交流励磁水轮发电机组运行稳定性和经济性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流励磁水轮发电机组是一种新型的水力发电设备,其发电机由变频电源提供对称交流励磁,且可根据要求对励磁电压的幅值、频率和相位加以控制,因此可以控制发电机励磁磁场的大小及其相对转子的位置和电机转速,使得交流励磁水轮发电机组具有变速恒频运行能力、较强的进相运行能力、独立的有功与无功调节能力和良好的稳定性。与普通的同步发电机组相比,交流励磁水轮发电机组可以灵活地调节有功、无功,提高系统的稳定性。此外,通过发电机励磁与水轮机调速的协调控制,水轮机可在水头、流量变化时运行于最优转速,实现变速优化运行,从而提高水能利用效率,节约用水,提升机组运行效益。因此,对交流励磁水轮发电机组进行稳定性和经济性研究具有十分重要的现实意义。本文围绕交流励磁水轮发电机组运行的稳定性和经济性开展研究,主要的工作内容和成果如下:
     (1)作为交流励磁水轮发电机组运行稳定性和经济性分析计算的基础性工作,进行模型研究。在转子磁场dq0坐标系下的交流励磁发电机模型的基础上,进一步详细推导和阐述了该坐标系下交流励磁发电机的五阶和三阶实用模型以及采用定子电压定向矢量控制策略的励磁系统模型。综合有关成果,建立了水轮机的线性化模型和PID控制策略下的水轮机调速系统模型;建立了具有引水管道、尾水管和尾水洞的复杂输水系统的弹性水击等值电路模型。
     (2)对交流励磁水轮发电机组提升电力系统平稳性和稳定性问题进行仿真研究。基于交流励磁发电机实用模型、励磁系统模型、水轮机一输水系统模型和调速系统模型,在Matlab/Simulink下建立了交流励磁水轮发电机组的整体仿真模型。对含交流励磁水轮发电机组的单机无穷大系统和多机系统,分别进行了负荷调整小扰动和短路故障暂态过程仿真。结果表明,与普通同步发电机组相比,交流励磁水轮发电机组不仅有功和无功可以独立调节、响应速度快,而且可以显著提高电力系统的稳定性。
     (3)交流励磁水轮发电机组可变速运行的特点为提升水轮发电机组的节水和运行效益提供了可能。本文对此进行深入研究,在对水轮机综合特性曲线进行拟合的基础上,提出了基于遗传算法的交流励磁水轮发电机组转速优化方法,并结合工程实例对不同水头和出力下交流励磁水轮发电机组变速运行的效率、消耗水量和多发电效益进行了计算分析。结果表明,本文所提出的交流励磁水轮发电机组转速优化方法具有较高的计算精度;与常规水轮发电机组相比,交流励磁水轮发电机组具有显著的节水和多发电效益。
ACEHU (AC Excited Hydrogenerator Unit) is a new type of hydro-electric power equipment, with the inverter power providing generator with symmetrical AC excitation, and the amplitude, frequency, and phase of the excitation voltage being controlled in accordance with the requirements. The size of the magnetic field excitation, the location of the rotor and the motor speed can be controlled, so that the ACEHU has VSCF (Variable Speed Constant Frequency) power generation and deep condensive operational capabilities, independent active and reactive power regulation capacity and good stability. Compared with the traditional SGU (synchronous generator unit), the ACEHU can flexibly adjust reactive and active power and improve the system's stability. In addition, through the coordinated control of generator excitation and hydroturbine speed governing, the hydroturbine can operate around the optimal speed during the time of head and flow rate changes, achieve its optimal operation of variable speed, and then improve water use efficiency, save water and enhance effectiveness of unit operation. Therefore, it is of great practical significance to study the stability and economical efficiency of the ACEHU. So this thesis is devoted to the stability and economical efficiency study of ACEHU operation, and its main contents and achievements are as follows:
     (1) Model study is conducted as the basis for analyzing and calculating ACEHU operation stability and economical efficiency. Based on the ACEG(AC Excited Generator) mathematical model under the rotor magnetic field dq0 coordinates, corresponding fifth-order and third-order practical model under the rotor magnetic field dq0 coordinates is further detailed derived and explained, and the excitation system model under the stator voltage-oriented vector control strategy is established. Integrated related results, the linear hydroturbine model and the model of hydroturbine speed governing system under PID control strategy are established; the elastic water-hammer equivalent circuit model of the complexity conduit system with pipeline, tailrace and tailrace tunnel is established.
     (2) The simulation research on ACEHU improves power system stationarity and stability is done. Based on the ACEG practical model, control model of excitation system, hydroturbine model, conduit system model and speed governing system model, the simulation model of the ACEHU is set up under the Matlab/Simulink. For the SMIB (single machine infinite bus) system and the multi-machine system containing the ACEHU, load adjustment of small disturbance and short-circuit fault of transient process simulation are separately conducted. The results show that compared to the traditional SGU, the ACEHU can achieve independent active and reactive power regulation, fast response, and can significantly improve power system stability.
     (3) The characteristic of variable speed operation of the ACEHU makes it possible to improve water saving and operation effectiveness of the hydrogenerator unit. In this dissertation, the further study of water saving and operation effectiveness is done. Based on the hydroturbine integrated characteristic curve fitting, the method of using Genetic Algorithm to find speed optimization of ACEHU is proposed. A calculation analysis is made on the efficiency, water consumption and power generation effectiveness of the ACEHU variable speed operation when it is under different head and power conditions. The results show that the method to find speed optimization of ACEHU which is proposed in this dissertation has high calculation accuracy; compared to the traditional hydrogenerator unit, the ACEHU has significant benefit of water-saving and more power generation.
引文
[1]颜湘武,王仁洲,柳焯.交流励磁发电机综述[J].电力情报,1996,(4):6-10
    [2]徐锦才,许大中.多相励磁发电技术的研究概述[J].电力系统自动化,1997,21(4):44-46
    [3]张海红,刑立群,颜湘武.异步化同步发电机综述[J].华北电力技术,2000,(10):49-51
    [4]孙国伟,程小华.变速恒频双馈风力发电系统及其发展趋势[J].电机与控制应用,2007,34(1):58-64
    [5]赵仁德,贺益康,黄科元,卞松江.变速恒频风力发电机用交流励磁电源的研究[J].电工技术学报,2004,6,19(6):1-6
    [6]赵荣祥,陈辉明,尹强,许大中.水轮发电机交流励磁变速运行控制系统的研究[J].浙江大学学报,1999,33(6):596-601
    [7]许善椿,郭春林,王文举.交流励磁调速水轮发电机负荷的优化调节[J].大电机技术,1995,(2):10-13
    [8]杨顺昌.国外对异步化同步发电机的探讨[J].国外大电机,1991,(4):1-7
    [9]颜湘武,张海红.异步化同步发电机进相运行能力的研究[J].电工技术杂志,2001,(2):8,9,23
    [10]常鲜戎,王泽忠,潘云江,王仁洲.前苏联的异步化同步发电机应用研究综述[J].电力情报,1994,(3):1-4
    [11]宋军英.异步化同步发电机的运行及其励磁控制研究[D],武汉大学博学论文,2001,10,17
    [12]韩居华,张桂娥.前苏联异步化汽轮发电机研究综述[J].华北电力技术,1994,(2):25-29
    [13]颜湘武,王仁洲,柳焯.采用交流励磁控制发电机提高系统的暂态稳定性[J].电力系统自动化,1997,21(9),35-38
    [14]常鲜戎,颜湘武,潘云江,王仁洲,杨以涵.使用双励机提高远距离输电线路的稳定性[J].中国电机工程学报,1994,14(9),38-44
    [15]宋军英,刘涤尘,陈允平,黄险峰.异步化同步发电机稳态特性及暂态特性[J].武汉大学学报,2001,6,34(3):60-63
    [16]Datta R,Ranganathan V T.Variable-speed Wind Power Generation Using Doubly Fed Wound Rotor Induction Machine-A Comparison with Alternative Schemes[J].IEEE Trans On Energy Conversion,2002,17(3):414-421
    [17]Muller S,Deicke M,De Doncher R W.Doubly Fed Induction Generator Systems for Wind Turbines[J].IEEE Industry Applications Magazine,2002,8(3):26-33
    [18]张桂娥,韩居东,叶东.前苏联双轴励磁异步化水轮发电机研究综述[J].国外大电机,1993,(2),40-42
    [19]李辉.双馈水轮发电机系统建模与仿真及其智能控制策略的研究[D].重庆大学博士学位论文,2004,2
    [20]邱彬如.世界抽水蓄能电站新发展[M].北京:中国电力出版社,2006,1:88-92
    [21](日)中村泰造.可变速抽水蓄能发电系统实用化[J].国外大电机,1992,(5):1-3
    [22]Daniel Schafer,Jacques Simond.Adjustable Speed Asynchronous Machine in Hydro Power Plants and Its Advantage for the Electric Grid Stability[J].EPE Trondheim,1999,13(2):195-201.
    [23]Fraile-Ardanuy J.,Wilhelmi J.R.,Fraile-Mora J.J.,Perez J.I..Variable-Speed Hydro Generation:Operational Aspects and Control[J].IEEE Transaction on Energy Conversion,2006,6,21(2):569-574
    [24]廖勇.交流励磁发电机励磁控制策略及电磁设计的研究[D].重庆大学博士学位论文,1997
    [25]Fraile-Ardanuy J.,Perez,J.I.,Sarasua I.,Wilhelmi J.R.,Fraile-Mora J..Speed Optimization Module of a Hydraulic Francis turbine based on Artificial Neural Networks.Application to the Dynamic Analysis and Control of an Adjustable Speed Hydro Plant[C].IEEE International Joint Conference on Neural Networks,2006,7:4104-4110
    [26]崔召辉.含交流励磁发电机电力系统稳定分析模型及应用[D].郑州大学硕士学位论文,2007,5
    [27]王勇.异步化同步发电机实用模型及其运行分析[D].郑州大学硕士学位论文,2001.1
    [28]金耀萍,张树伟.我国自行研制的交流励磁变频调速大型发电机[J].发电设备,2004,(1):51-54
    [29]张宇阳,王祥珩.交流励磁发电机系统的动态性能分析[J].电工电能新技术,2002,21(4):41-45
    [30]Dunding Zuo,Takashi Hiyama,Thomas H.Ortmeyer.Stabilization Effect after Installation of Adjustable Speed Generator to Multi-Machine Power System[C].International Conference on Power System Technology,2002,10,1:13-17
    [31]Dunding Zuo,T.Hiyama,T.Funakoshi,T.H.Ortmeyer.Detailed Modeling and Simulation of Adjustable Speed Generator in Matlab/Simulink Environment[C]. IEEE Power Engineering Society Summer Meeting,2000,4:2520-2524
    [32]Chunting Mi,Mariano Filippa,John Shen,Narashim Natarajan.Modeling and Control of a Variable-Speed Constant-Frequency Synchronous Generator With Brushless Exciter[J].IEEE Transactions on Industry Applications,2004,3,40(2):565-573
    [33]Cadirei,I.;Ermis,M.Performance evaluation of a wind driven DOIG using a hybrid model[J].IEEE Transactions on Energy Conversion,1998,6,13(2):148-155
    [34]Janaka B.Ekanayake,Holdsworth,XueGuang Wu,and Nicholas Jenkins.Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines[J].IEEE Transactions on Power Systems,2003,5,18(2):803-809
    [35]M.B.Mohamed,M.Jemli,M.Gossa,K.Jemli.Doubly fed induction generator (DFIG) in wind turbine Modeling and power flow control[C].IEEE International Conference on Industrial Technology(ICIT),2004,12,2:580-584
    [36]Pablo Ledesma,Julio Usaola.Doubly Fed Induction Generator Model for Transient Stability Analysis[J].IEEE Transactions on Energy Conversion,2005,6,20(2):388-397
    [37]Pablo Ledesma,Julio Usaola.Effect of Neglecting Stator Transients in Doubly Fed Induction Generators Models[J].IEEE Transactions on Energy Conversion,2004,6,19(2):459-461
    [38]Yazhou Lei,Alan Mullane,Gordon Lightbody,Robert Yacamini.Modeling of the Wind Turbine With a Doubly Fed Induction Generator for Grid Integration Studies[J].IEEE Transactions on Energy Conversion,2005,1-8
    [39]杨顺昌,廖勇,漆小龙.动态同步轴系及其应用[J].电工技术学报,1999,14(2):42-46
    [40]M.G.loannides.State Space Formulation and Transient Stability of the Double Output Asynchronous Generator[J].IEEE Transactions on Energy Conversion,1993,12,8(4):732-738
    [41]林瑞光,赵荣祥,黄进,许大中.水轮发电机交流励磁变速运行的控制策略[J].电工技术学报,1995,(03):1-5.
    [42]李辉,杨顺昌,廖勇,何蓓.变速恒频双馈发电机励磁控制策略综述[J].电工技术杂志,2002,(12):5-8
    [43]于世涛,颜湘武,刘树勇,李和明.交流励磁发电机定子磁场定向矢量控制[J].华北电力大学学报,2005,3,32(2):10-14
    [44]Yifan Tang,Longya Xu.A Flexible Active and Reactive Power Control Strategy for a Variable Speed Constant Frequency Generating System[J].IEEE Transactions on Power Electronics,1995,7,10(4):472-478
    [45]R.Pena,J.C.Clare,G.M.Asher.Doubly Fed Induction Generator Using Back-to-back PWM Converters and its Application to Variable-speed Wind-energy Generation[J].IEE Proc.-Electr.Power.Appl.,1996,143(3):231-241
    [46]Pena R.,Cardenas R.,Clare J.Control Strategy of Doubly Fed Induction Generators for a Wind Diesel Energy System[J].IECON 2002,4:3297-3302
    [47]Krzeminski Z.Control System of Doubly Fed Induction Machine Based on Multiscalar ModeI[C].IFAC 11 th World Congress.Tallin.1990,185-190
    [48]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D]华中科技大学,2005,3
    [49]梁志翔,杨顺昌,秦哭鸿,徐国禹.异步化汽轮发电机的双通道励磁控制[J].重庆大学学报,1995,11,18(6):96-102
    [50]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90
    [51]廖勇,杨顺昌.双馈发电机考虑主磁路饱和数学模型[J].电工技术学报,1996,8,11(4):1-5
    [52]廖勇,杨顺昌.交流励磁发电机参数变化时的解耦励磁控制[J].中国电机工程学报,1998,19(2):37-46
    [53]E.D.Jaeger,N.Janssens,B.Malfliet,etal.Hydro Turbine Model for System Dynamic Studies[J].IEEE Trans on PWRS.1994,9(4):1709-1715
    [54]李艳军.水电站动态过程及其对电力系统稳定性的影响[D],郑州大学硕士学位论文,2005,5
    [55]殷豪,孟安波,祁兴会,陈德新.神经网络在水轮机建模中的应用[J].大电机技术,2004,(6):39-43
    [56]刘玉梅,王金华.水轮机被控系统的特征及其数学模型的建立[J].大电机技术.1999,(5):44-50
    [57]高慧敏,刘宪林,徐政.水轮机详细模型对电力系统暂态稳定分析结果的影响[J].电网技术.2005,29(2):5-8
    [58]Mansoor.Reproducing Oscillatory Behaviour of a Hydroelectric Power Station by Computer Simulation[J].Control Engineering Practice.2000,8(11):1261-1272
    [59]刘宪林.基于同步机和水系统详细模型的电力系统小扰动稳定研究[D].哈尔滨:哈尔滨工业大学,2002
    [60]王玲花,沈祖诒,陈德新.水轮机调速器控制策略研究综述[J].水利水电科技进展.2002,(2):56-62
    [61]沈祖诒.水轮机调节系统分析[M].水利电力出版社,1991,10,7-9
    [62]方红庆,孙美凤,沈祖诒.水轮机调节系统控制策略综述[J].人民长江,2004,(1):33-35
    [63]高尾桑原(日),连希德.调速水泵蓄能机组控制系统的研制[J].国外大电机,1991,(4):69-74
    [64]赵林明.交流励磁调速水轮发电机组调节特性的数学模型[J].大电机技术,1996,11(04):13-15
    [65]李辉,杨顺昌.双馈水轮发电机系统的优化调节特性模型[J].电网技术,2005,29(09):31-35
    [66]颜湘武,于世涛,朱凌,李和明.异步化同步发电机的静态稳定性研究[J].中国电机工程学报,2002,9,22(9):89-93
    [67]徐明义,田桂林,康而良.变速运行水轮发电机有功调节的计算机仿真[J].大电机技术,1998,(01):6-9
    [68]ZUO Dun-ding,T.Hiyama,T.Akine,T.H.Ortmeyer.Stabilization Effect of Muliti-Machine Power System by Using Adjustable Speed Generator[J].Transactions of Nanjing University of Aeronautics and Astronautics,2003,6,20(1):58-59
    [69]袁淼,倪林林.潘家口抽水蓄能机组变速运行的模拟试验[J].水力发电学报,1992,(01):17-27
    [70]程光华.响洪甸抽水蓄能电站可调速机组方案[J].水利水电技术,2000,(02):38-40
    [71]赵琨,史毓珍.浅谈连续调速抽水蓄能机组的应用[J].水力发电,2000,(04):34-37
    [72]雷英杰,张善文,李续武,周创明.MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社,2005,4:1-4
    [73]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计[M].电子工业出版社,2003,1:177-178