基于遥感与作物生长模型的冬小麦生长模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确的作物长势动态监测和产量预测对于保障粮食安全、促进农业可持续发展具有非常重要的意义。作物模型在监测作物长势和预报产量方面是个强有力的工具,然而作物模型由单点模式发展而来,在区域应用上由于区域分异、田块分异等导致作物模型模拟要求的输入参数和初始条件难以获取,使作物模型的应用受到很大的限制,而遥感信息的引入可能使得这个问题得到解决,将遥感信息和作物模型相结合,利用遥感信息反演得到的状态变量优化作物模型模拟,在区域上对作物模型所需的敏感参数和初始条件等重新估计,从而使得作物模型在区域上发挥优势。
     本研究拟在对作物模型WOFOST适应性调整及改进的基础上,建立适合山东禹城地区的冬小麦生长模拟模型;利用田间试验数据校正和验证作物生长模拟模型WOFOST,探讨水分胁迫生产水平下的作物模拟模型与遥感信息结合的方法,利用遥感信息校准作物模拟模型的某些关键过程或重新初始化、参数化作物模拟模型,以达到对作物模型的优化;探索应用遥感信息的区域性作物模拟的合理实用方法,并进行模拟研究,使之可以进行区域作物长势监测和产量预报。主要结论如下:
     (1)为使WOFOST模型能更好地模拟水分胁迫对冬小麦生长过程的影响,对WOFOST模型进行了适当改进:利用FAO最新推荐的Penman-Monteith公式(1998)替换原有的Penman公式(1948)进行参考作物蒸散的估算;依据同一作物不同生育阶段的作物系数不同的规律,将作物系数改为随生育期变化的变量。根据作物生长参数生物学意义和敏感性的不同制定调整方案,利用FSEOPT程序或“试错法”对光合作用最大速率、比叶面积、叶片衰老指数、分配系数、光能利用效率、干物质转换系数等参数进行调整。利用田间试验数据对调整后的WOFOST模型进行校正和验证。结果表明:通过对上述两个方面的适当改进和主要作物参数及土壤参数的适应性调整,调整后WOFOST模型对冬小麦的模拟如LAI、地上生物量与实测数据相符,蒸散的模拟更符合实际情况,调整后WOFOST模型可用于模拟研究区域实际土壤水分状况下冬小麦生长发育及产量形成过程。
     (2)本研究构建的区域日蒸散模型是基于遥感数据和常规气象站观测数据基础上建立的区域模型,通过植被指数(VI)—地表温度(T_S)三角法计算了地表的地表温度-植被覆盖度系数(TVCI),采用改进的“实时”三角法和“普适”三角法分别计算地表的TVCI,结合Penman-Monteith蒸散模式计算的潜在潜热通量(λE_p)估算地表的日蒸散量。本算法的关键是确定地表的TVCI,分别运用了两种VI-T_s三角算法-即“普适”三角算法和“实时”三角算法估算地表的TVCI。三角算法虽然具有一定的经验性,其优势是灵活、简单、适用,避免了许多物理过程的复杂计算。研究结果显示基于“实时”三角法计算的日蒸散与本文建立的“土壤失水法”得到的结果比较一致,结果比较可靠。“普适”三角法虽然具有一定的气候适应性,但通过本研究发现该法计算的日蒸散结果偏低,不适用于本研究区域。本文的目标是建立一种计算日蒸散量的适用算法。与其它遥感估算区域日蒸散量方法相比,本方法具有简单实用的优点,只要遥感资料和常规的气象站观测气象要素,不要求有遥感资料同步观测的气象资料,因而实用性大大增强。
     (3)本研究提出了自己的观点,开发了合理实用的方法,采用“正推+像元模式”LAI反演结合分类方法将遥感信息和作物模拟模型有机的结合起来,融合卫星遥感的信息优势和作物模型的机理优势,使得作物模型的模拟可以在区域上应用,具有相当的科学研究意义和较高的实用价值。对前人和其他学者的反演LAI的众多方法进行了详细的研究和总结,在进行验证和比较的基础上开发订正系数方法,用订正系数方法对优选的方法计算的LAI进行订正,得到适合本研究的LAI反演方法,反演了研究区域LAI的时间序列分布情况。就遥感信息和作物模拟模型的结合模式进行了深入的探讨,总结和提出遥感信息与作物模型模拟结合研究的四种方式,推导思路有正推、反推,单元构建有像元模式、格点模式,可以有四种组合方式:正推+像元模式、正推+格点模式、反推+像元模式、反推+格点模式。对各方法的优缺点做了比较分析。对遥感信息和作物模拟模型的结合模式进行进一步的研究,研究了“反推+格点模式”套用辐射传输模型方法,并对其流程和实施情况做了研究分析,提出了自己的“正推+像元模式”LAI反演结合分类的思路和方法。利用“正推+像元模式”LAI反演结合分类方法,在像元尺度上模拟得到2000-2001年禹城区域冬小麦生长分布与实际情形基本相符,冬小麦的面积和产量都与统计结果相当接近。
     (4)本文对利用卫星遥感数据反演的LAI和地表蒸散校准作物模型模拟过程中的参数和变量初始值,以实现区域尺度作物生长模拟的方法和可行性进行了探讨,得到以上初步结论。但由于本研究学科交叉性强,同时涉及到农学、作物学、土壤学和遥感应用等多个学科,研究难度大,在研究过程中仍有许多问题有待进一步探讨。
Accurate crop growth monitoring and yield prediction is very important to secure food supply and sustain agricultural development. Crop models can be forceful tools for monitoring status of crop growth and predicting yield over homogeneous areas. However, their application to a larger spatial domain is hampered by lack of sufficient spatial information of model inputs, such as parameter values and initial conditions, which may have great difference between regions even between fields. Application of of remote sensing data helps to overcome this problem. By incorporating remote sensing data with the crop model WOFOST (for example through LAI), it is possible to use remote sensing variables (for example vegetation index) for each pixel of the spatial domain, and to reestimate new values of the parameters or initial conditions, to which the model is particularly sensitive.
     Based on medification of crop model WOFOST, a winter wheat growth model was applied in Yucheng region of Shandong Province in the North China Plain. Combination method of remote sensing information with crop model in water stress production level was studied. Through coupling remote sensing information, crop model was optimized by reestimating its parameters and initial conditions. A new method of regional remote sensing combining crop model was established and its application was studied. This method has highly potential application in crop growth monitoring and yield forecasting. The main outcomes in this study are as follows:
     (1) In order to improve the simulation accuracy of WOFOST model about the influences of water stress on crop growth, some modules had been modified: (a) Using the Penman-Monteith equation (1998) recommended by the FAO to replace the Penman formula (1948) in original WOFOST; (b) Changing crop coefficients according to the growth stages, which are fixed to 1 in original WOFOST. Based on the biological significance and sensitivity of crop growth parameters of the crop model WOFOST, using the FSEOPT procedures or "trial and error" method, some of crop parameters, such as specific leaf area, leaf senescence index, partitioning coefficients, maximum photosynthetic rate were adjusted. The WOFOST model were calibrated and validated against field experimental data. The simulation result of crop model fitted field data well. The results showed that after the two improvement of the original WOFOST source code and the adjustments of main crop and soil parameters, the evapotranspirati0n of winter wheat simulated by the adjusted WOFOST model has been improved; the LAI and aboveground biomass simulated by the adjusted WOFOST model fitted for the measured data consistently. It was proved that the modified WOFOST model can be used to simulate the winter wheat growth, development, and yield formation under water limited condition in regional scale.
     (2) The regional daily ET model, based on remotely sensed and weather station data, was established to estimate regional surface moisture condition,regional latent heat flux (λΕ) and regional daily ET. The model applied two methods, "Universal triangle" method and "Actual triangle" method, to estimate the surface moisture index which is called surface Temperature-Vegetation Cover Index (TVCI). The "Universal triangle" method was estimated TVCl according to Carlson et al. (1995). Using a trapezoid (triangle) correlation between surface temperature and fractional vegetation cover, we constructed an improved 'Actual triangle' method to estimate TVCl and coupling the Penman-Monteith equation (1998) to estimate daily ET. Daily ET based on the 'Actual triangle' methods was compared well with that by the 'soil water lost method', while daily ET based on the 'Universal triangle' methods was underestimated. So, it is suitable to use 'Actual triangle' method to estimate TVCl instead of 'Universal triangle' method in the North China Plain even if the method was applied under different climate conditions. This study aims to establish an applicable algorithm of ET calculation. Comparing with other regional estimating ET methods using remote sensing, this method is simple and practical, not requiring synchronous meteorological observation data, and remote sensing data. Thus, this greatly enhances practicality.
     (3) This study presented the special views to develop a reasonable, practical methods, 'forward deducing + pixel model" through inversion LAI coupling classification to combine remote sensing information and crop simulation model, the integration superiority of remote sensing and advantage of crop models, crop simulation model can be applied in the region using this method, it has considerable scientific significance and high practical value. By study and review of many LAI inversion methods, through validation and comparison, a new LAI inversion method was developed on the basis of the revised coefficient method, the revised LAI can be suitable for the study area LAI distribution. Base on study the methods of remote sensing information combination crop simulation model, there are four combination ways summarized and proposed in this paper, they are 'forward deducing + pixel mode', 'forward deducing + lattice model', 'inversion deducing + pixel mode','inversion deducing + lattice model'. The advantages and disadvantages of the various methods were compared and analysised in this paper. By using the 'forward deducing + pixel model', through inversion LAI coupling classification method to combine remote sensing information and crop simulation model, to simulate winter wheat growth and development on the pixel scale over Yucheng region in 2000-2001, the regional distribution of winter wheat was given out, the results of acreage and yield are very close to the statistics given by the government statistical results.
     (4) Methodology which crop growth, development and yield formation in regional scale simulated by combining remotely-sensed information with crop model was studied and some good results were approached. However,because of complex interdiscipline involving agronomy, geoscience and remote sensing techniques and lack of data, some problem, such as analysis of accumulation error, further improvement of crop models, adjustment of parameters and match of spatial scale in remote sensing data with crop model, need to be studied in future.
引文
1. Laster R Brown, Who will feed china, World Watch, 1994, September/October: 10-19
    2.刘海启,金敏毓,美国农业遥感技术应用状况概述,中国农业资源与区划,1999,20(2):56-60
    3.刘海启,欧盟MAR计划简介与我国农业遥感应用思路,中国农业资源与区划,1999,20(3):55-57
    4.李郁竹,冬小麦气象卫星遥感动态监测与估产,北京:气象出版社,1993
    5.陈沈斌,小麦、玉米和水稻遥感估产技术试验研究文集,北京:中国科学技术出版社,1993
    6.赵锐,王延颐,戴锦芳等,中国水稻遥感动态监测与估产,北京:中国科学技术出版社,1996
    7.徐希孺,环境监测与作物估产的遥感研究论文集,北京:北京大学出版社,1991
    8.黄敬峰,谢国辉,冬小麦气象卫星综合遥感,气象出版社,1996
    9.肖乾广,周嗣松,陈维英等,用气象卫星数据对冬小麦进行估产的实验,环境遥感,1986,1(4): 299-307
    10.吴炳方,全国农情监测与估产的运行化遥感方法,地理学报,2000,55(1):23-35
    11. de wit CT, Photosynthesis of leaf canopies, Agricultural Research Report 663, PUDOC, Wageningen, The Netherlands, 1965; 1-57
    12. Duncan W G, Loomis R S, Williams WA, et al, A model for simulating photosynthesis in plant communities, Hilgardia, 1967, 38: 181-205
    13. van Keulen H, Penning de Vries FWT, Drees EM, A summary model for crop growth, In: Penning de Vries F W T, van Laar H H (eds,), Simulation of plant growth and crop production, Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1982, 8—98
    14.F,W,T,彭宁德弗里斯等,植物生长与作物生产的模拟,(王馥棠等译),北京:科学出版社,1988:10-45
    15. Rabbinge R, The ecological background of food production, In: Chadwick D (ed,), Crop Protection and Sustainable Agriculture, (Ciba Foundation Symposium 177), John Wiley & Sons, Chichester, 1993, 2-29
    16. Bouman BAM, van Keulen H, van Laar HH et al, The School-of-de-Wit crop growth simulation models: a pedigree and historical overview, Agric Syst, 1996, 52(2-3): 171-198
    17. Penninning de Vries FWT, Jansen DM, ten Berge HFM et al, Simulation of ecophysiological processes of growth of several annual crops, Simulation Monographs, Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, the Netherlands, 1989
    18. Kropff MJ, van Laar HH, Matthews R, ORAZA1, an ecophysiological model for irrigation rice production, SARP Research Proceedings, DLO Research Institute for Agrobiology and Soil Fertility, Wageningen, the Netherlands, 1994, 110pp
    19. Hoogenboom G, Wilkens PW, Tsuji GY [Editors], DSSAT v3 Volume 4, University of Hawaii, Honolulu, Hawaii, 1999, 286pp
    20. Ritchie J T, Otter S, Description and performance of CERES2Wheat: Auser-oriented wheat yield model, USDA-ARS, ARS-38, 1985, 159-175
    21. Jones C A, Kiniry J R, CERES2Maize: A Simulation Model of Maize Growth and Development, Texas A &M University Press, College Station, TX, 1986
    22. Ritchie J T, Alocijia E C, Uehara G, IBSNATPCERES Rice Model, Agrotechnology Transfer, 1986, 3: 1-5
    23. Otter-Nacke S J, Ritchie J T, Godwin D, Singh U, A User's Guide to CERES Barley-V2, 10, International Fertilizer Development Centre, Muscle Shoals, Alabama, USA, 1991
    24. Alagarswamy G, Ritchie J T, Godwin D C, Singh U, A user's guide to CERES Sorghum, Michigan State University, ICRISAT, IFDC and IBSNAT Joint Publication, 1988
    25. Baker D N, Lambert J R, McKinion J M, GOSSYM: A simulator of cotton crop growth and yield, Tech, Bull, 1089, South Carolina Agric Exp Sta, Clemson Univ, Clemson, 1983
    26. Hoogenboom G, Jones J W, Boote KJ, Modeling growth, development, and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO: A review, Trans ASAE, 1992, 35 (6): 2043-2056
    27. Wilkerson G G, Jones J W, Boote K J, et al, Modeling soybean growth for crop management, Trans, ASAE 1983, 26: 63-73
    28. Boote K J, Jones J W, Hoogenboom G, et al, PNUTGRO V1, 02, Peanut Crop Growth Simulation Model, User's Guide, Fl, Agric, Exp, Sta, Journal No, 8420, Univ, of Florida ,Gainesville, 1989
    29. Hoogenboom G, White J W, Jones J W, et al, BEANGRO, a process-oriented dry bean model with a versatile user interface, Agronomy Journal, 1994, 86(1): 182-190
    30. McCown R L, Hammer GL, Hargreaves J N G, et al, APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research, Agricultural Systems, 1996,50:255-271
    31. B,A, Keating, P,S, Carberry, G,L, Hammer, et al, An overview of APSIM, a model designed for farming systems simulation, European Journal of Agronomy, 2003,18:267-288
    32. Gao L Z ,Jin ZQ ,Huang Y, et al, Rice clock model computer model to simulate rice development, Agricultural and Forest Meteorology, 1992,60: 1-16
    33.高亮之,金之庆,黄耀等,水稻钟模型.水稻发育动态的计算机模拟,中国农业气象,1989,10(3):3-10
    34.王馥棠,王石立,李友文等,春小麦黄叶率发生规律及其模拟模式的研究,应用气象学报,1990(3):305-311
    35.沈思渊,作物产量的模拟模型,应用生态学报,1990,1(3):270~276
    36.王石立,王馥棠,李友文等,春小麦生长简化模拟模式的研究,应用气象学报,1991(3):293-299
    37.高翔,双季稻生长动态模拟模式的研究,硕士学位论文,北京:中国气象科学研究院,1995
    38.潘学标,韩湘玲,石元春等,COTDROW:棉花生长发育模拟模型,棉花学报,1996,8(4):180-188
    39.冯利平,高亮之,金之庆等,小麦发育期动态模拟模型研究,作物学报,1997,23(4):418-424
    40.裘国旺,王馥棠,气候变化对我国江南双季稻生产可能影响的数值模拟研究,应用气象学报,1998,9(2)151-159
    41.刘建栋,于强,傅抱璞,黄淮海地区冬小麦光温生产潜力数值模拟研究,自然资源学报,1999,14(2):169-174
    42.高亮之,金之庆,郑国清等,小麦栽培模拟优化决策系统(WCSODS),江苏农业学报,2000,16(2):65-72
    43.吴金栋,王馥棠等,气候异常对东北地区玉米生长影响评估系统的研制,农业工程学报,2000(增刊)
    44.尚宗波,杨继武,殷红等,玉米生长生理生态学模拟模型,植物学报,2000,42(2) 184-194
    45.张宇,王石立,王馥棠等,气候变化对我国小麦发育及产量可能影响的模拟研究,应用气象学报,2000,11(3):264-270
    46.刘建栋,王馥棠,于强等,华北地区农业干旱预测模型及其应用研究,应用气象学报,2003,14(5):593-604
    47.刘布春,王石立,庄立伟等,基于东北玉米区域动力模型的低温冷害预报应用研究,应用气象学报,2003,14(5):616-625
    48.石春林,金之庆,基于WCSODS的小麦渍害模型及其在灾害预警上的应用,应用气象学报,2003,14(4):462-468
    49.高亮之,金之庆等,水稻栽培计算机模拟优化决策系统,北京:中国农业科技出版社,1992,124-134
    50.戚昌翰等,水稻生长日历模拟模型与应用研究,江西农业大学学报,1989,增刊7:8-15
    51.潘德云等,早籼稻生长发育和分蘖动态与潜在产量的模拟及其应用,浙江农业大学学报,1991,增刊7:1-10
    52.潘学标等,春播中棉生长与潜在产量模拟研究简报,浙江农业大学学报,1991,增刊7:95-97
    53.潘德云等,华东迟熟晚粳稻感光性与生育期和潜在生产量的模拟,浙江农业大学学报,1991,增刊7:30-36,
    54.郑志明等,水稻氮肥管理的ORYZA20模型之理论及验证,浙江农业大学学报,1994,20(6):611-616
    55.邬定荣,欧阳竹,赵小敏等,作物生长模型WOFOST在华北平原的适用研究,植物生态学报,2003,27(5):594-602
    56.马玉平,王石立,张黎等,基于遥感信息的华北冬小麦区域生长模型及模拟研究,气象学报,2005,63(2):204-215
    57.马玉平,王石立,张黎等,基于升尺度方法的华北冬小麦区域生长模型初步研究,作物学报,2005,31(6):697-705
    58. Wiegand C, Richardson A J, Kanemasu E T, et al, Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeIing, Agronomy Journal, 1979, 71:336-342
    59.刘布春,王石立,马玉平,国外作物模型区域应用研究的进展,气象科技,2002,30(4):193-203
    60. Chipanshi A C, Ripley E A, Lawford R G, Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model, Agricultural Systems, 1999, 59:57-66
    61. Landau S, Mitchell R A C, Barnett V, et ai, Testing winter wheat simulation models' predictions against observed UK grain yields, Agricultural and Forest Meteorology ,1998,89:85-99
    62. Hanson J W, Jones J W, Scaling-up crop models for climate variability application, Agricultural Systems, 2000, 65:43-72
    63.宇振荣,Dfiessen P M,基于遥感反演作物冠层温度的作物生长模拟和预报,中国农业大学学报,2003,8(增刊):71-75
    64.莫兴国,林忠辉,李宏轩等,基于过程模型的河北平原冬小麦产量和蒸散量模拟,地理研究,2004,23(5):623-631
    65. Maas S J, Use of remotely-sensed information in agricultural crop growth models, Ecological Modeling, 1998, 41: 274-268
    66. Delecolle R, Guerif M, Introducing spectral data into a plant process model for improving its prediction ability, Proc, 4th Int, Colloq, on Spectral Signatures of Objects in Remote Sensing, January 18-22, 1988, Aussois, France, EsaSP-287:125-127
    67. karvonen T, Laurila H, Kleemola J, Estimation of agricultural crop production using satellite information, University of Helsinki, Department of Crop, Husbandry, 1991,Publication n,26,73P
    68. Supit I, Hoojier C A, van Diepen, System description of the WOFOST 6,0 crop simulation model implemented in CGMS, The Winand Starting Centre for Intergrated Land, Soil and Water Research (SC-DLO), Wageningen, The Netherlands, 1994,144p
    69. Carbone G J, Narumalani S, King M, Application of remote sensing and GIS technologies with physiological crop models, Photogrametry Engineering and Remote Sensing, 1996, 62 (2): 171-179
    70.辛景峰,基于3S技术与生长模型的作物长势监测与估产方法研究,博士论文,北京:中国农业大学,2001
    71.林忠辉,水分胁迫下的夏玉米生长动态模拟模型,硕士论文,北京:中国科学院地理科学与资源研究所,2003
    72. Delecolle R, Maas S J, Guerif M, Baret F, Remote sensing and crop production models, Present trends, ISPRS Journal of Photogrammetry and Remote Sensing, 1992, 47:145-161
    73. Maas S J, Using satellite data to imp rove model estimates of crop yield, Agronomy Journal, 1988, 80:655-662
    74. Maas S J, Use of remotely-sensed information in plant growth simulation models, Advances in Agronomy, 1991, 1:17-26
    75. Maas S J, Jackso R D N, Idso S B, et al, Incorporation of remotely-sensed indicators of water stress in a crop growth simulation model, Proceedings of the 19th Conference on Agriculture and Forest Meteorology, 7-10 March 1989, Charleson, S, Carolina, (Boston: American Meteorological Society), 228-231
    76. Maas S J, Parameterized model of gramineous crop growth: Ⅱ, Within-season simulation calibration, Agronomy Journal, 1993, 85:354-358
    77. Clevers JGPW, van Leeuwen HJC, Combined use if optical and microwave remote sensing data for crop growth monitoring, Remote Sensing of Environment, 1996, 56:42-51
    78. Clevers J G PW, A simplified approach for yield prediction of sugar beet on optical remote sensing data, Remote Sensing of Environment, 1997, 61:221-228
    79. Bouman BAM, The linking of crop growth models and multi-sensor remote sensing data, 5th Int, Colloq, on Physical Measurements and Signature in Remote Sensing, January 14-18, Courchevel, France, 1991, Esa SP-319:583-588
    80. Moulin S, Bondeau A, Delecolle R, Combining agricultural crop models and satellite observations: from field to regional scales, International Journal of Remote Sensing, 1998, 19 (6):1021-1036
    81. Verhoef W, Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model, Remote sensing environ, 1984, 16:125-141
    82. Stol W, Rouse DI, van Kraalingen DWG, FSEOPT a FORTRAN program for calibration and uncertainty analysis of simulation models, Simulation Report CABO-TT, No,24, CABO-DLO and Agricultural University, Wageningen, 1992,24 pp
    83. Guerif M,, Duke C, Calibration of the SUCROS emergence and early growth module for sugarbeet using optical remote sensing data assimilation, Eur J Agron, 1998,9:127-136
    84. Baret F, Guyot G, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens Environ,1991, 35:161-173
    85. Guerif M, Duke C, Adjustment procedure of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation, Agric, Ecosyst Environ,2000, 81:57-69
    86. Moulin S, Launay M, Guerif M, The crop growth monitoring at a regional scale based on the combination of remote sensing and process-based models, International Symposium "Crop monitoring and Prediction at Regional Scales", February, Tsukuba (Japan), 2001
    87. Launay M,, Guerif M, Remote sensing data assimilation in a sugar beet growth model as a tool for spatial crop development variability forecast and diagnosis,8th International Symposium "Physical Measurements and Signatures in Remote Sensing", January 2001, Aussois (France)
    88. Stern AJ, Doraiswamy PC, Cook PW, Spring wheat classification in an AVHRR image by signature extension from a landsat TM classified image, Potogrammetric Engineering & Remote Sens, 2001,67:207-211
    89. Doraiswamy PC, Moulin S, Paul WC et al, Crop yield assessment from remote sensing, Photogrammetric Engineering and Remote Sens, 2003, 69:665-674
    90. Doraiswamy PC, Hollinger S, Sinclair TR et al, application of MODIS derived parameters for regional yield assessment, Proc, Remote Sensing for Agriculture, Ecosystems, and Hydrolory Ⅲ, 17-21 September 2001, Toulouse, France
    91. Weiss M, Troufleau D, Baret F, et al Coup ling canopy functioning and radiative transfer models for remote sensing data assimilation, Agricultural and Forest Meteorology, 2001, 108:113-128
    92. Supit I, Predicting national wheat yields using a crop simulation and trend models, Agricultural and Forestry Meteorology, 1997, 88:199-214
    1.王开存,陈长和,郭铌,用NOAA/AVHRR探测地表反射率和NDVI的订正及误差分析,应用气象学报,2003,14(2):165-175
    2.张杰,王介民,郭妮,应用6S辐射传输模式对MODIS可见光到中红外波段的大气订正,应用气象学报,2004,15(6):651-657
    3. Vermote E F, Tanre D, Deuze J L, et al, The Second Simulation of the Satellite Signal in the Solar Spectrum(6S), User's Guide, France: Laboratoire d'Optique Atmospherique, 1997
    4.冯钟葵,Landsat 7 ETM+数据的增益设置及设置改变,用户简讯(中国遥感卫星地面站),2001,3
    5. Heemst, H,D,J, van, 1986a, The distribution of dry matter during growth of a potato crop, Potato research 29:55-66
    6. Heemst, H,D,J, van, 1986b, Crop phenology and dry matter distribution, IN: H, van Keulen & J,Wolf (Eds,), Modeling of agricultural production: soil weather and crops, Pp: 13-60
    7. Supit, I,, Hiiijer, A,A,, van Diepen, C,A, 1994, System description of the WOFOST 6,0 crop simulation model implemented in CGMS, Brussels, Luxembourg: Joint Research Center, Commission of the European Communities
    8. Goudriaan, J,, 1986, A simple and fast numerical for the computation of daily totals of crop photosynthesis, Agricultural and Forest Meteorology 38:249-254
    9. Ng, E, & R,S, Loomis, 1984, Simulation of growth and yield the potato crop, Simulation Monographs, Pudoc, Wageningen, The Netherlands, 147 pp
    10. Acock,B,,D,A, Chartes-Edwards,D,J, Fitter, L,J, Ludwig, J, Warren Wilson &A,C,Withers,1978, The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis; an experimental examination of two canopy models, Journal of Experimental Botany 29:815-827
    11.Penninning de Vries FWT,Jansen DM,ten Berge HFM,几种一年生作物生长的生态生理过程模拟,(朱德峰,程式华等译),北京:中国农业科技出版社,1991
    12. Choiosnel, E,O, de Villele & F, Lacroze, 1992, Une approche de uniformisee du calcul de l'evaporanspiration potential pour l'ensemble des pays de la Communaute Europeenne, Joint Reach Center, Commission of the European Communities, EUR 14223 FR, Luxembourg, 176pp
    13. Frere, M, & G,F, Popov, 1979, Agrometeorological crop monitoring and forecasting, FAO plant production and protection paper 17, FAO, Rome, Italy
    14. Penman, H,L,, 1948, Natural evaporation from open water, bare soil and grass, Proceedings Royal Society, Series A 193:120-146
    15. Penman, H,L,, 1956, Evaporation: An introductory survey, Netherlands Journal of Agricultural Science 4:9-29
    16.J 杜林博斯,A H 卡萨姆,产量与水的关系,罗马:联合国粮食及农业组织,1979,18-29
    17.潘瑞炽,董愚得,植物生理学,北京:高等教育出版社,1995,328~329
    18.梁银丽,康绍忠,张成娥,不同水分条件下小麦生长特性及氮磷营养的调节作用,干早地区农业研究,1999,17(4):58~64
    1.崔读昌,汪晓原,王继新等,世界农业气候与作物气候,浙江:浙江科学技术出版社,1994,96~108
    2.邬定荣,华北平原气象因子时空变异对作物产量和水分利用的影响,中国科学院研究生院,博士学位论文,2005年12月
    3. RG Allen,LS Perira,D Rase, etal, Crop evapotranspiration, FAO Irrigation and Drainage paper 56 ,Rome,1998
    4.欧阳海,郑步忠,王雪娥等,农业气候学,北京:气象出版社,1990,209~212
    5.J 杜林博斯,A H 卡萨姆,产量与水的关系,罗马:联合国粮食及农业组织,1979,18~29
    6.张黎,基于遥感信息的水分胁迫条件下华北冬小麦生长模拟研究,中国气象科学研究院,硕士学位论文,2005年4月
    7.刘昌明,张喜英,由懋正,大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究,水利学报,1998,10:36~39
    8.龚元石,李子忠,李春友,应用时域反射仪测定作物需水量和作物系数,中国农业大学学报,1998,3(5):61~67
    1.刘玉洁,杨忠东等,MODIS遥感信息处理原理与方法,北京:科学出版社,2001
    2.田庆久.闵祥军,植被指数研究进展,地球科学进展,1998(4)
    3. Baret F, Guyot G, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens Environ, 1991, 35:161-173
    4.张仁华,实验遥感模型及地面基础,北京:科学出版社,1996:96-127
    5.张佳华,利用遥感反演的叶面积指数研究中国东部生态系统对东亚季风的响应,自然科学进展,2002,12(10):1098-1100
    6. Xiao X, He L, Li C et al, Quantitative relationships between field-measured leaf area index and vegetation index derived from vegetation images for paddy rice fields, Int J Remote Sens, 2002, 23:3595-3604
    7.唐世浩,地表参量遥感反演理论和方法研究:[博士论文],北京:北京师范大学,2001
    8. Wiegand CL, Richardson A J, and Kanemasu ET, Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling, Agron J, 1979, 71:336-342
    9. Wiegand CL, Richardson AJ, Jackson RD, Development of agrometerological crop model inputs from remotely sensed information, IEEE Trans Geosei Remote Sens, 1986, GE-24(1):90-98
    10. Mass SJ, Use of remotely-sensed infrmation in agricultural crop growth models, Ecol Mod, 1988, 41: 247-268
    11. Mass SJ, Using satellite data to improve model estimates of crop yield, Agron J, 1988, 80: 655-662
    12. Mass S J, Using satellite data to improve model estimates of crop yield, AgronJ,1988, 80:655-662
    13. Delecolle R, Guerif M, Introducing spectral data into a plant process model for improving its prediction ability, Proc, 4th Int, Colloq, on Spectral Signatures of Objects in Remote Sensing, January 18-22, 1988, Aussois, France, EsaSP-287:125-127
    14. Clevers JGPW, van Leeuwen HJC, Combined use if optical and microwave remotesensing data for crop growth monitoring, Remote Sens Environ,1996, 56:42-51
    15. Guriff M, Brisis DES, Seguin B, Combined NOAA-AVHRR and SPOT-HRV data for assessing crop yields of semiarid environment, EARSeL Adv Remote sens, 1993, 2:110-123
    16. Clevers JGPW, van Leeuwen HJC, Combined use of optical and microwave remote sensing data for crop growth monitoring, Remote Sens Environ, 1996, 56:42-51
    17. Baret F, Guyot G, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens Environ, 1991, 35:161-173
    18. Guerif M, Duke CL, Adjustment procedure of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation, Agric, Ecosyst Environ,2000, 81:57-69
    19. Launay M,, Guerif M, Remote sensing data assimilation in a sugar beet growthmodel as a tool for spatial crop development variability forecast and diagnosis, 8tfi International Symposium "Physical Measurements and Signatures in Remote Sensing", January 2001, Aussois (France)
    20. Guerif M,, Duke C, Calibration of the SUCROS emergence and early growth modulefor sugarbeet using optical remote sensing data assimilation, Eur J Agron,1998, 9:127-136
    21. H Suit, The calculation of the directional reflectance of vegetative canopy, Remote Senseing of Environment, 1972, 2(2): 117-125
    22. Verhoef W, Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model, Remote sens environ, 1984, 16:125-141
    23.赵英时等,遥感应用分析原理与方法,科学出版社:北京,2003
    24.李小文,高峰,王锦地等,遥感反演中参数的不确定性与敏感性矩阵,遥感学报,1997,1(1):5-14
    25.马玉平,基于遥感信息的华北冬小麦区域生长模型及其模拟研究,中国气象科学研究院,硕士毕业论文,北京:2004
    26.王秀珍,黄敬峰,李云梅等,水稻叶面积指数的多光谱遥感估算模型研究,遥感技术与应用,2003,18(2):57-65
    27. Peterson D J, Spanner M A, Running SW, et al, Relationship of Thematic Mapper Simulator Data to Leaf Area Index of Temperate Coniferous Forests, Remote Sensing of Environment, 1987, 22 (3):323-3411
    28. Spanner M A, Pierce L L, Peterson D J, et al, Remote Sensing of Temperate Coniferous Forest Leaf Area Index, the Influence of Canopy Closure, Understry Vegetation and Background Reflectance, Int J Remote Sensing, 1990, 11(1):95-111
    29. Spanner M A, Pierce L L, Running SW, et al, The Seasonality of AVHRR Data of Temperate Coniferous: Relationship with Leaf Area Index, Remote Sensing of Environment, 1990, 33: 97-121
    30. Lelong C C D, Pinet P C, Poilve H, Hyperspectral Imaging and Stress Mapping in Agriculture: A Case Study on Wheat in Beauce (France), Remote Sensing of Environment, 1998, 66:179-1911
    31.岳天祥,王薇,于强等,中性条件下垂直风速廓线及其参数模拟分析,资源科学,2006,28(1):136-144
    32.卢艳丽,李少昆王纪华等,冬小麦不同株型品种光谱响应及株型识别方法研究,作物学报,2005,31(10):1333-1339
    33.王培娟,朱启疆,吴门新等,冬小麦冠层的FAPAR、LAI、VIs之间关系的研究,遥感信息,2003.3:19-22
    34.徐全芝,张万昌,刘三超等,黑河流域叶面积指数的遥感反演,干旱区研究,2003,20(4):281-285
    35. E, Boegh, M, Thorsen, M,B, Butts, S, Hansen, J,S, Christiansen, P, Abrahamsen, C,B, Hasager, N,O, Jensen, P, van der Keur, J,C, Refsgaard, K, Schelde, H, Soegaard, A, Thomsen, Incorporating remote sensing data in physically based distributed agro-hydrological modeling, Journal of Hydrology, 2004, 287, pp, 279-299
    36.李开丽,蒋建军,茅荣正等,植被叶面积指数遥感监测模型,生态学报,2005,25(6):1491-1496
    37.唐怡,黄文江,刘良云等,株型对冬小麦冠层叶面积指数与植被指数关系的影响研究,旱地区农业研究,2006,24(5):130-136
    38.李映雪,朱艳,戴廷波等,小麦叶面积指数与冠层反射光谱的定量关系,应用生态学报,2006,17(8):1443-1447
    39.黄嘉佑,气象统计分析与预报方法[M],北京:气象出版社,2000
    40.董振国,于沪宁,农田作物层环境生态[M],北京:中国农业科技出版社,1994
    41.朴世龙,方精云,郭庆华,利用CASA模型估算我国植被净第一性生产力,植物生态学报,2001,25(5):603-608
    42. Jean Louis Roujean, Francois Marie Breon, Estimating PAR absorbed by vegetation from bidirectional reflectance measurements, Remote Sens, Environ, 1995 (51) :375-384
    43. Beverly E Law, Estimation of leaf area index and light intercepted by shrubs from digital videography, Remote Sens, Environ, 1995 (51) :276-280
    44. Jose C N Epiphanio, Alfredo R Huete, Dependence of NDVI and SAVI on sun/sensor geometry and its effect on FAPAR relationships in alfalfa, Remote Sens, Environ, 1995 (51) :351-360
    45. Eduardo Ridao, Jose R Conde, MInes Minguez, Estimating fapar from nine vegetation indices for irrigated and nonorrigated faba bean and sernileafless pea canopies, Remote Sens, Environ, 1998 (66) :87-100
    46. K P GALLO, C S T DAUGHTRY, M E BAUER, Spectrum estimation of absorbed photosynthetically active radiation in corn canopies[J], Remote Sens, Environ, 1985(17) :221-232
    47.周晓东,朱启疆,王锦地等,夏玉米冠层内PAR截获及FPAR与LAI的关系,自然资源学报,2002,(17):110-115
    48.莫兴国,林忠辉,李宏轩等,基于过程模型的河北平原冬小麦产量和蒸散量模拟地理研究,2004,23(5):623-631
    49. Sellers, P,J,, Los, S,, Tucker, C,J,, Justice, C,O,, Dazlitch, D,A,, Collatz, G,J,, Randall, D,A, A revised land surface para-meterization (SiB2) for atmospheric GCMs, Part 2, The generation of global fields of terrestrial biophysical parameters from satellite data, Journal of Climate, 1996, 9, pp, 706-737
    50.唐世浩,朱启疆,王锦地等,三波段梯度差植被指数的理论基础及其应用,中国科学(D辑),2003,33(11):1094-1102
    1. Brutsaert W, Evaporation into the atmosphere, D Reidel Publ Co, Dordrecht, the Netherlands, 1982
    2. Bowen Is, The ratio of heat losses by conduction and evaporation from any water surface, Phys Rev, 1926,27:779-798
    3. Thornth wait C W, Holzman A, Report of the commutation on transpiration and evaporfion, Transactions of the American sactions of the Aerican Geophysical Union, 1944,25:683-693
    4. Penman H L, Nautml evaporation from open water, bare soil and grass, Proceedings of Royol Society of London, 1948, A 193:120-146
    5. Swinbank W C, Eddy transport in the lower atmosphere, Division of meteorological physics, CSIRO, Melbourne, Technical Paper, 1995,2
    6. Monteith J L, Environmental control of plant growth, In: L T Evaus, ed, Aeademic Press, New York, 1963:95-125
    7. Pristley C H B, Taylor R J, On the assessment of surface heat flux and evaporation using large-scale parameters, Monthly Weath, Eev,, 1972,100:81-92
    8.布德柯,地表面热量平衡,李怀瑾等译,北京:科学出版社,1960
    9. Morton F I, Estimating evaporation and transpiration from climatological observations, J Appl Meteor, 1975,14:488-497
    10. Jensen M E, Consumptive use of water and irrigation water requirements, America Soc Civil Engineers, 1973
    11. Lang A R G, Inequality of eddy transfer coefficients for vertical transport of sensible and latent heats during advective inversion, Boundary Layer Meteor, 1983,25,25-41
    12. Angus D E, Watts P J, Evapotranspiration—How good is the Bowen ratio method? Agric, Water Mgt,, 1984,8,133-150
    13. Raupach M R, Thom A S, Turbulence in and above plant canopies, Ann Rev, Fiuid Mech,, 1981,13,97-129
    14. Dikinson R E, Changes in 1and use, Climate system modeling, In:K E Tenberth, ed, Cambridge University Press, 1993,689-701
    15. Selles A H, J A Pitman, Land-surface schemes for future climate modes: Specification, aggregation and heterogeneity, J Geophysics Res, 1992,97033):2687-2696
    16. Noihan J, P Lacarrere, GCM grid-scale evaporation from mesoscale modeling, J Climate, 1995,8:206-223
    17.刘树华,黄子琛,刘立超,土壤-植被-大气连续体中蒸散过程的数值模拟,地理学报,1996,51(2):118-126
    18.刘树华,黄子琛,刘立超,等,应用生态学报 1995,近地层水热交换参数化模型 6(2):149-154
    19.莫兴国,土壤-植被-大气系统水分能量传输模拟和验证,气象学报,1998,56(3):323-332
    20.牛国跃,孙菽芬,洪钟祥,沙漠土壤和大气边界层中水热交换和传输的数值模拟研究,气象学报,1997,55(4):398-407
    21.张晶,丁一汇,一个改进的陆面过程模式及其模拟试验研究第一部分:陆面过程模拟及其‘独立(off-line)’模拟试验和模式性能分析,气象学报,1998,56(1):1-19
    22. Olioso A, Chauki H, Courault D, et al, Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models, Remote Sens Environ, 1999,68:341-356
    23. Dickinson RE, Henderson Sellers A, Kennedy PJ, et al, Biosphere atmosphere transfer scheme(BATS) for the NCAR Community Climate Model, Technical Notes TN 275 TSTR NCAR, Boulder, CO, 1996
    24. Kalluri SNV, Townshend JRG, Doraiswamy P, A simple single layer model to estimate transpiration from vegetation using multispectral and meteorological data, Int J remote Sensing, 1998, 19(6):1037-1053
    25. Camillo PJ, Using one and two layer models for evaporation estimation with remotely sensed data, ha: Schmuggle TJ, Andre JC eds, Land Surface Evaporation: Measurement and Parameterization, New York: Spring Verlag, 1991,183-197
    26. Sellers PJ, Randall D R, Coltatz GJ, et al, A revised land surface parameterization(SiB2) for atmospheric GCMs1, Model formulation, Jclim, 1996,9:676-705
    27.隋洪智,田国良,李付琴,农田蒸散双层模型及其在干旱遥感监测中的应用,遥感学报1997,1(3):220~224
    28. Meyers TP, Paw UKT, Modelling the plant canopy micrometeorology with higher order closure principles, Agric For Meteorol, 1987,41:143-163
    29. Sellers PJ, Mintz Y, Sud YC, et al, A simple biosphere model(SiB) for use within general circulation models, J Atmos Sci, 1986,43:505-531
    30.谢贤群,左大康,唐登银,农田蒸发-测定与计算,北京:气象出版社,1991
    31.朱岗昆,杨纫章,中国各地的蒸发量研究,气象学报,1955,26(1-2):1-23
    32.钱纪良,林之光,关于中国干湿气侯区划的初步研究,地理学报,1965,31(1):1-13
    33.贺多芬,我国北方五省冬小麦生长期自然水分条件及其对产量的影响,中国农业科学,1979,(4):16-27
    34.邓根云,水面蒸发的一种计算方法,气象学报,1979,37(3):87-95
    35.陈力,最大蒸发量的计算、分析及其应用,气象学报,1982,40(2):219-228
    36.高国栋,陆渝蓉,李怀瑾,我国最大可能蒸发量的计算和分布,地理学报,1978,33(2):102-111
    37.程天文,程维新,农田蒸发与蒸发力的测定及其计算,地理集刊,1980,(12)
    38.傅抱璞,土壤蒸发的计算,气象学报,1981,39(2):226-235
    39.刘昌明,南水北调水量平衡变化的几点分析,地理科学,1982,2(2)
    40. Mawdsley J A, et al, Estimating nonpotential evapotranspiration by means of the equilibrium evaporation concept, Water Resour Res, 1985,21(3):353-359
    41.孙卫国,申双和,农田蒸散量计算方法的比较研究,南京气象学院学报,2000,23(1):101-105
    42.毛飞,张光智,徐祥德,参考作物蒸散量的多种计算方法及其结果的比较,应用气象学报,2000,11(增刊):128-136
    43.李玉霖,崔建垣,张铜会,参考作物蒸散量计算方法的比较研究,中国沙漠,2002,22(4):372-376
    44.刘绍民,孙中平,李小文,刘昌明,蒸散量测定与估算方法的对比研究,自然资学报,2003,18(2):161-167
    45.刘晶淼,周秀骥,余锦华,丁裕国,非均匀地表条件下区域蒸发散通量计算方法的研究,应用气象学报,2002,13(3):288-298
    46.邱新法,曾燕,谬启龙,等,用常规气象资料计算陆面年实际蒸散量,中国科学(D辑),2003,33(3):281-288
    47. Rana G,, N, Katerji, Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review, Europ, J, Agronomy, 2000, 13:125-153
    48. Li F,, and Lyons T, J, Estimation of regional evapotranpiration through remote sensing, J, Appl, Meteorol,, 1999, 38:1644-1653
    49. Dikinson R E, Changes in land use, Climate system modeling, In:K E Tenberth, ed, Cambridge University Press, 1993,689-701
    50. Selles A H, J A Pitman, Land-surface schemes for future climate modes: Specification, aggregation and heterogeneity, J Geophysics Res, 1992,97(D3):2687-2696
    51. Noihan J, P Lacarrere, GCM grid-scale evaporation from mesoscale modeling, J Climate, 1995,8:206-223
    52. Jackson R D, et al, Plant canopy information extraction form composite scene reflectance of row crops, Appl Opt, 1979,18(22): 1892-1905
    53. Gardner B R, et al, Relationship between crop temperature and the physiological and phonological develepment of differentially irrigated corn, Agron J, 1981,73(4):459-468
    54. Jackson R D, Advances in irrigation, In:D Hillel ed, AcademicPress, New York, 1982,1:43-85
    55. Hatfield J L, et al, Evaluation of canopy temperature evapotranspiration models over various surfaces, Agric Forest Meteor, 1984,32:41-53
    56. Huband N D S, J L Momteith, Radiative surface temperature and energy balance of a wheat crop, Ⅱ :Estimating fluxes of sensible and latent heat, Boundary Layer Meteor, 1986,36:107-116
    57. Soer C J R, Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperature, Rem Sens Env, 1980,9:27-45
    58. Menenti M, Physical aspects and determination of evaporation in deserts applying remote sensing techniques, Ph D Thesis and Report 10 (Special Issue), The Winand Staring Centre, Wageningen, the Netherlands, 1984,202
    59. Menenti M, A Lorkeers, M Vissers. An application of thematic mapper data Tunesia, estimation of daily aplitude innear-surface soil temperature and descrimination on hypwesaline soils, ITC-Jounal, 1986,1:35-42
    60. Brown K,W,, Rosenberg H, T, A resistance model to predict evapotranspiration and its application to a sugarbeet field[J], Agron,,J, 1985,65:341-347
    61. Caselles V. Artigao M M, Hurtado E, etal, Mapping actual evapotranspirafion by combining landsat TM and NOAA_AVHRR images: application to the Barrax area, Albacete, Spain[J], Remote Sensing of Environment,1998,63(1): 1-10
    62. Carlson T N, Capehart W J, Gillies R R, A new look at the simplified method for remotesensing of daily evaportranspiration[J], Int, J, Remote Sensing, 1995, 54(2): 161-167
    63. Jackson R D, R J Roginato, S B Idso, Wheat canopy temperature:A practical tool for evaluating water requirements, Water Resour Res, 1977,13:651-665
    64. Seguin B, B Itier, Using middy surface temperature to estimate daily evaporation from satellite thermal IR data, Int J Remote Sens, 1983,4:371-383
    65. Hatfield J L, A Pettier, R D Jackson, Estimation of evapotranapiration at one time of day using remotely sensed surface temperature, Agric Water Manag, 1983,7:341-350
    66. Griend A A Van De, R J Gumey, Satellite remote sensing and energy balance modeling for water balance assessment(semi-)arid regions, In: I Simmersed, Estimation of natural ground water rechange, D Peidel Publishing company, Dordrecht, the Netherlands, 1988,89-116
    67. Menenti M, W G M Bastiaassen, D Vaneick, Determination of surface hemispherical reflectance with thematic mapper data, Rein Sens Env, 1989a,28:327-337
    68. Menenti M,W G M Bastiaassen, D Vaneick, Linear relationships between surface reflectance and temperature and their application to map actual evaporation of groundwater, Adv Space Res, 1989 b ,9(1):165-176
    69. Bastiaassen W G M, P Kabat, M Menenti, A new simulation model of bare soil evaporation in deserts, EVADES, Note I C W 1983, The Winand Staring Centre, Wageningen, the Netherlands, 1989,73
    70. Bastiaassen W G M, M Menenti, Surface reflectance and surface temperature in relation with soil type and regional energy fluxes, In: A F Bouwmaned, Soils and the green house effect, John Wiley, Chichester, UK, 1989
    71. Bastiaassen W G M, M Menenti, Mapping groundwater losses in the western desert of Egypt with satellite measurement of surface reflectance and surface temperature, In: J C Hooghaet ed, Water management and remote sensing, The Hague, the Netherlands, TNO-Proc and Inform, 1990, No,42,61-99
    72.钟强,应用AVHRR的卫星辐射资料计算青藏高原地区的行星反照率与射出长波辐射,高原气象,1984,3(2):1-9
    73.钟强,吴士杰,利用AVHRR资料推算青藏高原地区地表反射率的方法,高原气象,1985,4(3):193~203
    74. Zhong Qiang, Li Yinhai, Satellite observation of surface albedo over Qinghal-Xizang Plateau region, Advances in Atmospheric Science, 1988,5:57-65
    75.魏丽,钟强,利用AVHNR资料分析黑河地区地表特征,高原气象,1989,8(3):189-196
    76.吴艾笙,钟强,黑河地区的地表反射率与植被指数,大气科学,1993,17(2):155-162
    77.吴艾笙,钟强,黑河地区地表反射率与植被指数的季节变化,高原气象,1992,11(4):440-450
    78.田国良,郑柯等,用NOAA AVHRR数字图像和地面气象站资料估算作物蒸散和土壤水,黄河流域典型地区遥感动态研究,北京:科学出版社,1990
    79. Chen Qian, Chen Tianyu, Estimation of river basin evapotranspimtion over complex terrain using NOAA AHRR, elevation and meteorological data, HEIFE Report No,6,1991
    80.陈镜明,现用遥感蒸散模式中的一个重要缺点及改进,科学通报,1988,6:454-457
    81.谢贤群,遥感瞬时作物表面温度估算农田全日蒸发散总量,环境遥感,1991,6(4):253-259
    82. Wang J, Y Ma, M Menenti, et al, The scaling-up of process in the heterogeneous landscape with the aid of satellite remote sensing, J M Meteo of Japan, 1995,73(6):1235-1244
    83. Ma Y, H Pelgrum, G Rorink, Regionalization of surface flux densities and seasonal variation in the heterogeneous landscape of HEIFE, Internal Note 422, The Winand Staring Centre(SC-DLO), Wageningen, the Netherlands, 1996
    84.辛晓洲,田国良,柳钦火,地表蒸散定量遥感的研究进展,遥感学报,,2003,7(3):233-240
    85.孙睿,刘昌明,地表水热通量研究进展,应用生态学报,2003,14(3):434-438
    86. Hatfield J L, Evapotranapiration obtained from remote sensing methods, In: Hilled D E, (Editor) Advances in Irrigation, Academic Press, New York, 1983,359-416
    87. Moran M S, Jackson R D, Raymond L H, et al, Mapping surface energy balance components by combining Landsat thematic mapper and ground based meteorological data, Remote Sens, Environ,, 1989,30:77-87
    88. Chehbouni A, Nouvellon Y, Lhomme J P,, ea tl, Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature, Agric, For, Meteorol,, 2001,108:55-65
    89. Jiang L,, and Islam S, Estimation of surface evaporation map over southern great plains using remote sensing data, Water Resour, Res,, 2001, 37 (2): 329-340
    90. Hall F, G,, Huemmrich K, F,, Goetz S, J,, Sellers P, J,, and Nickeson J, E, Satellite remote sensing of surface energy balance: success, failures, and unresolved issues in FIFE, J, Geophys, Res,, 1992, 97(D 17): 19,061-19,089
    91. Stewart J, B,, Kustas W, P,, Humaes K, S,, Nichols W, D,, Moran M, S,, and De Bruin H, A, R, Sensible heat flux- Radiometric surface temperature relationship for eight semiarid areas, J, Appl, Meteorol, 1994, 33:1110-1117
    92. 92Chehbouni A,, Seen D, L,, Njoku E, G,, and Monteny B, M, Examination of the difference between radiative and aerodynamic surface temperature over sparsely vegetated surfaces, Remote Sens, Environ,, 1996, 58:177-186
    93. Tucker C J, Holben B N, Elgin J H, ea fl, Remote sensing of total dry matter accumulation in winter wheat, Remote Sens, Environ,, 1981,11:171-190
    94. Njoku E G, Patel I R, Observations of the seasonal variability of soil moisture and vegetation cover over Africa using satellite microwave radiometer, ISLSCP, Proceedings of an International Conference held in Rome, Italy, ESA, SP248, Paris, 1986,349-356
    95. Zhang L, Dawes W R, Atmospheric stability influence upon evaptranspiration estimates—Tests using HAPEX MOBILHY data and the WAVES model, CSIRO, Division of WATER Resources, Tech, Memo,, 1995 b,95/1
    96. Olioso A, Chauki H, Courault D, ea tl, Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT modes, Remote Sens, Environ,, 1999,68:341-356
    97. Goetz S J, Muti-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site, International Journal of Remote Sensing, 1997, 18 (1): 71-94
    98. Carlson T N, Gillies R R, Perry E M, A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover, Remote Sensing Reviews, 1994, 9:161-173
    99. Gillies R R, Carlson T N, Kustas W P, A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature, International Journal of Remote Sensing, 1997, 18(15): 3145-3166
    100. Sandholt I, Rasmussen K, Andersen J, A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status, Remote Sensing of Environment, 2002, 79:213-224
    101. Price J C, Using spatial context in satellite data to infer regional scale evapotranspiration, IEEE Transactions on Geosciénce and Remote Sensing, 1990, 28:940-948
    102. Carlson T N, Capehart W J, Gillies R R, Anew look at the simplified method for remote sensing of daily evapotranspiration, Remote Sensing of Environment, 1995, 54:161-167
    103. Moron M S, Clarke T R, Inoue Y, et al, Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index, Remote Sensing of Environment, 1994, 49: 246-263
    104. Ptihofko L, Goward S N, Estimation of air temperature from remotely sensed surface observations, Remote Sensing of Environment, 1997, 60:335-346
    105. Boegh E, Soegaard H, Hanan N, et al, A Remote Sensing Study of the NDVI-Ts Relationship and the Transpiration from Sparse Vegetation in the Sahel Based on High-Resolution Satellite Data, Remote Sensing of Environment, 1999, 69:224-240
    106. Nemain R R, Running S W, Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IN AVHR data, Journal of Applied Meteorology, 1989, 28:276-284
    107. Le J, Shafiqul I, Estimation of surface evaporation map over southern Great Plains using remote sensing data, Water Resources Research, 2001, 37(2): 329-340
    108. Le J, Shafiqul I, A methodology for estimation of surface evaporation over large areas using remote sensing observations, Geophysical Research Letters, 1999, 26(17): 2773-2776
    109. Lambin E F, Ehrlich D, The surface temperature-vegetation index space for land cover and land-cover change analysis, International Journal. of Remote Sensing, 1996, 17(3): 463-487
    110. Jackson R, D,, Idso S, B,, Reginato R, J,, Pinter P, J, Canopy temperature as a crop water stress indicator, Water Resource Research, 1981, 17(4): 1133-1138
    111. Moran M, S, Rahman A, F,, Washburne J, C,, Goodrich D, C,, Weltz M, Z,, and Kustas W, P, Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland, Agricultural and Forest Meteorology, 1996, 80:87-109
    112. Carlson T, N,, Gilles R,R,, and Schmugge T, J, An interpretation of methodologies for indirect measurement of soil water content, Agricultural and Forest Meteorology, 1995b, 77:191-205
    113.王鹏新,龚健雅,李小文,条件植被温度指数及其在干旱监测中的应用,武汉大学学报(信息科学版),2001,26:412-418
    114.王鹏新,Wan Zhengming,龚健雅,等,基于植被指数和土地表面温度的干旱监测模型,地球科学进展,2003,18(4):527-533
    115.杨邦杰,裴志远,农作物长势的定义与遥感监测,农业工程学报,1999,15(3):214-218
    116.江东,王乃斌,杨小唤,植被指数.地面温度特征空间的生态学内涵及其应用,地理科学进展,20(2):146-152
    117.刘良云,张兵,郑兰芬,利用温度和植被指数进行地物分类和土壤水分反演,红外与毫米波学报,2002,21(4):269-273
    118. Zhang L,, Lemeur, R,, and Goutorbe, J, P, A one-layer resistance model for estimating regional evapotranspiration using remote sensing data, Agricultural and Forest Meteorology, 1995, 77: 241-261
    119. Ridder K, D, Remote sensing of parameters that regulate energy and water transfer at the land atmosphere interface, Phys, Chem, Earth (B), 2000, 25 (2): 159-165
    120. Chen J, H,, Kan C, E,, Tan C, H,, Shih S, F, Use of spectral information for wetland evapotranspiration assessment, Agricultural Water Management, 2002, 55:239-248
    121.陈云浩,李晓兵,史培军,中国西北地区蒸发散量计算的遥感研究,地理学报,2001,56(3):261-268
    122.张仁华,孙晓敏,刘纪远,苏红波,朱治林,唐新斋,定量遥感反演作物蒸腾和土壤水分利用率的区域分异,中国科学(D辑),2001,31(11):959-968
    123. Liu, C, M,, X, Y, Zhang, and Y, Q, Zhang Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter, Agric, For, Meteorol,, 2002, 111:109-120
    124. Zhang Y, Q,, Liu C, M,, Shen Y, J, Kondoh A,, Tang C, Y,, Tanaka T,, and Shimada J, Measurement of evapotranspiration in a winter wheat field, Hydrol, Processes,, 2002, 16: 2805-2817
    125. Caselles V,, Artigao M, M,, Hurtado E,, Coll C, and A, Brasa, Mapping actual evapotranspimtion by combining Landsat TM and NOAA-AVHRR images: application to the Barrax Area, Albacete, Spain, Remote Sensing of Environment, 1998, 63(1): 1-10
    126. Bastiaanssena W,G,M,, Menentia M,, Feddesb R,A,, Holtslagc A,A,M,, A remote sensing surface energy balance algorithm for land (SEBAL) 1, Formulation, Journal of Hydrology, 1998a, 212-213:198-212
    127. Bastiaanssena W,G,M,, Menentia M,, Feddesb R,A,, Holtslagc A,A,M, A remote sensing surface energy balance algorithm for land (SEBAL) 2, Validation, Journal of Hydrology, 1998b, 212-213: 213-229
    128. Boegh E,, Soegaard H,, Thomsen A, Evaluating evapotranspiration rotes and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance, Remote Sensing of Environment, 2002, 79:329-343
    129.马耀明,王介民,卫星遥感结合地面观测估算非均匀地表区域能量通,气象学报,1999,57(2):180-188
    130.郭建茂,王连喜,郑有飞等,宁夏南部区域蒸发(散)量遥感估算方法,南京气象学院学报,2004,27(3):302-309
    131.张永强,土壤—植被—大气系统水、热传输机理及区域蒸散模型,博士学位论文,中国科 学院地理科学与资源研究所,2004
    132. Nishida K,, Nemani R, R,, Running S, W,, Glassy, J, M, An operational remote sensing algorithm of land surface evaporation, Journal of Geophysical Research, 2003, 108(D9), 4270, doi: 10,1029/2002JD062062
    133. Carlson T, N,, Taconet O,, Vidal A,, Gillies R, R,, Olioso A,, and Humes K, An overview of the workshop on thermal remote sensing held at La Londe les Maures, France, September 20-24, 1993, Agricultural and Forest Meteorology, 1995c, 77:141:151
    134. Bastiaanssen W, G, M, Regionalization of surface flux densities and moisture indictors in composite terrain, Ph, D, Thesis, Wageningen Agricultural University (appeared also as Report 109, DLO-Winand Staring centre), Wagenengen, The Netherlands: 1995, 145 p
    135. Howell T, A,, Schneider A, D,, Jensen M, E, history of lysimeter design and use for evapotranspiration measurements, In Proceedings of the International Symposium on Lysimeters for Evapotranspiration and Environmental Measurement, eds, Allen R,, Howell T,, Pruitt W,, Walter I, And Jensen M, Honolulu H,I,: IRDⅳ, ASAE,, 1991, 1-9
    136. Young M,H,, Wierenga P,J, and Mancino C,F, Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry, Soil Sci, Soc,Am, J,, 1997, 61:1138-1146
    137. Prueger J, H, Hatfield J, L,, Aase J, K,, Pikul J, L, Bowen ration comparison with lysimeter evapotranspiration, Agron, Journal,, 1997, 89:730-736
    138. Yang J, F,, Li B, Q,, and Liu S, P, A large weighing lysimeter for evapotranspiration and soil-water-groundwater exchange studies, Hydrological Processes, 2000, 14 (10): 1887-1897
    1.刘布春,王石立,马玉平,国外作物生长模型区域应用中升尺度问题的研究,中国生态农业学报,2003,11(4):89-91
    2. King A, W, Translating models across scales in the landscape, Quantitative Methods in Landscape Ecology: The Analysis and Interpretation of Landscape Heterogeneity, New York: Springer Verlag, 1991,479-517
    3. Rastetter E,B, King A, W, ,Cosby B, J,, et al, Aggregating free-scale ecological knowledge to model coarser-scale attributes of ecosystems, Ecological Applications, 1992, 2:55-70
    4. James W, H,, James W, J, Scaling-up crop models for climate prediction applications, Climate Prediction and Agriculture, Washington DC, USA: International START Secretariat, 2000, 77-117
    5. Shrikant S, J,, James W, J, Scaling-up crop models for regional yield and production estimation: a case study of soybean production in the State of Georgia , USA, Crop Monitoring and Prediction at Regional Scales, 2001, 171-186
    6.马玉平,王石立,张黎等,基于遥感信息的作物模型重新初始化参数化方法研究初探,植物生态学报,2005,29(6):918-926
    7.马玉平,基于遥感信息的华北冬小麦区域生长模型及其模拟研究,中国气象科学研究院,硕士学位论文,2004
    8.张黎,基于遥感信息的水分胁迫条件下华北冬小麦生长模拟研究,中国气象科学研究院,硕士学位论文,2005年4月
    9. Doraiswamy PC, Hollinger S, Sinclair TR et al, application of MODIS derived parameters for regional yield assessment, Proc, Remote Sensing for Agriculture, Ecosystems, and Hydrolory Ⅲ, 17-21 September 2001, Toulouse, France
    10. Doraiswamy P C, Thomas R, ,Sinclair , Steven Hollinger , Application of MODIS derived parameters for regional crop yield assessment, Remote Sensing of Environment, 2005, 97:192-201
    11. Doraiswamya P,C,, Hatfieldb J,L,, Jacksona T,J,, Akhmedova B, J,, Pruegerb, Sterna A, Crop condition and yield simulations using Landsat and MODIS, 2004, 92:548-559