电化学磁力研磨复合加工工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁力研磨是一种先进的研磨加工技术,具有切深小、柔性适应强等优点,但同时也有加工效率低、磨料寿命短且制造工艺复杂等缺点。电化学加工是一种基于阳极电化学溶解的加工方式,从理论上讲,是一种属于离子级去除的加工方式,适合于任何金属及合金材料的加工。但是,由于加工过程中,涉及的因素过多,如电解液的流场、极间电场、温度场等对加工都有影响,要达到良好的加工效率和表面质量对工艺过程控制以及装备要求高。
     本文以钝化膜为结合点将电化学与磁力研磨复合,主要从复合工具及装置研制、工艺实验、复合机理三个方面进行研究。复合工具的结构形式直接决定复合工艺以何种形式实现,本文针对电化学与磁力研磨的不同工艺特点,提出了中空电磁极相间复合工具。对于中空电磁极相间的结构而言,最为关键的是电解液是否能够有效到达电化学工作区域。对此,本文使用有限元方法建立了中空工具工作间隙的磁场模型,并在计算所得磁场分布的基础上推测了磨料刷与通液空腔的形貌。为了使磁路结构能够更加方便的适用于平面类零件的加工工艺,本文在分析了闭合与开放两种磁路结构的基础上提出了主线圈加辅助线圈的磁路结构,有限元与实测结果都证明辅助线圈能够有效增强加工间隙内的磁场强度。
     与传统磁力研磨不同,本文所采用的工具结构和铁磁性磨料都具有特殊性,所以对复合工具下的磁力研磨状态进行了研究。首先,分析了铁磁性磨料在磁场下的力学行为。结合单颗磨料在磁场中受力的数学模型与有限元分析的结果,对研磨压力进行了数值模拟,得到了单颗磨料在工具径向上的研磨压力分布。设计实验装置测得了粉末松散状态下的Fe3O4相对磁导率,并依据这个数值对磨料刷的相对磁导率进行了计算。根据相对磁导率以及磨料与研磨压力的分布,对整体研磨压力进行了估算,计算值与文献测量值相近。其次,进行了不同加工时间、转速、振动频率磁极电流、加工间隙的纯磁力研磨参数工艺实验。此外,使用高速摄像仪观测了不同转速下的磨料刷形貌,分析了不同转速下磨料刷形貌与磨料残余的原因,并且建立了理论最高转速模型,结合磁场有限分析的结果对最高转速进行了估算。
     磁力研磨与电化学的复合并不是简单工艺叠加,而存在一些交互影响。磁场对电化学过程可能会产生影响,而电解液液流对磨料残余、磨料刷形貌也可能产生影响。本文在流场分析的基础上,讨论了流场与磨料残余、磨料刷形貌之间关系。通过理论分析与实验现象发现:在存在电解液液流的情况下,即使达到紊流的流量,磨料残余依然存在但数量减少,而磨料刷也不会被冲溃。与此同时,本文也评估了这些绝缘残余磨料对电化学溶解精度的影响并且发现这种影响非常小。对磁场条件下的电化学行为,本文建立了叠加磁场情况下的离子轨迹模型,分析了在电场平行向叠加磁场对离子轨迹的影响,并测量了不同材料不同电解液在叠加磁场情况下的阳极极化曲线。
     在本文第六章中,课题对基于中空电磁极相间复合工具的电化学磁力研磨复合加工进行了系统的工艺实验研究。通过更改电化学与磁力研磨的相关工艺参数,得到不同复合状态的工艺效果。通过实验发现,磁力研磨与电化学的匹配关系对复合加工的表面质量和加工效率影响很大。要达到良好的复合效果,必须使得电化学加工不进入到超钝化溶解阶段。在这个前提下,除膜速度越快表面质量越好。在适当工艺条件下,使用复合工艺加工A3钢和Al6061表面粗糙度Ra可达到0.2pm以下,而同样条件下的磁力研磨仅为0.4~0.6μm。
     为了揭示电化学磁力研磨的复合机理,本文首先分别建立了磁力研磨、电化学加工的加工模型。其中,根据实验现象,在磁力研磨模型中引入了磨料损耗函数,比较好的吻合了实验结果。然后,本文根据工艺实验的相关结论与实验现象,提出了电化学磁力研磨复合加工的建模思想,对复合加工过程进行了仿真,从一定程度上解释了电化学与磁力研磨的复合机理。
As an advanced polishing technology, magnetic abrasive finishing (MAF) is flexible, adaptable and with low mechanical damage, but it also has disadvantages of low process efficiency, short service life and complex manufacturing procedure of abrasives. Electrochemical machining (ECM) bases on anodic dissolution,which is suitable for all metal and alloy precision process in theory. But actuality, there are too many parameters which will effect the ECM process such as fluent, heat, electric etc. It requires good quality equipment and strict control of technical process for better process efficincy and surface qulity.
     This paper presents a hybrid process of ECM and MAF based on the passivation film. It mainly mainly studies the following three aspects of machine tool designing, machining experiments and hybrid principles. The structure form of the composited tool decided the form of the hybrid process. It proposed a hollow structure with electrodes separated by magnetic pole based on the properties of ECM and MAF respectively. For this structure, the most important part is to make sure the electrolyte can reach the ECM working area. Therefore, a FEM model of the MAF working gap has been analysed to conjecture the shape of the abrasive brush in the paper. From the observations and measurements, the FEM results have found to be credible. To make the magnetic circuit adaptable to the plane parts, it presents a magnetic circuit compounded by a primary and auxiliary coil based on the analysis of the open and closed magnetic circuits. The auxiliary coil has been proved to enhance the magnetic field in the working gap by the measured and FEM results.
     Different from traditional MAF process, this paper applied different tool structure and abrasives. Firstly, in order to investigate the status of MAF under the composited tool, the force analysis of the magnetic abrasive has been carried out. Integrated the FEM results and mathematics model, machining force distribution has been calculated. A device to test magnetic permeability of ferramic has been designed. With the magnetic permeability from measurement, the machining pressure mathematical model on the whole working area has been built. Secondly, to study the statue of MAF under the composited tools, the experiments about the parameters of MAF process, such as machining time, rotating speed, vibration frequency, exciting current, and working gap size have been carried out. Thirdly, high rate photographic instrument is applied to observe the abrasive brush shape under different rotating speed. The highest rotating model also has been built and calculated.
     The hybrid process of EMAF is not simply overlying of MAF and ECM process but has interacive infulunce on each other. The connection between fluent and residual abrasives has been discussed in the paper. As a result, it find there is residual abrasive even under turbulence condition but not that many as in the MAF process. Meanwhile, the effects of these residual abrasives to ECM process has also been estimated which is found to be little. A model of the magnetic field influence on the ion tracks has been built. We tests polarization curves of workpiece materials with different electrolyte solutions and magnetic field conditions.
     The sixth chapter of this paper is mainly about the parameters experiments of the EMAF process. By adjusting the parameters of MAF and ECM respectively, it can alter the relative strength between ECM and MAF in the compound process of EMAF. The matching relations bewteen the ECM and MAF process is necessary to achieve good surface quality and efficiency for the hybrid process of EMAF. To reach good combination effect, the state of the ECM process must be under passivation. The MAF process is a key factor to keep ECM under that state. Under properly conditions, the surface roughness Ra can reach below0.2μm while it is in range from0.4to0.5μm in the MAF process with same conditions.
     To reveal the principle of the hybrid process of EMAF, this paper builds theory models of ECM and MAF respectively. Accoding to the phenomenas of experiments, it intruduces in the loss factor of the abrasive which fitted experiments well. On account of the phenomenas and conclusions of the experiments, it proposes a theory that the thinkness of the passivation film decided the current distribution of ECM. Base on that theory, the ECM and MAF models are finally iterated as the EMAF model, which model partly explained the hybrid theory.
引文
[1].李邦忠.大面积薄板和粗糙表面电化学机械光整加工技术研究[D].2004,大连理工大学.
    [2].王晓明.脉冲电化学及其复合光整加工机理和表面特性的研究[D].2002,大连理工大学.
    [3].李建华,文贵林.电解磨料复合加工轴承泡道的研究[J].表面技术,1999.28(4):p.32-34.
    [4].王振宁,冯启高.金属材料电解液体磨料冲刷复合抛光工艺[J].机械设计与制造工程,1998.27(5):p.60-61.
    [5].王振宁.金属电解液体磨料冲刷复合抛光工艺[J].机械工艺师,1998(6):p.23-24.
    [6].时立民,陈玉全,时启民.磁力电解复合抛光片的研制[J].哈尔滨理工大学学报,2007.12(6):p.113-116.
    [7].时立民,陈玉全等.磁力电解机械复合抛光不锈钢模具的研究[J].哈尔滨理工大学学报,2002.7(5):p.73-75.
    [8].陈玉全等.电解-机械-磁力便携式抛光机的研制[J].机电产品开发与创新,2005(2):p.40-41.
    [9].朱永伟,王占和,云乃彰.超声电解复合微细加工装置与试验研究[J].机械科学与技术(西安),2008.27(8):p.986-991.
    [10].朱永伟,徐玉明,齐金华.超声-电解复合微细加工阴极制作工艺研究[J].宇航材料工艺,2007.37(4):p.46-49.
    [11].朱永伟,吴冰杰,云乃彰.制作微器件的超声电解复合微细加工基础研究[J].电加工与模具,2006(2):p.56-59.
    [12].杨建明.电解磨料喷射复合抛光工艺的研究与应用[J].机械制造,1997(11):p.14-15.
    [13].庞桂兵.脉冲电化学及电化学机械齿轮光整与修形加工技术研究[D].2005,大连理工大学.
    [14].赵家齐,张文峰.流动磨料电解研磨复合工艺对不锈钢加工的研究[J].现代机械,1997(1):p.19-21.
    [15].张文峰,赵家齐.流动磨料电解研磨复合加工工艺[J].机械工艺师,1997(4):p. 20-21.
    [16].张文峰,赵家齐.流动磨料电解研磨复合工艺的研究[J].磨床与磨削,1994(3):p.56-58.
    [17].朱永伟,王占和,范仲俊.制作微结构的超声复合加工机理[J].宇航材料工艺,2008(5):p.61-66.
    [18].赵肠等.微细结构超声电解复合加工工艺研究[J].徐州工程学院学报,2008(2):p.-.
    [19].前烟英彦,釜田浩,山本昌彦.电解复合镜面加工の研究[J].精密机械,1985.12:p.191-195.
    [20].Kurita, T.,etc al. Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process[J]. International Journal of Machine Tools and Manufacture,2008.48(15):p.1599-1604.
    [21].Kurita, T.,M. Hattori. A study of EDM and ECM/ECM-lapping complex machining technology[J]. International Journal of Machine Tools and Manufacture,2006. 46(14):p.1804-1810.
    [22].Kurita, T.,etc al. A study of three-dimensional shape machining with an EC[mu]M system[J]. International Journal of Machine Tools and Manufacture,2006. 46(12-13):p.1311-1318.
    [23].范植坚,李新忠,王天诚.电解加工与复合电解加工[M].2008:国防工业出版社,北京.
    [24].干为民等.数控电解-机械精密切割加工直纹面的算法[J].电加工与模具,2008(5):p.49-53.
    [25].干为民等.数控电解机械复合切割机床的设计[J].常州工学院学报,2008.21(5):p.14-17,21.
    [26].王军.机械电解抛磨曲面的工具设计和试验研究[J].制造技术与机床,2008(9):p.107-108.
    [27].李瑜波,张永俊,赵学堂.机器人模具抛光三维实体造型及其运动仿真[J].组合机床与自动化加工技术,2004(07).
    [28].张永俊,刘晓宁,等.小曲率曲面的机械电解抛光[J].机械制造,2001.39(6):p.39-40.
    [29].张永俊,刘晓宁.机械电解抛光平缓曲面的工具设计及实验[J].新技术新工艺,2000(9):p.19-20.
    [30].张永俊,刘晓宁.机械电解复合抛磨曲面的工具设计[J].广东工业大学学报,2000.17(3):p.22-25.
    [31].潘光显,干为民.S136不锈钢电解机械复合抛光[J].现代机械,2008(5):p.12-13,78.
    [32].王军.电化学机械复合抛光不锈钢板[J].机床与液压,2003(4):p.289-290,243.
    [33].庞桂兵等.模具型腔表面电化学机械光整加工技术[J].模具工业,2009.35(3):p.55-59.
    [34].周敏等.滚动轴承电化学机械光整加工[J].冶金设备,2003(6):p.5 1-53.
    [35].赵雪松,李文江.充液阀缸体脉冲电化学机械抛光研究[J].电加工与模具,2003(3):p.34-36.
    [36].许旺,张楷亮,杨保和.新型铜互连方法—电化学机械抛光技术研究进展[J].半导体技术,2009.34(6):p.521-524,589.
    [37].储向峰,白林山,李玉琢ULSI制造中Cu的电化学机械抛光[J].微纳电子技术,2009.46(2):p.115-118.
    [38].Liu, J.H., Z.J. Pei, G.R. Fisher. ELID grinding of silicon wafers:A literature review[J]. International Journal of Machine Tools and Manufacture,2007. 47(3-4):p.529-536.
    [39].Bandyopadhyay, B.P.,H. Ohmori. The effect of ELID grinding on the flexural strength of silicon nitride[J]. International Journal of Machine Tools and Manufacture,1999.39(5):p.839-853.
    [40].Ohmori, H.,T. Nakagawa. Mirror Surface Grinding of Silicon Wafers with Electrolytic In-Process Dressing[J]. CIRP Annals-Manufacturing Technology, 1990.39(1):p.329-332.
    [41].Yin, S.,etc al. ELID grinding characteristics of glass-ceramic materials[J]. International Journal of Machine Tools and Manufacture,2009.49(3-4):p. 333-338.
    [42].Zhang, C., H. Ohmori, W. Li. Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-Ⅱ) grinding[J]. Journal of Materials Processing Technology,2000.105(3):p.284-293.
    [43].Zhixin, J., Z. Jianhua, A. Xing. Ultrasonic vibration pulse electro-discharge machining of holes in engineering ceramics[J]. Journal of Materials Processing Technology,1995.53(3-4):p.811-816.
    [44].Qian, J., W. Li, H. Ohmori. Cylindrical grinding of bearing steel with electrolytic in-process dressing[J]. Precision Engineering,2000.24(2):p.153-159.
    [45].Qian, J., H. Ohmori, W. Lin. Internal mirror grinding with a metal/metal-resin bonded abrasive wheel[J]. International Journal of Machine Tools and Manufacture,2001.41(2):p.193-208.
    [46].Ohmori, H.,etc al. Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing[J]. Journal of Materials Processing Technology,2000.98(3):p.322-327.
    [47].朱波,袁哲俊.钢结硬质合金elid磨削表面的afm分析[J].机械工艺师,2000(11):p.7-9.
    [48].李立军等.非球面模芯elid磨削系统的研制[J].工具技术,2007.41(11):p.36-38.
    [49].Gu, J.Q.,etc al. A study on the electrolytic in-process dressing (ELID) for silica glass in a ductile mode[J]. Journal of Non-Crystalline Solids,2008.354(12-13):p. 1398-1400.
    [50].Islam, M.M.,etc al. Characterization of ELID grinding process for machining silicon wafers[J]. Journal of Materials Processing Technology,2008.198(1-3):p. 281-290.
    [51].Stephenson, D.J., X. Sun, C. Zervos. A study on ELID ultra precision grinding of optical glass with acoustic emission[J]. International Journal of Machine Tools and Manufacture,2006.46(10):p.1053-1063.
    [52].Li, J.,J.C.M. Li. Mechanisms of sawing of BK7 glass by electrolytic in-process dressing[J]. Journal of Materials Processing Technology,2005.168(3):p. 377-389.
    [53].尹韶辉.磁场辅助超精密光整加工技术[M].2009:湖南大学出版社.
    [54].方建成,金洙吉,周锦进.电化学磁粒光整加工实验[J].制造技术与机床,2000.12(12).
    [55].王振宁.数控电解磁力研磨光整加工工艺轨迹的生成与参数分析[J].精密制造与自动化,2006(02):p.20-22.
    [56].王振宁,王玉萍.数控电解磁力研磨工艺在Cr1 2钢上的应用[J].模具工业,2004(02):p.50-53.
    [57].张雷,周锦进.电化学磁力复合加工工艺的试验研究[J].电加工与模具,2000(05):p.38-40.
    [58].刘海山.磁力研磨技术的研究与应用[D].2008,山东理工大学.
    [59].Yin, S.,T. Shinmura. Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy[J]. International Journal of Machine Tools and Manufacture,2004.44(Compendex):p.1297-1303.
    [60].Yin, S.,T. Shinmura. A comparative study:Polishing characteristics and its mechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing[J]. International Journal of Machine Tools and Manufacture,2004. 44(Compendex):p.383-390.
    [61].曹西京,白银科.数控磁性研磨在平面沟槽凸轮加工中的应用与研究[J].机械设计与制造,2009(10):p.62-63.
    [62].白银科,曹西京.磁性研磨在弧面凸轮加工中的应用与研究[J].组合机床与自动化加工技术,2009(7):p.82-85.
    [63].陈红玲,张银喜.磁性研磨加工工艺参数的实验研究[J].太原理工大学学报,2002.33(1):p.16-18,25.
    [64].宁静,姚平喜.曲面磁性研磨加工原理及其磁路设计[J].机械管理开发,2008.23(4):p.5-6.
    [65].孟利.粘结磁性磨料制备工艺及其研磨性能研究[D].2008,广东工业大学.
    [66].孙洪仁,孟庆尧.磁力研磨、电解磁力研磨加工[J].陕西科技大学学报,1993(04):p.38-41.
    [67].陈玉全,王世健.磁力研磨、电解磁力研磨和电解不织布研磨工艺的对比研究[J].电加工,1992(06):p.23-26.
    [68].于兴芝,张成光.电解加工与磁力研磨加工技术研究现状与进展[J].矿山机械, 2008(10):p.4-8.
    [69].金东燮,陈玉全,张国林.电解磁力研磨技术[J].机械工人.冷加工,1994(07):p.2-4.
    [70].张国林,陈玉全,金东燮.电解磁力研磨技术的开发及其机理的研究[J].磨料磨具与磨削,1993(02):p.26-29.
    [71].Yan, B.-H.,etc al. Electrolytic magnetic abrasive finishing[J]. International Journal of Machine Tools and Manufacture,2003.43(13):p.1355-1366.
    [72].Kwak, J.-S. Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet[J]. International Journal of Machine Tools and Manufacture, 2009.49(7-8):p.613-618.
    [73].周锦进,贺晨,周武.磁粒加工及电化学磁粒加工[J].电加工,1991(05):p.27-30.
    [74].时立民,陈.,王俊,关砚聪.磁力电解机械复合抛光不锈钢模具的研究[J].哈尔滨理工大学学报,2002(05):p.73-75.
    [75].王建业,徐家文.电解加工原理及应用[M].2001:国防工业出版社,北京.
    [76].李洪友.齿轮的脉冲电化学光整加工技术基础研究[D].2003
    [77].Kwak, T.-W.K.a.J.-S. A study on deburring of magnesium alloy plate by magnetic abrasive polishing [J]. International Journal of Precision Engineering and Manufacturing 2010. Volume 11, Number 2:p.189-194.
    [78].Ik-Tae Im, S.D.M.a.S.M.O. Micro machining of an STS 304 bar by magnetic abrasive finishing [J]. Journal of Mechanical Science and Technology 2009. Volume 23, Number 7:p.1982-1988.
    [79].Yanhua Zou, T.S. A NEW PRECISION MAGNETIC FIELD ASSISTED FINISHING PROCESS FOR FERROMAGNETIC METALLIC MATERIALS USING PLURAL PERMANENT MAGNETS AS A TOOL[J].2009.
    [80].邱腾雄.面向模具曲面的磁性研磨加工技术研究[D].2008,广东工业大学.
    [81].Yamaguchi, H.,T. Shinmura. Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process[J]. Precision Engineering,2004.28(Compendex):p.135-142.
    [82].方建成.磁场电化学、磁粒及其复合光整加工新技术基础研究[D].1999,大连理 工大学.
    [83].Kim, S.O.,J.S. Kwak. Magnetic force improvement and parameter optimization for magnetic abrasive polishing of AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2008.18(Supplement 1):p. s369-s373.
    [84].Lieh-Dai Yang, C.-T.L.a.H.-M.C. Optimization in MAF operations using Taguchi parameter design for AISI304 stainless steel [J]. The International Journal of Advanced Manufacturing Technology 2009. Volume 42, Numbers 5-6.
    [85].邱腾雄等.曲面磁性研磨加工的表面粗糙度特性研究[J].金刚石与磨料磨具工程,2008(3):p.26-30.
    [86].马东雄,丁金福,李晓东.磁研法在模具曲面中的抛光机理与技术研究[J].机械设计与制造,2009(03):p.242-244.
    [87].李长河,孙奕澎,蔡光起.自由磨粒复杂曲面磁力研磨光整加工试验研究[J].制造技术与机床,2005(5):p.4.
    [88].李秀红.基于磁场特性的内孔表面光整新技术理论分析与实验研究[D].2010,太原理工大学.
    [89].方建成,张海鸥,金洙吉.不锈钢管内孔旋转磁场磁粒光整加工[J].机械科学与技术,2001(01):p.92-93+5.
    [90].姚新改,轧刚,丁艳红.旋转磁场磁力光整内表面研磨机理研究[C].2007.中国湖南长沙.
    [91].冯申,冯云飞,沙石.卧铣改装磁力研磨机及磁路[J].煤矿机械,2007.28(2):p.146-148.
    [92].于红星,高改会.数控磁性研磨装置的设计与研究[J].科技资讯,2008(23):p.
    [93].宁静.基于等量磨削的自由曲面磁性研磨的机理和实验研究[D].2008,太原理工大学.
    [94].孙奕澎.基于五自由度并联机床的曲面磁力研磨研究[D].2004,东北大学.
    [95].王琰.磁性磨料在磁力研磨加工中受磁场力作用的研究[J].组合机床与自动化加工技术,2007(5):p.3.
    [96].顾晓安等.磁性材料在磁场中所受磁场力的数学模型[J].噪声与振动控制,2002.22(4):p.3.
    [97].张德兴.用磁天平法测量弱磁材料的磁化率[J].大庆石油学院学报,1990(03).
    [98].高玉龙.磁力研磨光整加工及磁性磨料制备技术的研究与应用[D].2009,山东理工大学.
    [99].冯海伟.磁性磨粒的制备及其导磁性能的研究[D].2009,太原理工大学.
    [100].尹义蕾.旋转永磁场光整加工磁场发生装置设计及其实验研究[D].2010,太原理工大学.
    [101].赵强.磁性磨粒光整加工的模拟分析与实验研究[D].2010,太原理工大学.
    [102].Tae- Wan Kim, D.-M.K.a.J.-S.K. Application of magnetic abrasive polishing to composite materials [J]. Journal of Mechanical Science and Technology,2010. Volume 24, Number 5,:p.1029-1034.
    [103].吴隆,安向东.磁性研磨加工方法的研究[J].机床与液压,2006(1):p.29-30,97.
    [104].徐家文等.电化学加工技术—原理·工艺及应用[M].2008:国防工业出版社,北京.
    [105].吕萍英;,李珩珠.铝材及铝制品的电解抛光处理(4)(铝的抛光处理系列文章之九).[J].轻金属,1997.02:p.52-56.
    [106].刘国跃.新型嵌片式复合工具及其电化学—机械复合抛光实验研究[D].2009,广东工业大学.
    [107].贾月梅.流体力学[M].2006,北京:国防工业出版社
    [108].《机械设计实用手册》编委会.机械设计实用手册(上下简装本)[M].2009,北京:机械工业出版社.
    [109].Fang, J.C.,etc al. Magnetic electrochemical finishing machining[J]. Journal of Materials Processing Technology,2002.129(1-3):p.283-287.
    [110].Kim, J.-D., Y.-M. Xu, Y.-H. Kang. Study on the characteristics of Magneto-Electrolytic-Abrasive Polishing by using the newly developed nonwoven-abrasive pads[J]. International Journal of Machine Tools and Manufacture,1998.38(9):p.1031-1043.
    [111].Pa, P.S. Super finishing with ultrasonic and magnetic assistance in electrochemical micro-machining[J]. Electrochimica Acta,2009.54(25):p.6022-6027.
    [112].Lin, Y.-C.,H.-S. Lee. Machining characteristics of magnetic force-assisted EDM[J]. International Journal of Machine Tools and Manufacture,2008.48(11):p. 1179-1186.
    [113].S.C.Jayswal, V. K.Jain, P.M.DiXit. Magetic abrasive finishing process-a parametric analysis[J]. Journal of AdVanced Manufacturing Systems,2005.4(2): p.131-150.
    [114].韩进宏,王长春.互换性与测量技术基础[M].2006,北京:北京大学出版社中国林业出版社.
    [115].Kim, J.-D.,M.-S. Choi. Simulation for the prediction of surface-accuracy in magnetic abrasive machining[J]. Journal of Materials Processing Technology, 1995.53(3-4):p.630-642.
    [116].Yadav, G.K.a.V. Temperature distribution in the workpiece due to plane magnetic abrasive finishing using FEM[J]. The International Journal of Advanced Manufacturing Technology 2009. Volume 41, Numbers 11-12:p.1051-1058.
    [117].Jain, V.K.,etc al. Investigations into abrasive flow finishing of complex workpieces using FEM[J]. Wear,2009.267(1-4):p.71-80.
    [118].Jha, S.,V.K. Jain. Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing (MRAFF) process[J]. Wear,2006. 261(7-8):p.856-866.
    [119].Dhirendra K. Singh, V.K.J.a.V.R. Experimental investigations into forces acting during a magnetic abrasive finishing process [J]. The International Journal of Advanced Manufacturing Technology 2006. Volume 30, Numbers 7-8 p.652-662.
    [120].Jayswal, S.C., V.K. Jain, P.M. Dixit. Modeling and simulation of magnetic abrasive finishing process[J]. International Journal of Advanced Manufacturing Technology,2005.26(Compendex):p.477-490.
    [121].Wani, A.M., V. Yadava, A. Khatri. Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF)[J]. Journal of Materials Processing Technology,2007.190(1-3):p.282-290.
    [122].Jain, R.K., V.K. Jain, P.M. Dixit. Modeling of material removal and surface roughness in abrasive flow machining process[J]. International Journal of Machine Tools and Manufacture,1999.39(12):p.1903-1923.
    [123].Das, M., V.K. Jain, P.S. Ghoshdastidar. Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process[J]. International Journal of Machine Tools and Manufacture,2008.48(3-4):p.415-426.
    [124].丁卫平等编.机械工程标准手册(磨料与磨具卷)(精)[M].2000:中国标准出版社
    [125].王海峰.回转体表面脉冲电化学及其复合光整加工技术研究[D].2005,大连理工大学.
    [126].查全性.电极过程动力学[M].2002,北京:科学出版社.
    [127].阿达依·谢尔亚孜旦.螺旋锥齿轮电化学光整加工技术基础研究[D].2007,大连理工大学.
    [128].张国栋.铁钝化膜半导体特性的光电化学研究[J].物理化学学报,1991.第7卷,第8期:p.366-371.
    [129].Okamoto, G.,T. Shibata. Passivity of Metals[J]. Electrochemical Society,1978. NJ: p.646.
    [130].袁立伟,任成祖,舒展ELID超精密镜面磨削钝化膜状态变化的研究[J].航空精密制造技术,2006.第42卷,第1期:p.5-9.
    [131].张国栋,郭万华,姚文锐.铁钝化膜厚度的电化学和光电化学测量[J].华东冶金学院学报1990.第7卷,第四期:p.46-52.
    [132].郐吉才,张飞虎ELID磨削钝化膜弹簧刚度计算模型研究[J].工具技术,2008.第42卷,第9期.
    [133].N, S.,K. K. Ellipsometry of the passive film on iron in neutral solution[J]. Electrochim Acta,1971.16(447-462).
    [134].赵启辉.常用非金属材料手册[M].2008,北京:中国标准.
    [135].桂艳,高.岩.不锈钢表面钝化膜特性的研究进展[J].特殊钢,2011.32(3):p.20-25.
    [136].P. Ghods,etc al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties[J].Applied Surface Science,2011.257:p.4669-4677.
    [137].佘秀兰等.X射线荧光光谱法测定镀锌板表面钝化膜厚度,in第十五届冶金及材料分析测试学术报告会(CCATM2010)论文集.2010.
    [138].刘峰等.等离子体处理316L不锈钢表面抗点蚀性能研究,in第五届全国腐蚀大会论文集.2009.
    [139].郝建军等.A3钢镀锌层钼酸盐钝化膜的组成和性能[J].材料研究学报,2006.20(4):p.4.
    [140].孔德军等.基于XRD的镀锌钝化膜残余应力试验研究[J].物理学报,2007.56(7):p.6.