基于界面分析的光纤智能复合材料结构强度性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有抗电磁干扰、灵敏度高、便于成网、尺寸小、易于埋放以及能够在高温等恶劣环境下工作等特点,光纤传感系统可以埋放于复合材料中构成智能结构。光纤智能结构可以实时探测结构内部的损伤情况,从而能够对结构进行监测和寿命预测。然而埋入的光纤不仅起感知内外部环境变化的作用,同时还要受载荷作用,此外,光纤的埋入会在一定程度上损坏基体结构材料的完整性和连续性,因此很有必要将光纤当作内置材料,研究光纤与基体材料之间力学性能的相互影响问题。
     论文研究光纤与纤维增强材料及基体之间形成的界面,研究了界面对光纤智能复合材料结构力学性能的影响。提出了提高界面强度和改善界面结构的方法,其中措施之一就是采用小直径光纤构建智能结构,因此论文还研究了小直径光纤的制作和其传感性能,并将其应用到复合材料监测中。
     文中主要研究工作有以下几个方面:
     (1)研究了光纤智能复合材料结构的宏观力学性能。实验研究了光纤智能复合材料结构的拉伸性能和弯曲性能,分析光纤对材料力学性能产生影响的因素,提出光纤埋入时,应尽可能避免光纤方向和增强纤维铺设方向正交,以达到优化结构提高性能的目的,为光纤智能复合材料结构制作提供了实验数据参考。
     (2)从细观角度出发,设计了实验方案,研究了光纤和基体材料间界面剪切强度,并从界面处理角度,提出采用偶联处理方法来提高光纤智能复合材料结构力学性能的方法。界面实验研究结果表明,无机材料光纤和聚合物材料间界面剪切强度低,结构承载时易发生界面破坏,从而降低整体力学性能。压缩性能实验对比结果表明,通过偶联剂的媒介作用,使光纤和有机材料(即光纤涂覆层和树脂材料)间的界面形成化学键,可以大大提高黏结强度,从而有效提高光纤智能复合材料的力学性能。
     (3)研究了光纤与复合材料之间界面结构,分析了界面结构尺寸与智能复合材料结构力学性能之间的关系。提出可通过减小埋入光纤尺寸,从而减小其和基体间界面尺寸,降低界面尖端应力奇异值,达到提高整体性能的目的。
     (4)研制了小直径光纤Bragg光栅,并对其应变传感和温度特性进行了实验研究。根据耦合模理论,对光纤Bragg光栅的光谱进行了仿真。研究了光栅长度与折射率调制周期改变情况下,FBG的反射、透射光谱,为光栅传感特性的研究提供了理论基础。设计了小直径单模光纤加工布拉格光栅的技术参数以及小直径光纤光栅和设备间连接方式。由于光纤Bragg光栅中心波长的变化量与应变变化或温度变化成线性关系,所以可以通过监测光纤Bragg光栅中心波长的变化来监测结构的应变和温度。为了克服温度和应变对光纤Bragg光栅测量的交叉敏感性,设计了基于悬臂梁的双光栅传感系统。
     (5)研究并证明了小直径光纤Bragg光栅的动态信号监测功能。设计实验,利用小直径光纤光栅检测铝板振动信号和碳纤维层合板冲击信号,实现了动态信号的频率识别,并利用支持向量机方法对层合板上作用载荷位置进行判别。
Optical fiber sensors have the advantages of their insensitivity to electromagnetic interference, high sensitivity, and convenience for network. They have the predominance of small physical size, capability of sensing at high temperature and in environmentally unfavorable conditions. Therefore, individual fibers or fiber networks are often embedded in the composites as sensors for real time structural health monitoring. Optical smart composites have extensive potential applications in monitoring fatigue and damage inside the structures. Accordingly, the life of the structure can be prognosticated. However, despite of the small physical size of the optical fiber compared with the host composite structure, the diameter of the optical fiber was much larger than that of reinforcing fibers. This mismatch in dimensions would inevitably lead to incontinuity of the composites. On the other hand, the embedded optical fibers not only apperceive surrounding changes, but also are subjected to load. The interrelationship of the embedded optical fibers and the composite were deserved study.
     The interface between the embedded optical fibers and the resin and the reinforced fibers were studied. So did the mechanical influence of interface on the smart composite. The methods to improve the interface structure were proposed. Small diameter optical fiber was accordingly used to compose a smart structure. Therefore, new optical fiber sensing systems were developed and applied in load signal monitoring of composite.
     The main achievements are described as follows:
     (1) The mechiancal performance of smart composite with embedded optical fibers was studied. Experimental tests on tensile and bending performance of the composite were carried out. It was proposed that angle difference between the optical fiber and the reinforced fiber should be as small as possible. Thus the structure property was optimized.
     (2) Experimental program and set-up were designed to study the interfacial shear strength between the embedded optical fiber and the matrix.Coupling was proposed to enhance the optical smart composite from the point of interfacial treatment. Interfacial strength study showed that the shear strength was very low. The interface between the optical fiber and the polymer could be easily destroyed. Thus the mechanical performance of the structure would be weakened. With the help of coupling agent, the optical fiber was chemically bonded with organic material. Therefore, the two materials were glued well and the mechanical character of the smart composite could be enhanced. Experiment on compressive strength showed that the composite with coupled optical fiber embedded inside had better mechanical facility.
     (3) The interfacial structure was studied experimentally. The relation between the mechanical characteristic of smart composite and the size of interface was studied. Another way to improve the mechanical performance was to decrease the size of the used optical fiber. Hence, the size of the interface between the optical fiber and the composite was reduced. The stress singularity at the pointed end would be depressed.
     (4)Fiber Bragg grating sensors in small diameter were developed. The strain and temperature sensitivities of the fabricated fiber Bragg grating were studied experimentally. Based on coupled-mode theory, optical properties of the designed FBG were studied. The reflection and transmission spectrums of the designed FBG with small diameter were studied as the grating length and the refractive index were changed. The parameters for manufactiong FBG from a single mode fiber were studied. The connector of the optical fiber sensor in small diameter and the demodulator was designed. The central wavelength of the FBG in small size changed linearly with strain. The relation between the wavelength shift and temperature change is linear too. Therefore, the deformation of the structures can be captured by monitoring the central wavelength changes of FBG. In order to overcome the disadvantage of cross sensitivity, and to measure both parameters at the same time and location, a novel scheme for simultaneous strain and temperature sensing system was presented with the help of a uniform strength cantilever.
     (5)Dynamic monitor capacity of a small size optical fiber sensor system was studied. The sensor system was experimentally applied in aluminum plate frequency detection. It was applied in monitoring impact signal of a carbon fiber reinforced plastic too. Support vector machine was applied in discrimination load locations on composite.
引文
[1]江雷,冯琳著.仿生智能纳米界面材料.北京:化学工业出版社,2007:3.
    [2]沈观林,胡更开.复合材料力学.北京:清华大学出版社,2006:308.
    [3] Rogers C A. Intelligent materials systems-the dawn of a new materials age. Jounral of Intelligent Material Systems and Sturcutre, 1993, 4(1):4~12.
    [4]涂亚庆,刘兴长.光纤智能结构.北京:高等教育出版社,2005:3~4.
    [5] Dumitrescu O R, Foster G, Baker D C, et al.. Near infrared spectroscopy for in-line monitoring during injection moulding. Polymer Testing, 2005, 24(3): 367~375.
    [6] Suopaj?rvi P, Ly?ri V, Nissil? S, et al.. Indicating cure and stress in composite containers using optical fibers. Optical Engineering, 1995, 34(9): 2587~2591.
    [7] Lekakou C, Cook S, Deng Y, et al.. Optical fibre sensor for monitoring flow and resin curing in composites manufacturing. Composites: Part A., 2006, 37(6): 934~938.
    [8] Oliveira R, Ramos C A , Marques A T. Health monitoring of composite structures by embedded FBG and interferometric Fabry–Pérot sensors. Computers & Structures, 2008, 86( 3-5):340~346.
    [9] Gasior P, Kaleta J, Sankowska A. Optical fiber sensors in health monitoring of composite high pressure vessels for hydrogen. Optical Measurement Systems for Industrial Inspection V.2007, Proc. Of SPIE, 6616:66163G1~10.
    [10] Leung C K Y, Yang Zhenglin, Xu Ying, et al.. Delamination detection in laminate composites with an embedded fiber optical interferometric sensor. Sensors and Actuators A, 2005, 119(2): 336~344.
    [11] Fraz?o O, Romas C A, Pinto N M P, et al.. Simultaneous measurement of pressure and temperature using single mode optical fibres embedded in a hybrid composite laminated. Composites Science and Technology, 2005,65(11-12):1756~1760.
    [12]张博明,王殿富,杜善义,等.多功能光纤智能复合材料研究.复合材料学报,2000,17(1):37~41.
    [13]武湛君,张博明,万里冰.单根光纤光栅监测复合材料固化工艺过程多目标参量技术的研究.复合材料学报,2004,21(6):82~86.
    [14]秦伟,吴晓宏,曹茂盛.RTM工艺成型复合材料树脂固化过程残余应变监测研究.航空材料学报,2005,25(4):50~52.
    [15]卢坤,梁大开,杨明.光纤F-P传感器在用于复合材料检测的实验研究.光电技术应用,2004,19(2):6~9.
    [16]芦吉云,梁大开,李东升,等.基于光纤智能夹层传感结构的应力测量研究.实验力学,2006,21(5):567~571.
    [17] Lawrence C M, Nelson D V, Udd E, and Bennett T. A fiber optic sensor for transverse strain measurement. Experimental Mechanics, 1999, 39(3): 202~209.
    [18] Narendran N, Shukla A and Letcher S V. Determination of fracture parameters using embedded fiber-optic sensors. Experimental Mechanics, 1991,31( 4):360~365.
    [19] Leng J S and Asundi A. NDE of smart structures using multimode fiber optic vibration sensor. NDT& E International, 2002, 35(1):45~51.
    [20] Baere I De, Luyckx G, Voet E, et al.. On the feasibility of optical fibre sensors for strain monitoring in thermoplastic composites under fatigue loading conditions,Optics and Lasers in Engineering, 2009, 47(3-4):403~411.
    [21]吴飞,蔡璐璐,李志全.油井远程监控的系统研究.电子测量技术,2008,31(1):105~111.
    [22] Guo Liangqia, Ni Qinyan, Li Jiaqian, et al.. A novel sensor based on the porous plastic probe f or determination of dissolved oxygen in seawater. Talanta, 2008, 74( 4): 1032~1037.
    [23]杭利军,何存富,吴斌,等.新型分布式光纤管道泄漏检测技术及定位方法研究.光学学报,2008,28(1):123~127.
    [24] Vijayan A, Fuke M, Hawaldar R, et al.. Optical fibre based humidity sensor using Co-polyaniline clad. Sensors and Actuators B: Chemical, 2008, 129(1):106~112.
    [25] Dooly Gerard, Fitzpatrick Colin, Lewis Elfed. Optical sensing of hazardous exhaust emissions using a UV based extrinsic sensor.Energy, 2008, 33 (4): 657~666.
    [26] Koch Christian and Jenderka Klaus-Vitold. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone. Ultrasonics Sonochemistry, 2008, 15(4):502~509.
    [27] Bambang Kuswandi, Chulaifah Indah Fikriyah, Agus Abdul Gani. An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue.Talanta, 2008, 74(4): 613~618.
    [28] Fresvig T, Ludvigsen P, Steen H, Reiker?s O. Fibre optic Bragg grating sensors: An alternative method to strain gauges for measuring deformation in bone. Medical Engineering & Physics, 2008, 30(1):104~108.
    [29]刘仁强,付宜利,刘品宽,王树国.新型智能结构中埋入式曲率光纤传感器的研究.压电与声光,2003,25(4):270~273.
    [30] Ye Sai-Yun and Zheng Shi-Biao. Scheme for reliable realization of quantum logic gates for two atoms separately trapped in two distant cavities via optical fibers. Optics Communications, 2008, 281(5): 1306~1311.
    [31] Kazemi A A, Goepp J W, Larson D B, et al.. Fiber optic microsensor Hydrogen leak detecting system on aerospike X-33.Photonics in the transportation industry: Auto to Aerospace, Proc. of SPIE, 2007, 675807-1~12.
    [32] Kaed Bey S Abi, Sun Tong and Grattan K T V.Sensitivity enhancement of long period gratings for temperature measurement using the long period grating pair technique.Sensors and Actuators A: Physical, 2008, 141( 2): 314~320.
    [33] Ceyssens F, Driesen M, Wouters K, et al.. A low-cost and highly integrated fiber optical pressure sensor system.Sensors and Actuators A: Physical, 2008,145-146:81~86.
    [34]周星炜,王占斌,袁一方,等.基于光纤Sagnac干涉仪的旋转角度测量系统.传感器技术,2005,24(9): 53~55.
    [35]洪广伟,贾波.用于多点测试的全光纤速度干涉仪研究.中国激光,2005,32(8):1097-1100.
    [36]罗洪,熊水东,胡永明,等.三分量全保偏光纤加速度传感器的研究.中国激光,2005,32(10):1382~1386.
    [37]王为,林玉池,朱萍玉,等.FBG用于高频振动检测的实验研究.光纤与电缆及其应用技术,2005 (5):35~37.
    [38]李振,饶炯辉,李海飞.光隔离器法抑制Michelson干涉型光纤水听器中的SBS.应用光学,2008,29(2):178~182.
    [39]安亚青,薛剑,李文田.对基于马赫—曾德干涉仪的高压电流传感器的实验研究.电力系统通信,2005,26(147):31~32.
    [40]赵江海,刘霞.光纤声发射传感器的微弱电流检测.电子元器件应用,2006,8(12):36-38.
    [41]吴衍记,彭昱,黄显林.光纤陀螺用Y波导半波电压的测试方法研究.半导体光电,2005,26(4):307~309.
    [42]张学亮,倪明,孟洲,等.基于铽镝铁换能器的全保偏光纤磁场传感系统.国防科技大学学报,2005,27(3):30~33.
    [43]张学亮,倪明,孟洲,等.全保偏光纤直流磁场传感系统.光电工程,2005,32(8):89~92.
    [44]杨秀芳,王小明,高宗海,等.基于法布里-珀罗干涉仪的液体浓度实时检测系统的研究.仪器仪表学报,2005,25(10):1343~1346.
    [45] Fraz?o O, Marques L, Marques J M, et al.. Simple sensing head geometry using fibre Bragg gratings for strain–temperature discrimination.Optics Communications, 2007, 279( 1): 68~71.
    [46] Pineté, Hamel C, Gli?i? B, et al.. Health monitoring with optical fiber sensors: from human body to civil structures. Health Monitoring of Structural and Biological Systems 2007, Proc. of SPIE. 2007,6532, 653219.
    [47] Yuan Libo, Wen Qingbo, Liu Chongjie, et al..Twin multiplexing strain sensing array based on a low-coherence fiber optic Mach–Zehnder interferometer. Sensors and Actuators A: Physical, 2007, 135(1):152~155.
    [48] Sun Qizhen, Liu Deming, Wang Jian, Liu Hairong. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. Optics Communications, 2008, 281(6): 1538~1544.
    [49] Wood K, Brown T, Rogowski R, et al.. Fiber Optic Sensors for health monitoring of morphing airframes:Ⅰ. Bragg grating strain and temperature sensor. Smart Materials and Structures, 2000, 9(2): 163~169.
    [50] Wood K, Brown T, Rogowski R, et al.. Fiber optic sensors for health monitoring of morphing airframes:Ⅱ. Bragg grating strain and temperature sensor. Smart Materials and Structures, 2000, 9(2): 170~174.
    [51] Siogren A, Lindstrom B. Connection of optical fibers embedded in aircraft composite components.Proc. of SPIE,2000,3985:533~542.
    [52] Hill K O, Fujii Y, Johnson D C, et al.. Photosensitivity in optical fiber waveguide: application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32(10):647~649.
    [53] Meltz G, Morey M M, and Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1989, 14(5):823~825.
    [54] Hill K O. Bragg gratins fabricated in monomode photosensitive optical fiber by UV expose through a phase mask. Appl. Phys. Lett., 1993, 62(10):1035~1037.
    [55] Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Opt. Lett., 1987, 12(10): 847~849.
    [56] Mizrahi V, and Sipe J E. Optical properties of photosensitive fiber phase gratins. J. of Lightwave Technol., 1993, 11(10):1513~1517.
    [57] Agrawal G and Radic S. Phase-shifted fiber Bragg gratings and their applications for wavelength demultiplexing. IEEE Photon. Technol. Lett., 1994, 6(8):995~997.
    [58] Vengsarkar A M, Lemaire P J, Judkins J B, et al.. Long-Period fiber gratings as band-rejection filters. J. Lightware Technol. , 1996, 14(1):58~65.
    [59] Erdogan T, Sipe J E. Tilted fiber phase gratings. J. Opt. Soc. Am. A, 1996, 13(2):296~313.
    [60] Giles C R. Lightwave application of fiber Bragg gratings. J. of Lightwave Technol., 1997,15(8):1391~1404.
    [61] Giurgiutiu V, Redmond J, Roach D, et al..Active sensors for health monitoring of aging aerospace structures.Proc. of SPIE, 2000, 3(985):294~305.
    [62] Kabashima S, Ozaki T, Takeda N. Damage detection of satellite structures by optical fiber with optical fiber with small diameter. Proc. of SPIE, 2000, 3(985):343~351.
    [63] Manson G, Worden K, Allman D. Experimental validation of a structural health monitoring methodology: Part III. damage location on an aircraft wing. Journal of sound and Vibration, 2003, 259 ( 2) :365~385.
    [64]杜设亮,傅建中,居冰峰,等.光纤智能结构及其在制造工程中的应用.机电工程,1999(5): 214~217.
    [65]李尚俊.光纤智能结构/蒙皮在航空上的应用.中国民航飞行学院学报,2000,(2):29~30.
    [66]刘兴长,涂亚庆.军用航空器的光纤智能结构分析.压电与声光,2002,24(2):97~100.
    [67] Tzou H S, Lee H J, Arnold S M. Smart materials precision sensors/actuators and structronic systems. Mechanics of Advanced Materials and Structures, 2004, 11(4):367~393.
    [68] Trutzel M N, Wauer K, Betz D, et al.. Smart sensing of aviation structures with fiber-optic Bragg grating sensors. Richard O. Claus, Smart Structures and Materials 2000: Sensory phenomena and measurement instrument for smart structures and materials, Newport Beach, Proc. of SPIE, 2000, 3986:134~143.
    [69] Liang DaKai. Research on some problems about optic fiber embedded in carbon fiber smart structure.Proceedings of and International Workshop on structure health monitoring, USA, 1999:680~689.
    [70] Baker Alan, Rajic Nik, Davis Claire.Towards a practical structural health monitoring technology for patched cracks in aircraft structure. Composites Part A: Applied Science and Manufacturing, 2009,40(9):1340~1352.
    [71] Mickens T, Schulz M, Sundaresan M, et al.. Structural health monitoring of an aircraft joint. Mechanical Systems and Signal Processing, 2003, 17(2): 285~303.
    [72] Kim H S, Ghoshal A. Development of embedded sensor models in composite laminates for structure health monitoring.Proc. of SPIE, 2003, 5056:99~110.
    [73] Takeda S, Aoki Y, Ishikawa T, et al.. Structural health monitoring of composite wing structure during durability test. Composite Structures, 2007, 79(1): 133~139.
    [74]芦吉云,梁大开,潘晓文.基于分布式光纤光栅传感器的机翼盒段载荷监测研究.南京航空航天大学学报,2009,41(2):217~221.
    [75]陶宝祺.智能材料结构.北京:国防工业出版社,1997:6.
    [76] Benchekchou B, Ferguson N S. The effect of embedded optical fibres on the fatigue behaviour of composite plates. Composite Structures. 1998, 41(2): 113~120.
    [77]杨红,陶宝祺,梁大开,等.树脂基复合材料中埋入大直径光纤性能的研究.玻璃钢/复合材料,2000,(5):10~13.
    [78]杨红,孙晓菡,张明德,等.空心光纤网络埋入复合材料中性能影响的研究.应用力学学报,2001,18(4):134~140.
    [79] Surgeon M, Wevers M. Static and dynamic testing of a quasi-isotropic composite with embedded optical fibres. Composites: Part A. 1999, 30(3):317~324.
    [80]冷劲松,王殿富,杜善义.光纤传感器对机敏复合材料结构性能的影响.实验力学,1995,10(4):309~314.
    [81] Czamed R. Interferometric measurements of strain concentrations induced by an optical fiber embedded in a fiber reinforced composite. SPIE, 1998, 986:120~129.
    [82]Hadzic R, John S, Herszberg I. Structural integrity analysis of embedded optical fibres in composite structures. Composite Structures. 1999, 47(1-4): 759~765.
    [83] Ling H-y, Lau K-t, Lam C-k. Effects of embedded optical fibre on mode II fracture behaviours of woven composite laminates. Composites: Part B. 2005, 36(6-7): 534~543.
    [84] Schaaf K, Cook B, Ghezzo F, et al.. Mechanical properties of composite materials with integrated embedded sensor networks. Smart Structures and Materials 2005: Proc. Of SPIE 2005, 5765:781~785.
    [85]谢怀勤,董旭峰.埋入光纤对CFRP抗弯性能影响实验研究.材料科学与工艺,2006,14(1):12~14.
    [86] Yuan L, Zhou L. Sensitivity coefficient evaluation of an embedded fiber-optic strain sensor. Sensors and Actuators A. 1998, 69(1):5~11.
    [87]刘浩吾,吴永红,丁睿,文利.光纤应变传感器检测的非线性有限元分析和试验.光电子?激光,2003,14(5):526~528.
    [88]周智,李冀龙,欧进萍.埋入式光纤光栅界面应变传递机理与误差修正.哈尔滨工业大学学报,2006,38(1):49~55.
    [89]鲍吉龙,陈莹,赵洪霞.嵌入式光纤光栅传感器应力传递规律的研究.传感技术学报,2005,18(4):872~875.
    [90]赵洪霞,鲍吉龙,陈莹.利用剪滞法对包覆光纤布拉格光栅应力传递规律的研究.中国激光,2006,33(5):636~640.
    [91] Zhou Zhi, LI Jilong, OU Jinping. Interface transferring mechanism and error modification of embedded FBG strain sensors. Frontiers of Electrical and Electronic Engineering in China, 2007,2(1):92-98.
    [92]董晓马,张为公.光纤智能复合材料的研究及其应用前景.测控技术,2004,23(10):3~5.
    [93] Lodha Preeti, Netravali Anil N. Characterization of interfacial and mechanical properties of“green”composites with soy protein isolate and ramie fiber. Journal of Materials Science, 2002, 37(17):3657~3665.
    [94]曾汉民.CF/PPS复合材料界面效应的研究.科学通报,1982,(2):87~88.
    [95] Favre Jean -Paul.Improving the fracture energy of carbon fibre-reinforced plastics by delamination promoters. Journal of Materials Science,1977,12(1):43~50.
    [96]曾汉民,彭维周.碳纤维—环氧树脂复合材料界面效应的研究.工程塑料应用,1983,(1): 4~8.
    [97]曾汉民,夏锋,张志宇,等.CVD碳毡/碳复合材料的多相微观结构和缺陷的研究.宇航材料工艺,1979,(6):1~19.
    [98] Lin T K, Wu S J, Lai J G, et.al.. The Effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites. Composites Science and Technology,2000,60(9):1873~1878.
    [99] Rana S, Fanga D, Zonga X,et al.. Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques. Polymer,2001,42(4):1601~1612.
    [100]王效贵,王美.考虑尺寸效应的双材料轴对称界面端应力奇异性.力学学报,2010,42(3):448~455.
    [101]郑玉婴.Kevlar纤维增强尼龙6复合材料界面层的设计及其结构性能研究,[博士学位论文].福州:福州大学,2005.
    [102]王武娟.埋入式FBG光纤与CFRP的相容性及应变传感性实验研究,[硕士学位论文] .哈尔滨:哈尔滨工业大学,2004.
    [103]琼斯R M.复合材料力学.上海:上海科学技术出版社出版,1981:18.
    [104]中国航空研究院编著.复合材料结构设计手册.北京:航空工业出版社,2001:634.
    [105] Warrier Sunil G. and Majumdar Bhaskar S. Effects of the interface on the fatigue crack growth response of titanium matrix composites: modeling and impact on interface design. Materials Science and Engineering A. 1997,237 (2): 256~267.
    [106]许金泉.界面力学.北京:科学出版社,2006:12-14,49~53.
    [107]黄玉东,魏月贞.复合材料界面研究现状(中).纤维复合材料,1994,1:1~6.
    [108]黄玉东,魏月贞.复合材料界面研究现状(下).纤维复合材料,1994,2:5~8.
    [109] Edgar Lara-Curzio, Bowers David, Ferber Mattison K. The interlaminar tensile and shear behavior of a unidirectional C---C composite. Journal of Nuclear Materials, 1996,230(3): 226~232.
    [110] Bascom W D, Jensen R M. Stress transfer in single fiber/resin tensile tests. J. Adhesion, 1986, 19(3-4):219~239.
    [111] Steen M, Vallés J L. Interfacial bond conditions and stress distribution in a two-dimension -ally reinforced brittle-matrix composite. Composites Science and Technology, 1998, 58 (3-4): 313~330.
    [112]王宏岗,郑安呐,戴干策.玻璃纤维增强聚丙烯复合材料界面结合的研究1.界面剪切强度.复合材料学报,1999,16(3):46~50.
    [113]杨庆生.复合材料细观结构力学与设计.北京:中国铁道出版社,2000:117~121.
    [114] Li Ji-long, Zhou Zhi, Ou Jin-ping. Interface transferring mechanism and error modification of embed FBG strain sensor based on creep Part I: linear viscoelasiticity. In: Smart Structures and Materials 2005, Proc. of SPIE, 2005, 5765: 1061~1072.
    [115] Yuan L, Zhou L, Wu J. Investigation of a coated optical fiber strain sensor embedded in a linear strain matrix material. Optics and Lasers in Engineering, 2001, 35(4): 251~260.
    [116] Chiao C C, Moore R L. Measurement of shear properties of fiber composites. Journal of Composite,1976,8(3):161~167.
    [117] Joffe R, Andersons J, Wallstr?m L. Interfacial shear strength of flax fiber/thermoset polymers estimated by fiber fragmentation tests. Journal of Materials Science, 2005,40(9-10): 2721~2722.
    [118] Kelly A, Tyson W R. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids, 1965,13(6):339~350.
    [119] Merle G, Xie M. Measurement of the adhesion of poly (Ether Block Amide) to E-Glass by single filament fragmentation. Composite Science and Technology, 1991, 40(1):19~30.
    [120] Nuriel S, Katz A, Wagner H D. Measuring fiber–matrix interfacial adhesion by means of a‘drag-out’micromechanical test. Composites Part A: Applied Science and Manufacturing, 2005, 36 (1): 33~37.
    [121]蔡长庚,朱立新.单纤维拔出实验的有关理论与应用.绝缘材料.2004,(3):50~52.
    [122]杨序纲,袁象恺,潘鼎.复合材料界面的微观力学行为分析—单纤维拉出试验.宇航材料工艺,1999,(1):56~60.
    [123] Netravali A N, Stone D, Ruoff S, et. al.. Continuous micro-indenter push-through technique formeasuring interfacial shear strength of fiber composites.Composites Science and Technology, 1989,34(4):289~303.
    [124]戴瑛,Kim J.K.,郑百林,等.单纤维压出实验模型的力学分析.力学季刊,2000,21(1):66~71.
    [125]蒋咏秋,叶林,吴键,等.聚合物基复合材料界面剪切强度的测试.西安工业学院学报,1990,10(2):14~20.
    [126]杨光松,王兴业,蒋咏秋,等.界面剪切强度的AE监测及统计模型评估.复合材料学报,1991,8(4):75~80.
    [127]郑安呐,胡福增.树脂基复合材料界面结合的研究I:界面分析及界面剪切强度的研究方法.玻璃钢/复合材料,2004,(5):12~15.
    [128] Shimada A, Naruse H, Uzawa K, et al.. Development of an integrated damage detection system for international America’s Cup class yacht structures using a fiber optic distributed sensor. Smart Structures and Materials 2000: Proc. of SPIE, 2000,3986: 324~334.
    [129]谢怀勤,卢少微,王武娟.埋入CFRP的FBG光纤传感器界面传递特性实验研究.材料科学与工艺,2006,14(6):605~607.
    [130]胡福增,陈国荣,杜永娟.材料表界面(第二版).上海:华东理工大学出版社,2007::194,219~224.
    [131]秦伟,张志谦,吴晓宏,等.RTM成型复合材料的界面改性.高分子材料科学与工程,2003,19(6):206~208.
    [132]王斌,金志浩,丘哲明,等.高性能有机纤维复合材料及其界面性能.宇航材料工艺,2001,(4):15~20.
    [133]杨序纲,袁象恺,王依民,等.SiC纤维增强复合材料界面微观结构的Raman光谱研究.测试分析,1999,(5):60~62.
    [134]纪丕华.纤维增强复合材料中埋入光纤后的力学性能研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [135] Liu Y H, Xu J Q, Ding H J. Order of singularity and singular stress field about an axisymmetric interface corner in three-dimensional isotropic elasticity. International Journal of Solids and Structures, 1999, 36(29):4425-4445.
    [136]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用.北京:科学出版社,2005:83-88,111-112.
    [137]饶云江,王义平,朱涛.光纤光栅原理及应用.北京:科学出版社,2006:139.
    [138] Majumder M, Gangopadhyay T K, Chakraborty A K, e al.. Fibre Bragg gratings in structuralhealth monitoring-Present status and applications. Sensors and Actuators A, 2008, 147(1): 150~164.
    [139] Zhang Wei-Gang, Liu Yan-Ge, Kai Gui-Yun, et al.. A novel independent tuning technology of center wavelength and bandwidth of fiber Bragg grating. Optics Commnications,2003,216(4-6):343~350.
    [140]孙安,乔学光.光纤光栅温度和应力同时区分测量传感技术.光电子激光,2003,14(2):210~214.
    [141] Jiang J F, Liu T G, Zhang Y M, et al.. Data fusion in multiparameter measurement of optical fiber sensors system. Prof. of SPIE,2003,5260:516~518.
    [142] Caucheteur C, LhomméF, Chah K, et al.. Simultaneous strain and temperature sensor based on the numerical reconstruction of polarization maintaining fiber Bragg gratings. Optics and Lasers in Engineering, 2006,44(5): 411~422.
    [143] Morey W W, Meltz G, Glenn W H. Fiber Optic Bragg Grating Sensors, Society of photo- Optical Instrumentation Engineering, Fiber Optic and Laser Sensors VII,1989,1169:98~107
    [144] Shi C Z, Zeng N, Ho H L, et al.. Cantilever optical vibrometer using fiber Bragg grating. Optical Engineering, 2003, 42(11):3179-3181.
    [145]曹志远.板壳振动理论.北京:中国铁道出版社,1989:13.
    [146]胡海岩,孙久厚,陈怀海.机械振动与冲击.北京:航空工业出版社,2002:242.
    [147]陈烈民,杨宝宁.复合材料的力学分析.北京:中国科学技术出版社,2006:186-187.
    [148]王芝斌.结构损伤的小波包分析,[硕士学位论文].大连:大连理工大学,2004.
    [149]徐长发,李国宽.实用小波方法(第二版).武汉:华中科技大学出版社,2003:15~39.
    [150]信思金.基于光纤光栅和小波包分析的智能材料与结构损伤识别研究,[博士学位论文].武汉:武汉理工大学,2004.
    [151]董长虹,高志,余啸海,等.Matlab小波分析工具箱原理与应用.北京:国防工业出版社,2004:17~34.
    [152] Spillman W B, Sirkis J S, Gardiner P T. Smart materials and structures: what are they? Smart Materials and Structures,1996,5(3):245~254.
    [153] Burges C J C. A tutorial on support vectormachines for pattern recognition. Data Mining and Knowledge Discovery, 1998,2(2):955~974.
    [154] Dirk Tomandl,Andreas Schober. A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust‘black box’-tool for data analysis. NeuralNetworks,2001,8(14): 1023~1034.
    [155]张学工.统计学习理论的本质.北京:清华大学出版社,2000:96~116.