群小孔电解加工的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管电极电解加工是根据阳极电化学溶解的原理,利用金属管作为阴极工具对工件进行蚀除的孔加工方法。本文针对航空航天、模具以及汽车制造业中大量存在的孔结构,对电解加工群小孔中的若干关键技术进行研究。
     本文首先在电解加工机床上构建了管电极电解加工监控系统。监控系统以实时采集到的加工电流作为加工间隙的反馈信号,通过监控加工中的电流信号使加工间隙处于稳定良好的状态,同时采用了电流阈值控制方案,以实施短路保护和孔出口处杂散腐蚀的控制,取得了良好的效果。
     对管电极电解加工工艺进行了系统研究。首先从电场和流场两方面研究了绝缘层的涂覆尺寸特征对小孔加工性能的影响,得到了理想的绝缘层厚度参数。分别针对孔电解加工的间隙电场和流场进行仿真建模,分析了加工间隙内电场分布和压强分布对管电极加工精度与过程稳定性的影响规律。设计并制作了多种单电极、阵列电极工艺装备,开展了管电极电解加工试验研究,通过对影响加工稳定性、加工精度的主要工艺参数,如绝缘层的涂覆厚度、工具进给速度、电解液供液压力等进行优化,得到了不同尺度和不同数量下的相对均匀一致的小孔/群小孔结构。
     本文提出了电解液抽吸反流电解加工技术并设计了相应装置。通过流场分析证明该技术可以提高管电极加工的过程稳定性,可用于大规模群孔的电解加工中。开展了抽吸式反流电解加工的正交试验,对影响孔加工定域性的各加工参数进行了优化,得到了精度较高的孔型。另外,针对采用管电极电解加工斜孔时易出现空口精度低,加工稳定性差等缺陷,提出了楔形电极加工倾斜孔的方法,该方法加工精度高,同时避免了火花短路等现象,可用于大角度倾斜孔的加工。
     本文最后对电解液分配腔流场进行了仿真研究和优化设计。电解液分配腔的结构是影响群电极电解加工的稳定性和成形精度的重要因素,对群孔管电极电解加工的分流/汇流腔流场进行了建模分析,得到了影响电解液分流均匀度的主要参数。基于理论分析结合试验分别得到了适合正流群电极电解加工以及抽吸式反流群电极电解加工的分配腔尺寸和相应的分流均匀度系数。采用优化的分配腔参数和加工参数进行试验,得到了尺寸精度较好的群孔结构,其加工过程稳定,没有发生短路等现象。
Electrochemical drilling (ECD) is a versatile process for drilling small holes in hard-to-machine metals. The ECD process has been applied in aerospace industries as well as automotive industry to machine coolant channels on aircraft turbine blades, combustion chambers, and apertures on extrusion die mold, etc. In this dissertation, some key technologies in electrochemical drilling multiple small holes are studied.
     A mornitoring and control system for ECD has been developed by the author, in which the machining current is real-time monitored as the feedback signal to control the machining process with different control scheme. The threshold current method is adopted to ensure short circuit protection and stray current attack control in the hole shape.
     Fundermantal research on ECD process is carried out systematically. Insulation of electrodes is achieved by electrostatic spraying process with polyethylene terephthalate (PET) powder. Electric field simulation of the side gap shows that the current distribution varies remarkably with the size of insulation layer shape, and appropriate thickness of insulating layer leads to an improvement in hole accuracy and machining stability. Flow model of the electrolyte along the machining gap is also established, based on which, the influence of machining parameters on the current is analyzed theoretically. The experiments were conducted subsequently to show that the machining accuracy and stability were influenced by the process parameters such as insulation thickness, tool feed rate, and electrolyte pressure.
     In order to improve machining stability of ECD, an electrochemical drilling method with electrolyte extraction has been proposed. Flow distributions along the machining gap with different electrolyte flow pattern indicate that reverse flow using electrolyte extraction distributes the pressure more uniformly and hence leads to a more stable machining process. Machining characteristics of electrolyte extraction are investigated experimentally. To minimize the radial overcut of machined hole by electrochemical machining with electrolyte extraction, the orthogonal design is used to optimize process parameters such as initial machining gap, voltage, tool feed rate, and electrolyte concentration. Good results have been obtained in the experiments with optimized parameters.
     A method of electrochemical machining of inclined holes using wedge shaped electrode tubes is also developed. Flow simulation of the machining area with and without the wedged tip at different machining inclination angle indicates that uniformity of electrolyte flow distribution along the initial machining gap decreased sharply with machining inclination angle increasing. In the case of using wedged electrode, the flow distributes more evenly comparing to normal electrode. Wedged electrode proved its usefulness to enhance the ECD accuracy through the decrease and elimination of sparking and striated dissolution.
     In the last section of this dissertation, a series of research on electrolyte manofild simulation and optimization are carried out. Process stability and machining accuracy of ECD on multiple holes were affected by the size of electrolyte manifolds. Flow of the electrolyte along the manifold was modeled to analyze the main parametesrs affecting the uniformity of the electrolyte distribution. Machining tests with electrode arrays were carried out to obtain the optimal manifold structure which suits the electrochemical drilling of multiple holes. With optimized manifold structure, array holes with good uniformity and stability have been machined, short circuit was diminished during the machining process.
引文
[1] Lin C, Kang S K, Ehmann K F. Helical micro-drill point design and grinding[J]. ASME Journal of Engneering for Industry, 1995, (8): 277~287.
    [2] Tonshoff H K, Spiriting W, Neises A. Machining of holes developments in drilling technology[J]. CIRP Annals, 1994, 43(2): 551~561.
    [3]梁洁萍,周知进.微小孔加工与微细钻头[J].湘潭师范学院学报(自然科学版), 2004, 26(4): 56~58.
    [4]高霁,曹国强.特种加工微小孔技术及其发展现状[J].机械设计与制造, 2005, (7): 169~171.
    [5] Sen M H, Shan H S. A review of electrochemical macro-to micro-hole drilling processes[J]. International Journal of Machine Tools and Manufacture, 2005, 45(2): 137~152.
    [6]翁煜,杨云.柴油机喷油嘴零件加工工艺探索[J].机械工人(冷加工), 2002, (8): 26~28.
    [7]刘颖. EDM加流量闭环检测一喷油嘴喷孔加工技术的一次飞跃[J].内燃机燃油喷射和控制, 1998, (1): 56~58.
    [8]周作民.油嘴喷孔参数与加工精度对柴油机性能的影响[J].车用发动机, 1994, (1): 10~13.
    [9]张明.多孔喷油嘴喷孔加工工艺及其分析[J].汽车工艺与材料, 1999, (8): 14~15
    [10]程小军.蜂窝陶瓷塑性液压挤出成形机[J].陶瓷, 2002, (4): 46~47.
    [11]邓重宁. 600孔/in2蜂窝陶瓷裁体挤压成形模具[J].陶瓷, 2001, (4): 40~41.
    [12]周美虎.圆孔、六角孔蜂窝陶瓷载体挤压成形模具[J].陶瓷, 2005, (7): 28~29.
    [13]刘家富,王同生,程小元.薄板群孔的照相电解加工[J]. 1993, (2): 27~29.
    [14]王鹏.电火花加工航空发动机燃烧室多层气膜孔[J].电加工, 1999, (5): 44~46.
    [15]盛文娟.叶片气膜孔的电火花加工工艺研究[J].电加工与模具, 2004, (1): 48~50.
    [16]曾忠.微孔的超声振动钻削技术[J].中国机械工程, 2001, 12(3): 297~299.
    [17]孙全平,廖文和.高速切削的现状及其关键技术[J].淮阴工学报, 2002, (1): 81~84.
    [18]杨兆军,王勋龙.微小孔钻削加工的难点及其技术对策[J].机械工程师. 1997, (5): 15~16.
    [19]孙永泰.汽车零件微小孔的钻削工艺[J].零配件技术, 2004, (1): 33~34.
    [20]贾宝贤,王振龙,赵万生.基于特种加工的微小孔加工技术[J].电加工与模具, 2005, (2): 1~5.
    [21]李锡峰,横内宏字.印刷电路板微孔加工的问题及发展[J].工具技术,1993(5): 27.
    [22] Pei Y C, Tan Q C. A study of dynamic stress in microdrills under highspeed machining[J]. MachineTools and Manufacture, 2006, 46: 1892~1900.
    [23]马星辉,高国富,赵波,董小磊.精密微小孔加工技术进展[J].电加工与模具, 2008, (5): 13~18.
    [24]朱晓翠,赵云飞,母德强.振动钻削的国内外研究现状和发展趋势[J].机械工程师, 2005, (10): 28~29.
    [25]隈部淳一郎.精密加工振动切削基础と应用[M].东京,实教社, l979.
    [26]高本河,吴序堂,熊镇芹等.振动钻削的切屑尺寸控制研究[J].机械工程学报, 1999, 35(6): 102~104.
    [27] Hidetake K. Improvement of drilling performance by vibration cuting[J]. The International Journal for Manufacturing Science&Production, 1999, 2(2): 117~124.
    [28]足立胜重.振动切削の研究(第l报)[J].精密机械, 1976, 42(12): 1133~1138.
    [29]马利杰,王贵成,张春燕,沈春根.最小量润滑在振动钻削中的应用[J].机械工程学报, 2009,45(1): 223~234.
    [30]张鹏,李先昊,张德远.实用化振动切削技术——微小孔振动钻削工艺及设备[J].新技术新工艺, 2007,(1): 33~34.
    [31]李先吴,季远,姜兴刚,等.高速钢钻头振动钻削9Cr18不锈钢微小孔的研究[J].工艺与工艺设备, 2005,(1): 69~71.
    [32]朱晓翠,韩雪冰,赵云飞,等.变进给量振动钻削提高微小孔加工质量的分析[J].工具技术, 2006,(4): 54~57.
    [33] Petkovsek R, Babnik A, Diaci J. Optodynamic monitoring of the laser drilling of through-holes in glass ampoules[J]. Measurement Science & Technology, 2006,17(10): 2828~2834.
    [34] Tiaw K S, Hong M H, Teoh S H.Precision laser micro-processing of polymers[J].Journal of Alloys and Compounds, 2008, 449(1-2): 228~231.
    [35] Eppes T A, Milanovic I M, Shetty D. Laser percussion drilling modeling utility[J]. Journal of Laser Applications, 2009, 21(2): 102~109.
    [36] Yu M R, Kim H S, Blick R H. Laser drilling of nano-pores in sandwiched thin glass membranes [J]. Optics Express, 2009, 17(12): 10044~10049.
    [37] Cheng J, Perrie W, Sharp M, et al. Single-pulse drilling study on Au, Al and Ti alloy by using a picosecond laser[J]. Applied Physics A-Materials Science & Processing, 2009, 95(3): 739~746.
    [38] Chung I Y, Kim J D, Kang K H. Ablation Drilling of Invar Alloy Using Ultrashort Pulsed Laser [J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(2): 11-16.
    [39] Kacar E, Mutlu M, Akman E, et al. Characterization of the drilling alumina ceramic using Nd: YAG pulsed laser[J]. Journal of Mateirals Processing Technology, 2009, 209(4): 2008-2014.
    [40] Wang X D, Michalowski A, Walter D, et al. Laser drilling of stainless steel with nanosecond double-pulse[J]. Optics and Laser Technology, 2009, 41(2): 148~153.
    [41]姚振强,王飞.先进激光制造技术研究新进展[J].机械工程学报, 2003, 39(12): 57~61.
    [42]李艳宁,唐洁,胡小唐等.脉冲激光微加工技术在MEMS中的应用[J].压电与声光, 2005, 27(2): 185~189.
    [43]巴瑞璋,张晓兵.激光加工密集群孔技术[J].航空制造技术, 2003, (7): 68~71.
    [44] Tunna L, O’Neill W, Khan A, et a1. Analysis of laser micro drilled holes through aluminium for micro manufacturing applications[J]. Optics and lasers in Engineering, 2005, 43: 937~950.
    [45] William M S. Laser Material Processing[M]. Third Edition, New York: Springer Verlag, 2003.
    [46]李志友等.激光表面再铸层结构对D222定向凝固合金疲劳性能的影响[J].材料工程, 1994, 8~9: 31~32.
    [47]胡建恺等.发动机叶片激光打孔的声显微检测[J].应用声学, 1999, 18(6): 15~17.
    [48]郭文渊,王茂才,张晓兵.镍基超合金激光打孔再铸层及其控制研究进展[J].激光杂志, 2003, 24(4): 1~3.
    [49] Kruusing A. Underwater and water-assisted laser proccesing: Part 1-general features, steam cleaning and shock processing[J]. Optics and Lasers in Engineering, 2004, 41: 307~327.
    [50] Rao B T, Kaul R, Tiwari P, Nath A K. Inert gas cutting of titanium sheet with pulsed mode CO2laser [J]. Optics and Lasers in Engineering, 2005, 43: 1330~1348.
    [51] Lau W S, Yue T M, Wang M. Ultrasonic-aided laser drilling of aluminum-based metal matrixcomposites [J]. CIRP Annals, 1994, 43(1): 177~180
    [52]张华,徐家文,王吉明.中性盐溶液辅助激光加工试验研究[J].中国激光, 2008, 35(11): 1836~1840.
    [53]佐藤敏一.特殊加工[M].东京:養賢堂, 1981.
    [54] Ali M Y, Hamad M H, Karim A I. Form Characterization of Microhole Produced by Microelectrical Discharge Drilling[J]. Materials and Manufacturing Processes, 2009, 24(6): 683~687.
    [55] Takahata K, Gianchandani Y B, et a1. Batch mode micro elcetro discharge machining[J]. Journal of micro electromechanical systems, 2002, 11(4): 102~111.
    [56] Paul-Henri’s H, Dominiek R, Hendrik V B. Micro structuring of silicon by electro-dischange machining (EDM) part I: theory[J]. Sensors and Actuators, A: Physica1, 1997, 60(5): 212~218.
    [57] Yamazaki M, Suzuki T, Mori N, Kunieda M. EDM of micro-rods by selfdrilled holes[J]. Journal of Mateirals Processing Technology, 2004, 149(1~3): 134~138.
    [58] Masuzawa T. State of the art of micro machining[J]. Annlas of the CIRP, 2000, 49(2): 473~488.
    [59] Pham D T, Dimov S S, Bigot S, et a1. Micro-EDM: Recent developments and research issures[J]. Journal of Materials Processing Technology, 2004, 149: 50~57.
    [60]陈长军,郭文渊,王茂才,张晓兵.镍基超合金再铸层化学研磨去除的实验研究[J].燃气涡轮试验与研究, 2004, 17(3): 44~50.
    [61]张华,徐家文,王吉明.镍基高温合金喷射液束电解-激光复合加工试验研究[J]. 2009, (4): 75~80.
    [62]刘军.航空发动机气膜冷却孔的打孔工艺[J].航空发动机, 1995, (2): 3l~36.
    [63] Egashira K, Masuzawa T. Micro ultrasonicmachining by the application of workpiece vibration [J]. CIRP Annals, 1999, 48(1): 131~134.
    [64] Zhao W S, Wang Z L, Di S C, et al. Ultrasonicna delcetric discharge machining to deep and small hole on titanium alloy[J]. Journal of Mateirals Processing Technology, 2002, 120: 101~106.
    [65]曹风国,张勤俭.超声加工技术的研究现状及其发展趋势[J].电加工与模具, 2005(增刊): 25~30.
    [66]贾宝贤,边文风,赵万生,等.微细孔超声加工关键技术[J].机械工程学报, 2007(11): 212~216.
    [67] Okada A, Uno Y, Yabushita N, Uemura K, et a1. High efficient surface finishing of bio-titanium alloy by large-area electron beam irradiation[J]. Journal of Materials Processing Technology, 2004, 149: 506~5l1.
    [68] Howitt D G, Chen S J, Gierhart B C, et al. The electron beam hole drilling of silicon nitride thin films. JOURNAL OF APPLIED PHYSICS, 2008, 103(2), No: 024310.
    [69]李荣中,雷玉勇.易北华.水射流特种加工技术应用[J].中国测试技术, 2007, (7): 37~43.
    [70]電気加工ハンドブック編集委員会編.電気加工ハンドブック[M].東京:日刊工業新聞社, 1970.
    [71]高原北雄,吉田豊明,坪井昭彦,堀場康一. A-11レーザによる冷却通路孔の加工技術(燃焼III)[C].ガスタービン秋季講演会講演論文集(平成5年),盛崗, 1993, 77~84
    [72]朱荻.国外电解加工研究进展[J].电加工与模具, 2000, (1): 11~16.
    [73]杉江他曾宏.電解加工および放電加工の基礎と応用[J].表面技術, 2004, 55(8): 529~534.
    [74]赵万生,王振龙,郭东明,等.国外特种加工技术的最新进展[J].电加工, 1999, (5): 12~19.
    [75] McGeough J A, Pajak P T, De Silva A K M, Harrison D K. Recent research and developments inelectrochemical machining[J]. International Journal of Electrical Machining, 2003, 8: 1~14.
    [76]佐藤敏一.電解加工と化学加工[M].东京:朝倉書店, 1970.
    [77]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社, 2001.
    [78] McGeough J A. Principle of Electrochemical Machining[M]. London: Chapman & Hall, 1974.
    [79] Wilson J. Practice and theory of electrochemical machining[M]. New York: Wiley Interscience, 1971.
    [80] Rajurkar K P, Zhu D, McGeough J A, Kozak J, De Silva A K M. New developments in electrochemical machining[J]. CIRP Annals, 1999, 48 (2): 567~580.
    [81] Baker G E. Hole drilling processes: experiences,applications,and selections[C]. Proceedings of the SME Non- traditional Machining Symposium, Orlando, 1991, 1~12.
    [82] Bannard J. Fine hole drilling using electrochemical machining[C]. Proceedings of the 19th International Machine Tool Design and Research Conference, Manchester, 1978, 503~510.
    [83] Chryssolouris G, Wallowitz M. Electrochemical hole making[J]. CIRP Annals, 1984,33: 99~103.
    [84] Bellows G, Kohls J B. Drilling without drills[R]. American Machinist, Special Report, 1982, 743: 173~188.
    [85] Jackson C, Olson R D. Shaped tube electrolytic machining (STEM drilling)[R]. SME Technical Paper, 1969, MR69~109.
    [86] Sharma S, Jain V K, Shekhar R. Electrochemical drilling of Inconel superalloy with acidified sodium chloride electrolyte[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19: 492~500.
    [87] Jackson C. An ECM process for drilling deep holes[J]. Metal Progress, 1970, 97: 106~110.
    [88] Kozak J. Some Aspects of Electro Jet Drilling[J]. Developments in Production Engineering Design&Control, 1989, 363-369.
    [89] Johns B A. Advanced Machining Techniques for Turbine Blades[J]. Industrial Lubrication and Tribology, 1984, 36(1): 4~9.
    [90] Datta M. Microfabrication by electrochemical metal removal[J]. IBM Journal of Research and Development, 1998, 42(5): 665~669.
    [91] Datta M, Romankiw L T, Vigliotti D R, VonGutfeld R J. Jet and laser-jet electrochemical micromachining of nickel and steel[J]. Journal of Electrochemical Society, 1989, 136(8): 2251~2256.
    [92] Lescuras V, AndréJ C, Lapicque F, Jet electrochemical etching of nickel in a sodium chloride medium assisted by a pulsed laser beam[J]. Journal of Applied Electrochemistry, 1995, 25: 933~939.
    [93]池田朋音,夏恒,国枝正典.マルチノズルを用いた電解液ジェット加工[J].電気加工学会誌, 2006, 40: 82~89.
    [94] Natsu W, Ikeda T, Kunieda M. Generating complicated surface with electrolyte jet machining[J]. Precision Engineering, 2007, 31: 33~39.
    [95] Kunieda M, Katoh R, Mori Y. Rapid prototyping by selective electrodeposition using electrolyte jet[J]. CIRP Annals, 1998, 47(1): 161~164.
    [96]森靖,国枝正典.電解液ジェットによるチタン表面の着色[C].電気加工学会全国大会,名古屋, 1997: 13~16.
    [97] Ahmed M S, Duffield A. The drilling of small deep holes by acid ECM[R]. SME Technical Paper 1990, MR90~243.
    [98] Snoeys R. Staelens F. Dekeyser W. Current trends in nonconventional material removal processes[J]. CIRP Annals, 1986, 35(2): 467~480.
    [99]施文轩,张明歧,殷曼,吴志刚.电射流加工工艺研究和发展[J].电加工与模具, 2001, (1): 36~39.
    [100] Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining processes[J]. Journal of Manufacturing Science and Engineering, 1996, 118: 490~498.
    [101]米田康治,国枝正典.電解液ジェット加工における加工形状のシミュレーション[J].電気加工学会誌, 1996, 29: 1~8.
    [102] Kunieda M, Yoshida M, Yoshida H, Akatmatsu Y. Influence of micro indents formed by electrochemical jet machining on rolling bearing fatigue life[J]. ASME PED, 1993, 64: 693~699.
    [103] Lu X, Leng Y. Electrochemical micromachining of titanium surfaces for biomedical applications[J]. Journal of Materials Processing Technology, 2005, 169: 173~178.
    [104] Ikeda T, Natsu W, Kunieda M. Electrolyte Jet Machining Using Multiple Nozzles[J]. International Journal of Electrical Machining, 2006, 11: 25~32.
    [105] Pajak P T, De Silva A K M, et al. Modelling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM)[J]. Journal of Materials Processing Technology, 2004, 149(1~3): 512~518.
    [106] Gelchinski M H, Romankiw L T, Vigliotti D R. Laser-enhanced jet-plating and jet-etching: high-speed maskless patterning method[P]. United States, US Patent, 4497692, 1985.
    [107] Davydov A D. Laser ECM of Metals[J]. Russian Journal of Electro-chemistry, 1994, 30(8).
    [108] Pajak P T, De Silva A K M, et al. Laser assisted jet electrochemical machining of hard to cut alloys[C]. Proceedings of the 34th International Matador Conference, Manchester, 2004, 265~271.
    [109] Pajak P T, De Silva A K M, et al. Process energy analysis for aluminium alloy and stainless steel in laser-assisted jet electrochemical machining[J]. Journal of Engineering Manufacture, 2006, 220(3): 405~412.
    [110] Pajak P T, De Silva A K M, et al. Precision and efficiency of laser assisted jet electrochemical machining[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2006, 30(3): 288~298.
    [111]阿部敬行,正木健,和田紀彦,増沢隆久.マイクロパルス電解加工の研究[J].電気加工学会誌, 2006, 40: 29~35.
    [112]磯谷真人,小原治樹,合田剛志.高電壓バルス重疊電解加工[C].電氣加工學會全國大會講演論文集,名古屋, 2007, 311~314.
    [113]小原治樹.電解加工方法および電解加工装置[P].日本,日本孈? P06P003985, 2007.
    [114] Datta M, Harris H. Electrochemical micromachining: an environmentally friendly, high speed processing technology[J]. Electrochimica Acta, 1997, 42(20~22): 3007~3013.
    [115] Landolt D, Chauvy P, Zinger O. Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments[J]. Electrochimica Acta, 2003, 49(12): 3185~3201.
    [116] Madore C, Landolt D. Electrochemical micromachining of controlled topographies on titanium for biological applications[J]. Journal of Micromechanics and Microengineering, 1997, 7: 257~270.
    [117] Madore C, Piotrowski O, Landolt D. Through-mask electrochemical micromachining of titanium[J]. Journal of Electrochemical Society, 1999, 146: 2526~2532.
    [118] Chauvy P F, Madore C, Landolt D. Electrochemical micromachining of titanium through apatterned oxide film[J]. Electrochemical and SolidState Letters, 1999, 2(3): 123~125.
    [119] Chauvy P F, Hoffmann P, Landolt D. Electrochemical micromachining of titanium through a laser patterned oxide film[J]. Electrochemical and SolidState Letters, 2001, 4(5): 31~34.
    [120] Ferri Y, Piotrowski O, Chauvy P F, Madore C, Landolt D. Two-level electrochemical micromachining of titanium fordevice fabrication[J]. Journal of Micromechanics and Micro- engineering, 2001, 11: 522~527.
    [121]刘家富,王同生,程小元.薄板群孔的照相电解加工[J].航空科学技术, 1994, 2: 26~29.
    [122] Till W C, Luxon J T. Integrated Circuits: Materials, Device and Fabrication[M]. New Jersey: Prentice Hall, 1982.
    [123] Schonenberger I, Roy S. Microscale pattern transfer without photolithography of substrates[J]. Electrochimica Acta, 2005, 51(5): 809~819.
    [124] Rajurkar K P, Zhu D. Improvement of electrochemical machining accuracy by using orbital electrode movement[J]. CIRP Annals, 1999, 48(1): 139~142.
    [125] Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications[M]. New York: Wiley, 2001.
    [126] Jain V K, Kanetkar Y, Lal G K. Stray current attack and stagnation zones in electrochemical drilling[J]. International Journal of Advanced Manufacturing Technology, 2005, 26: 527~536.
    [127]李晓伟,吴蒙华,王彤,等.微秒级脉冲电流电解加工研究[J].电加工, 1996, 4: 11~14.
    [128]王明环.微细电解加工实验研究[D].博士学位论文,南京:南京航空航天大学, 2004.
    [129] Kozak J, Rajurkar K P, Wof R. Modelling and analysis of pulse electrochemical machining(PECM)[J]. Transactions of the ASME, 1994, 116(8): 316~323.
    [130]Hoar T P, Mears D C. Relationships between anodic passivity, brightening and pitting[J]. Corrosion Science, 1965, 5: 279~286.
    [131]王明环,朱荻,徐惠宇.提高微细电解加工精度的研究[J].航空精密制造技术, 2005, 41(6): 24~27.
    [132] Boden P J, Evans J M. Reduction of stray current attack in ECM[J]. Electrochimica Acta, 1971, 16: 1071~1077.
    [133] Yu C Y, Liu C S, Huang Y H, Hsu Y C. The investigation of the flow characteristics of the gap in the pulse electrochemical machining (PECM)[J]. CIRP Annals, 1982, 31(1): 119~123
    [134] Kozak J, Rajurkar K P, Wei B. Modeling and analysis of pulse electrochemical machining (PECM)[J]. Journal of Engineering Industry, 1994, 116: 316~323.
    [135] Rajurkar K P, Kozak J, Wei B. Study of pulse electrochemical machining characteristics. CIRP Annals, 1993, 42: 231~234.
    [136] Kozak J, Rajurkar K P, Ross R F. Computer simulation of pulse electrochemical machining (PECM)[J]. Journal of Materials Processing Technology, 1991, 28: 149~157.
    [137] Kozak J, Lubkowski K. Accuracy problems of the pulse electrochemical machining[C]. Proceeding of 22nd IMTDR Conference, 1981, 353~363.
    [138] Rajurkar K P, Wei B, Kozak J. Modelling and monitoring inter electrode gap in pulse electrochemical machining[J]. CIRP Annals, 1995, 44: 177~180.
    [139] Wei B, Rajurkar K P, Talpallikar S. Identification of inter electrode gap in pulse electrochemical machining[J]. Journal Electrochemical Society, 1997, 144(11): 3613~3619.
    [140] Bilgi D S, Jain V K, et al. Hole quality and interelectrode gap dynamics during pulse currentelectrochemical deep hole drilling[J]. International Journal of Advanced Manufacturing Technology, 2007, 34(1~2): 79~95.
    [141] Bilgi D S, Kumar R, et al. Predicting radial overcut in deep holes drilled by shaped tube electrochemical machining[J]. International Journal of Advanced Manufacturing Technology, 2008, 39(1~2): 47~54.
    [142] Hewidy M S, Ebeid S J, Rajurkar K P, et al. Electrochemical machining under orbital motion conditions[J]. Journal of Materials Processing Technology, 2001, 109(3): 339~346.
    [143] Zhu D, Xu H Y. Improvement of electrochemical machining accuracy by using dual pole tool [J]. Journal of Materials Processing Technology, 2002, 129: 15~18.
    [144] De Silva A K M, McGeough J A. Electrodischarge-Electrochemical process for roughing and finishing dies and moulds[C]. Proceedings of the ISEM-12, Aachen, 1998, 397~406.
    [145] Zagorui V N, Zaitsev A N, Zhuravskii A K. Effect of Superimposing an Ultrasonic Field on the Electrolyte in Electro-Erosion-Chemical Machining[J]. Elektronnaja Obrabotka Marerialov, 1982, (6): 7~10.
    [146] Ruszaj A, Zybura M, Zurek R, Skrabalak G. Some aspects of the electro-chemical machining process supported by electrode ultrasonic vibrations optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217(10): 1365~1371.
    [147] Morozov B I. Electrochemical machining with vibrating tool electrode[J]. Elektronnaja Obrabotka Marerialov, 1974, (6):26~28.
    [148] Hewidy M S, Ebeid S J, et al. Modelling the performance of ECM assisted by low frequency vibrations[J]. Journal of Materials Processing Technology, 2007, 189(1~3): 466~472.
    [149] Kozak J, Rajurkar K P, Malicki S. Study of electrochemical machining utilizing vibrating tool electrode[C]. Proceedings of the 16th International Conference on Computer Aided Production Engineering CAPE, Edinburgh, 2000, 173~181.
    [150] Ebeid S J, Hewidy M S, El-Taweel T A, Youssef A H. ECM assisted by low-frequency vibrations[C]. Proceeding of the 20th International Manu-facturing Conference, Cork, 2003, 541~549.
    [151] Ebeid S J, Hewidy M S, El-Taweel T A. Youssef A H. Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology[J]. Journal of Materials Processing Technology, 2004, 149, 432~438.
    [152]郭家誠.創新同軸噴吸法與微電解加工之研究[D].硕士学位论文,雲林:雲林科技大學, 2006.
    [153]洪智育.微電化學深孔加工之研究與分析[D].硕士学位论文,桃园:台灣中央大學, 2006.
    [154]内山光夫,芝崎禎四郎.電解加工による曲がり穴加工法の開発 (第1報) :アクチュエータを持たない工具による加工法[J].精密工学会誌, 2002, 68(11): 1476~1480.
    [155]内山光夫,芝崎禎四郎.電解加工による曲がり穴加工法の開発(第2報) :曲がり穴の曲率制御[J].精密工学会誌, 2003, 69(10): 1492~1497.
    [156] Shimizu A. Apparatus for and metrod of electroerosively drilling a thin hole in a workpiece[P]. United States, US Patent, 4430180, 1984.
    [157]徐正扬.发动机叶片精密电解加工关键技术研究[D].博士学位论文,南京:南京航空航天大学, 2006.
    [158] 7344 Hardware user manual. Part Number322504A-01, 1999.
    [159]徐惠宇.微细电解加工系统及其相关工艺的研究[D].博士学位论文,南京:南京航空航天大学, 2004.
    [160] G Programming Reference Manual. National Instruments Corporation,1998.
    [161] LabVIEW Data Acqusition Basics Manual. National Instruments Corporation,1996.
    [162]张祖训,汪尔康.电化学原理和方法[M].北京:科学出版社, 2000.
    [163]李汝辉.传质学基础[M].北京:北京航空学院出版社, 1987.
    [164]木本康雄.電気?電子応用精密加工[M].东京:オーム社, 1981.
    [165] GB/T3090-2000,不锈钢小直径无缝钢管[S].国家冶金工业局, 2001.
    [166] Brusilovski Z. Adjustment and readjustment of electrochemical machines and control of the process parameters in machining shaped surfaces[J]. Journal of Materials Processing Technology, 2008, 196(1~3): 311~320.
    [167] Andrews L R, et al. Electrochemical drilling[P]. United States, US Patent, 3803015, 1974.
    [168] Cross D E, et al . Tool holder[P]. United States, US Patent, 3719579, 1973.
    [169] Andrews J D, et al. Metrod for making electrode holder[P]. United States, US Patent, 3352958, 1967.
    [170]胡传炘,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社, 2000.
    [171]唐传林,季承钧,单书发.绝缘材料工艺原理[M].北京:机械工业出版社, 1993.
    [172] Tredgold R H. Order in Thin Organic Films[M]. Cambridge: Cambridge University Press, 1994.
    [173]竺士伟.涡轮泵浮动环4~8μm聚四氟乙烯涂层的喷涂技术研究[J].火箭推进, 2004, 30(1): 27~31.
    [174]胡兆斌.绝缘材料工艺学[M].北京:化学工业出版社, 2004.
    [175]刘宏,向寓华,刘碧雄.铝型材粉末静电喷涂生产工艺条件优化[J].表面技术, 2009, 38(1): 61~63.
    [176] Bilgi, D S, Jain V K, et al. Electrochemical deep hole drilling in super alloy for turbine application[J]. Journal of Materials Processing Technology, 2004, 149(1~3): 445~452.
    [177]余承业.特种加工新技术[M].北京:国防工业出版社, 1995.
    [178] Ali S, Hinduja S, Atkinson J, Pandya M. Shaped tube electrochemical drilling of good quality holes[J]. CIRP Annals, 2009, 58(1): 185~188.
    [179] Kawafune K, Mikoshiba T, Noto K. Study on shapes produced by ECM[J]. CIRP Annals, 1968, 16: 345~352.
    [180]伊東祐光.特殊加工および処理[M].東京:誠文堂新光社, 1970.
    [181]李志永,朱荻.基于间隙电导率模型的叶片电解加工阴极设计[J].华南理工大学学报(自然科学版), 2005, 33(3): 73~77.
    [182]北御門良夫.電解加工法の研究[R].山梨大學工學部研究報告, 1966, 17(12): 1~5.
    [183]管亮,冯新泸.基于小波变换的信号消噪效果影响因素研究及其Matlab实践[J].自动化与仪器仪表, 2004, 116(6): 43~46.
    [184] Mallat S, Zhang S. Characterization of signals from multiscale edges[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710~732.
    [185]蒋传文,侯志俭,李涛.张勇传基于小波分解的径流非线性预测[J].上海交通大学学报, 2002, 36(7): 1053~1056.
    [186] Bhattacharyya B, Munda J. Experimental investigation into electrochemical micro-machining (EMM) process[J]. Journal of Materials Processing Technology, 2003, 140: 287~291.
    [187] Bunker R S. A review of shaped hole turbine film-cooling technology[J]. ASME Journal of HeatTransfer, 2005, 127: 441~453.
    [188] Taylor G.. Philos. Transactions of the Royal Society of London, 1986, 96, 260A.
    [189] Rubel A. Computations of the oblique impingement of round Jets upon plane wall[J]. AIAA Journal, 1981, 19(7):863~ 871.
    [190]刘青,夏国栋,刘启明,马晓雁.高效微射流阵列冷却热沉的数值模拟[J].自然科学进展2005, 15(8): 987~992.
    [191]陈庆光,徐忠,张永建.用改进的RNG模式数值模拟湍流冲击射流流动[J].西安交通大学学报, 2002, 36(9): 916~920.
    [192] Yakhot V, Orszag S A. Development of turbulence model for shear flows by a double expansion technique[J]. Physics of Fluids, A, 1992, 4(7): 1510~1520.
    [193]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社.1998.
    [194]钟贤和,张力,伍成波.较大流量多支管流量分配实验与数值模拟[J].重庆大学学报(自然科学版), 2006, 29(1): 41~44.
    [195] Weitbrecht V, Lehmann D, Richter A. Flow Distribution in Solar Collectors with Laminar Flow Conditions[J]. SolarEnergy, 2002, 73(6): 433~441.
    [196] Lu F, Luo Y H, et al. Analytical and experimental investigation of flow distribution in manifolds for heat exchangers[J]. Journal of Hydrodynamics, 2008, 20(2): 179~185.
    [197] Maharudrayya S, Jayanti S, et al. Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells[J]. Journal of Power Sources, 2005, 144(1): 94~106.
    [198] Wang J Y. Pressure drop and flow distribution in parallel-channel configurations of fuel cells: U-type arrangement[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6339~6350.
    [199]王峻晔,章明川,范浩杰,吴东棣.锅炉分配集箱非线性水动力特性分析[J].上海交通大学学报, 1999, 33(3): 268~272.
    [200]王峻晔,章明川,吴东棣.锅炉分配集箱速度分布对流量分配的影响[J].中国电机工程学报, 1999, 19(5): 10~12,38.
    [201]黄承懋.锅炉水动力学及锅内传热[M].北京:机械工业出版社, 1982.
    [202]刘福国,魏恩宗等.均匀分流、变节距多孔分配管的设计[J].中国电机工程学报, 2002, 22(9): 150~154.
    [203]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社, 1988.
    [204]董谊仁,过健.填料塔排管式液体分布器的研究和设计[J].化学工程, 1990, 18(3): 28~34.
    [205] Sen M H, Shan S. Analysis of hole quality characteristics in the electro jet drilling process[J]. International Journal of Machine Tools & Manufacture, 2005, 45(15): 1706~1716.