochemical pr operties, growth,and phenology in hybrid aspen clones[J].Can.J.For.Res.2001,31:134 8-1356
    [108]Ayben Kilic, Ertugrul Altuntas. Wood and bark volatile compounds of Laurus nobilis L.[J]. Holz Als Rohund Werkstoff,2006,64:317-320.
    [109]Robert Sykes, Bailian Li, Fikret Isik, et al. Genetic variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L.[J]. Ann For Sci,2006,63:897-904
    [110]Michael Grabner, Rupert Wimmer, Notburga Gierlinger, et al.Heartwood extractives in larch and effects on X-ray densitometry [J]. Canadian Journal of Forest Research,2005,35 (12):2781-2786
    [111]Marlene Elias, Catherine Potvin. Assessing inter and intra specific variation in trunk carbon concentration for 32 neotropical tree species[J]. Can J For Res,2003,33:1039-1045
    [112]Sabah H Lamlom, Rodney A Savidge. Carbon content variation in boles of mature sugar maple and giant sequoia [J]. Tree Physiology.2006,26:459-468
    [113]谭俊.天然兴安落叶松林分年龄与平均直径数量化关系的探讨.林业科技通讯,1990,8:21~22
    [114]王效科.中国森林生态系统的生物量、碳贮量和生物质然绕释放的含碳气体.中国科学院生态环境研究中心博士论文.1997:1
    [115]张坤.森林碳汇计量和核查方法研究.北京林业大学硕士论文.2007:10~18
    [116]J Ilic, D Boland, M Mcdonald te al. Wood Density Phase 1:State of knowledge. Australia: the Australian Greenhouse Office,2000. ISSN:14426838
    [117]李坚.木材保护学.北京:科学出版社,2006:4~9
    [118]田勇燕,秦飞,言华,郭伟红,关伟庆.我国常见木本植物的含碳率.安徽农业科学,2011,39(26):16166~16169