非均质稠油油藏复合调驱技术实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界稠油资源极为丰富,稠油资源的开发在石油工业当中占据了重要的地位,但大部分稠油资源分布在疏松砂岩中;稠油本身物性决定了以强化采油为主,目前只有蒸汽热采(蒸汽吞吐和蒸汽驱)用于工业性开采。在稠油热采过程中,稠油油藏的疏松砂岩储层特征和蒸汽本身性质及其冲刷,造成了开发中出砂、汽窜等现象,严重影响了开发效果;针对蒸汽热采中出砂、汽窜等问题,本文提出了具有温度自适应性的复合调驱技术,即在前置液成胶固化后的防砂/封堵基础上,结合温敏凝胶体系可逆温敏增稠特性。
     本文首先采用自由基水溶液聚合法合成了三元共聚物P(A-AM-B)和离子型四元共聚物P(A-AM-NaAA-B),利用IR等技术对三元/四元共聚物进行了表征,确定了其组成和结构,且此三元/四元共聚物具有可逆热增稠特性,即在低温下粘度小为聚驱、高温下粘度增大具有封堵作用。温敏行为研究结果表明,在浓度高于一定值(质量浓度为2.0%),温度高于低临界溶解温度LCST时,体系形成具有三维网络结构的凝胶体系,且粘度随温度增加而增大,外界离子的加入增强了体系的温敏效果,表明合成出的三元/四元共聚物具有较好的抗温抗盐能力;但P(A-AM-NaAA-B)增粘效果好于P(A-AM-B),而稀溶液体系不存在LCST。同时结合DSC、DLS、荧光光谱等技术,利用渗透压动力学模型从理论角度探讨了该凝胶的温敏机理。
     利用HAAKE流变仪研究了P(A-AM-NaAA-B)凝胶体系的动静态剪切性能,结果表明该凝胶体系具有剪切变稀性,属于假塑性流体。温度范围内损耗角从56.27°递减到31.04°,此时亚溶液从粘性流体转变为粘弹性流体,并利用改进橡胶理论模型分析了体系的力学强度。在蠕变研究基础上,结合实验结果推导出了该凝胶的动力学模型。通过室内岩心驱替实验评价了温敏凝胶体系的封堵性能及驱替效果,指出高温下封堵率高于50%,而低温下只有9.8%,说明此凝胶体系具有温度自适应性;温度为65℃时,室内物理模拟实验结果表明提高采收率最高值可达18%左右。同时建立了笼统注入下对非目地层的损害程度数学模型,并评价了低温下(30℃)该凝胶的伤害程度;利用动态注入多轮次蒸汽压力反映了该凝胶封堵性能,结果表明在多轮次后仍对蒸汽具有封堵性。
     考虑到稠油油层出砂及合成的四元共聚物用量大等问题,提出了利用水溶性酚醛树脂与无机硅化物在酸性下复配作为防砂/封堵的前置液。通过正交实验优选出了前置液的最佳配方,并考察了稳定性、抗盐性及耐酸碱性等,结果表明330℃下比较稳定,Ca2+>0.5%或pH>11下90h不能成胶固化,但能基本满足蒸汽热采要求;为了保证前置液固化后具有一定渗透性,在前置液中加入了增孔剂,加量>40%时渗透率高于1.17×10-3μm2。对添加增孔剂的前置液进行了岩心流动实验,表明前置液固化后具有较高的封堵率(>95%)和突破压力梯度(>9.3MPa/m),但选择性注入较差,渗透率极差在17.64时剖面改善率才为87.9%。同时利用前置液动静态防砂实验研究了其防砂效果,并从键能和纳米级颗粒间作用分析了其耐温性和防砂功能的机理。
     最后室内研究了前置液与温敏凝胶相结合的复合调驱技术,通过正交实验测试了不同注入方式下的调驱效果,并利用软件拟合了实验结果,结果表明复合体系具有较好的温度自适应性,并预测了调驱指标,分析了实验值与拟合值间的误差(最大为5.10%);根据地质情况利用拟合关系式可以确定前置液与温敏凝胶的用量,从微观上探讨了温敏凝胶的自适应性复合调驱机理。针对温敏凝胶对温度敏感性效应,建立了温度场对流体渗流运动影响下的多场耦合动力学模型,在理论分析基础上详细推导了蒸汽热采中汽窜体积,并分析了调堵参数优化原理,为现场施工提供理论依据。
In the world, heavy oil resources are extremely rich; their exploitation plays an important role in petroleum industry. But most heavy oil resources are distributed in loose sandstones. The physical property itself decides that heavy-oil resources must be exploited by enhanced oil recovery technique; but at present, only the thermal recovery method (mainly refers to steam stimulation and steam flooding) has been used. In the thermal recovery process, loose sandstone reservoir characteristics, steam property and its washing cause sand production, steam fingering/channeling and so on, which influence the exploitation effect. Due to these problems, based on sand control /sealing of compound preflush solidification, combined with the reversible temperature-sensitive thickening characteristic of gel system, the self-adaptive compound profile-control and oil displacement technology is proposed in this paper.
     Firstly by using free radical aqueous solution polymerization, ternary copolymer P (A-AM-B) and ionic tetra-copolymer P(A-AM-NaAA-B) are synthesized; and then they are characterized to determine their composition and structure by IR technique and so on. And the ternary/tetra-copolymer have the unique performance of reversible thermal thickening which it can be as polymer flooding at low-temperature and sealing at high-temperature. Temperature sensitive performance study illustrates that, when concentration is above certain value ( mass concentration is 2.0%) and temperature is above low critical solution temperature-LCST, the gel system with 3D net structure is formed; viscosity increases with temperature; the addition of external ion strengthen temperature-sensitivity; these show that the ternary/tetra-copolymer have a good heat and salinity tolerance. But the tackifying effect of P (A-AM-NaAA-B) is better than that of P (A-AM-B); and LCST doesn’t exist in dilute solution. At the same time, combined with the technique of DSC, DLS and fluorescence spectrum, by using of osmotic pressure kinetic model, the gel temperature-sensitive mechanism is investigated theoretically.
     The dynamic and static shear performance of P (A-AM-NaAA-B) gel system is researched by HAAKE rheometer; and the result demonstrates that this gel system has shear-thinning property and it belongs to pseudoplastic fluid. When temperature is in the range of and loss angle decreases from 56.27°to 31.04°, the inferior changes from viscous fluid to viscoelastic fluid; and the mechanical strength is analyzed by improved rubber theoretical model. On the creep study basis, combined with the experiment result, the system’s kinetic model is derived. The sealing and oil displacement performance of the temperature-sensitive gel system is evaluated by indoor core flooding test which show that the blocking ratio is above 50% at high temperature and only 9.8% at low temperature; these show that the gel system is temperature self-adaptive. At the temperature of 65℃, the indoor physical simulation test show that the oil recovery can be increased by about 18%. At the same time, the mathematical model of damage degree for non-destination when generally injected, is set up; and the gel damage degree is evaluated at low temperature (30℃). Making use of that the dynamic injection multi-cycle steam pressure reflects the gel blocking property, the result illustrates it still has the blocking ability for the steam after multi-cycle.
     Considering the problems of heavy oil reservoir sand production and large consumption of synthesized tetra-copolymer, it is proposed that the water soluble phenolic resin and inorganic silicide are compounded at acid condition to work as the sand-control/sealing preflush. The optimum recipe of the preflush is selected by orthogonal test; and its stability, salt resistance and acid and alkali resistance are observed; the result shows that it is comparatively stable at 330℃and when Ca2+>0.5% or pH>11 it can’t be solidified after 90h but can meet the thermal recovery requirement. In order to guarantee that it has a certain permeability when preflush is solidified, pore-agent is added into preflush; when added more than 40%, the permeability is above 1.17×10-3μm 2. The core flooding test show that preflush with pore-agent after solidification has a high blocking ratio (>95%) and breakthrough pressure gradient (>9.3Mpa/m), but its selective injection is bad-when permeability range is 17.64, the profile improvement ratio is only 87.9%. The sand-control effect of the preflush is studied by dynamic and static tests; and its mechanism of temperature-resistance and sand-control is analyzed from the aspect of bond energy and interaction between nano-paticles.
     Finally, the compound profile-control and oil displacement technology of preflush and temperature-sensitive gel is studied by indoor experiments; the profile-control and oil displacement effects in different injection manners are measured by orthogonal tests. And a software is programmed to fit the experiment data; the result show the compound system has a good temperature self-adaptivity; and the profile-control flooding index is predicted; the error (5.10% as the maximum) between experimental value and fitted value is analyzed. The consumption amount of preflush and temperature-sensitive gel can be determined by the fitting relation according to the geological conditions; and the self-adaptive compound profile-control flooding mechanism of the temperature-sensitive gel is investigated microscopically. Due to the gel temperature-sensitivity, the multi-field coupling kinetic model is set up, considering the influence of temperature field for fluid seepage; the steam channeling volume is derived from the theoretical analysis; the principle of optimizing profile-control flooding parameters is analyzed; these provide theoretical basis for field treatment.
引文
[1]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,2001,8(2): 98-103
    [2]第七届重油及沥青砂国际会议论文集[C].Douglas Lanier,重油-21世纪的主要能源,田浩泽,1998:31-36
    [3]牛嘉玉.稠油资源地质开发及利用[M].北京:科学出版社,2002:10-13
    [4]张庆茹.中国陆上稠油资源潜力及分布特征[J].中外科技情报,2007,(1):2-3
    [5] Dusseault,M.B.Massive Sand Production[A]:New Heavy oil Tetchy,Ontario. 1996
    [6] Tremblay,B,Sed8wick,G.and Forshaw,K.International Heavy oil Symposium Calgary[C],June,1995:19-2l
    [7]王灵奎等.稠油油藏的非均质研究[M].测井技术,2000,24(2):96-101
    [8]吴奇等编译.国际稠油开采技术论文集[M].北京:石油工业出版社,2002,4:13-17
    [9]常子恒主编.石油勘探开发技术(上册) [M]. 2001:472-475
    [10] Davies D R, Applications of Polymersin Sand Control, PROC1991
    [11] FaderF D, Newlow-cost Resin System for Sand Water Control.SPE:24051
    [12] Jennings A R JR,Removing Particulate Mater from a NoN-dissolubleSandC ontrolP ack, US4708206
    [13] Jennings A RJR, Stowe L R, Hydraulic Fracturing with a Refractory Proppant for Sand Control, US4817717
    [14] Scott L A, Dubois ML, Filtering Media for Controlling the Flow of Sand During Oil Well Operations, US4821800
    [15] SilvaD E,e susB, Ecopetroluses Aluminum-Hydroxychloride to Stabilize Claysina Water flooding Project, SPE:21476
    [16] Lester G S, Malbrel C A, Whitlock M B, Field Application of a new Cleanable and Damage Tolerant Down hole Screen, SPE:30132
    [17]朝霞.油水井出砂后期防砂技术研究[C].中国石油大学(华东)硕士论文,2008:8-10
    [18]于萍.稠油出砂区块开采技术[J].学术论坛,2009,22:235
    [19]D.V.Yannimaras and R.K.Kobbe Evaluation of Steam-Surfactant-Fuel Gas Co-Current injection Into Two Patterns of a Mature Steam flood. SPE:17382
    [20]管礼和,潘建华.超稠油蒸汽吞吐调剖技术[J].特种油气藏,2002,9(6):57-60
    [21]郭斌建.超稠油热采井整体调剖封窜技术的研究与应用[J].精细石油化工进展,2009,5(4):55-59
    [22]郭东红,辛浩川等.稠油热采高温防窜剂的性能研究[J].精细石油化工进展,2006,7(10):1-3
    [23]楼洁凌.蒸汽吞吐高温调剖技术[J].石油知识,2009,4
    [24]潘竞军等.高温封堵技术在克拉玛依油田稠油开采中的应用[C].第七届重油及沥青砂国际会议论文集,卷(上),1998:137-144
    [25]刘巍,曲萍萍等.无机沉淀物作为堵水调堵剂的研究[J].无机盐工业,2007,39(1):41-43
    [26]赵福磷,林宝树等.沉淀型双液法培剂的平面模型封堵试验[J].石油勘探与开发,1987,(6):53-61
    [27]张贵才,孙铭勤等.钙土悬浮体-水玻璃双液法调堵剂[J].油田化学,1997,14(3):230-232、236
    [28]戚亚光,薛叙明主编.高分子改性[M].北京:化学工程出版社,2005:168-169
    [29]李克华,戴彩丽等.粘土-聚丙烯酰胺复台调堵剂积累膜堵水机理研究[J].江汉石油学院学报,1997,19(3):68-71
    [30] R.L.Eson and R.W.Cooke. A Successful High-Temperature Gel System to Reduce Steam Channeling SPE:24665
    [31] L.N.Morgenthaler et al. A Novel Process for Profile Control in Thermal Recovery Projects SPE:28504
    [32] J·I·迪斯塔肖[美].油田化学剂新发展(专利文献汇编)[M].北京:石油工业出版社,1988:34-98
    [33]解通成,田玉珠.木质素磺酸钙-聚丙烯酰胺复合冻胶调堵剂[J].油田化学,1986,3(3):142-148
    [34]张方礼.辽河油田稠油注蒸汽开发技术[M].北京:石油工业出版社,2007:101-104
    [35]侯玲、马宝歧.改性橡碗拷胶高温剖剂[J].西安石油学院学报,1990,5(1):67-73
    [36]苗和平,王香增等.酚醛树脂调堵剂PD-96的研制与应用[J].油田化学,1999,16(1):21-23
    [37] Moritis.G. Heavy Oil Expansions Gather Momentum Worldwide[J],Oil&Gas Journal. 1995,93(33):3l-38
    [38]陈立滇等编译.油田化学新进展[M].北京:石油工业出版社,1999:112-125
    [39] Fitch, J.P. et al. Chemical Diversion of Heat will improve Thermal Oil Recovery SPE:6172
    [40] Owete, O.S. et al. CONF:800750, 1980
    [41] Doscher, T.M. et al. Field Demonstration of Steam Drive With Ancillary Materials SPE:9777
    [42] Doscher, T.M. et al. Analysis of Five Field Tests of Steamdrive Additives SPE:12057
    [43] Eson, R.L et al. North Kern Front Field Steam Drive with Ancillary Materials SPE/DOE:9778
    [44] Eson, R.L et al. Evaluation of a Conventional Steam Drive With Ancillary Materials: North Kern Front Field SPE:10775
    [45] Navaratil M. et al. Formation Blocking Agents: Applicability in Water and Steamflooding SPE:12006
    [46] Huh, D.G. et al. Comparison of Steady and Unsteady-State Flow of Gas and Foaming Solution in Porous Media SPE:15078
    [47] Tang G Q,Kocscek A R. Trapped gas fraction during steady-state foam flow[J]. Tranaport in Porous Media,2009,65:287-307
    [48]陈福山,张立明.高温蒸汽泡沫驱油技术的研究进展[J].精细石油化工,2008,25(1):76-80
    [49]韩伯惠,郑江红编译.蒸汽泡沫改善流度和调整剖面的现场应用[J].国外油田工程,1997,8:1-6
    [50] Kh Gumersky,I S Dzhafarov,etal. In Situ Generation of Carbon Dioxide:New Way To Inerease Oil Reeovery. SPE:65170
    [51]姚凯,王史文,孙明磊等.井下自生气复合泡沫技术在稠油热采中的研究与应用[J].特种油气藏,2002,9(1):61-64
    [52]徐春碧,王明俭,吴文刚等.一种自生泡沫凝胶复合堵剂的室内研究[J].西南石油大学学报(自然科学版),2009,31(4):138-141
    [53]陈莉主编.智能高分子材料[M].北京:化学工程出版社,2005:1-8、35-39
    [54]胡辉.聚(N-异丙基丙烯酰胺)类聚合物的合成与表征[C].西北工业大学硕士论文,2001:61-80
    [55] Hoffman Allan S. Applications of Thermally Reversible Polymers and Hyderogels inTherapeutic sand Diagnostics[J]. JCottolledRelease, 1989.6:297-305
    [56] Takagi T. A concept of intelligent materials[J].Journal of intelligent materials ystem structure, 1990,1(1):149-156
    [57] Kishi R, Hirasa O, Ichijo H. Thermo-Responsive Polymer Gels and Thermo tropic Liquid-Crystalline Polymer Gels[J].ZairyoKagaku, 1995,32(2):64-67
    [58] Esen A, Bekturov Vera A. Swelling behavior of a non-ionic poly(N-vinyl-2-pyrrolidone) gel in a linear poly(acrylic acid) solution [J]. Micromoles. Chem.1999, 200(2):431-435
    [59]刘莉,张微微,李青山等.智能高分子与高分子凝胶[J].化学工程师,2003,95(2):26-28
    [60]金曼蓉,陈四文,王昌华. N-异丙基甲基丙烯酰胺类凝胶及其温敏特性[J].高分子学报,1995,3(3):321-326
    [61]蔡超.温敏两亲性接枝共聚物HPAM-g-PNIPA-co-DMAM的合成及性能研究[C].天津大学硕士论文,2004:12-14
    [62]潘则林,王才主编.水溶性高分子产品应用技术[M] .化学工业出版社,2006:4-8、21-22、44-56
    [63]杨百勤主编.物理化学实验[M].上海:中国纺织出版社,2006:104-106
    [64]王正熙.聚合物红外光谱分析鉴定[M].四川大学出版社,1989:80-85
    [65]蔡正千主编.热分析[M].北京:高等教育出版社,1993:118-132
    [66]方开泰,马长兴主编,正交与均匀试验设计[M].北京:科学出版社,2004:14-24
    [67] Padmanabha R M, Mohana R K.Design and synthesis of polymers[J].J Appl ploy Sci, 2001, 80:2635-2639
    [68] FAN X D, Uludag H. Polymer Preprints, 1999, 41(1): 61-62
    [69]曾钫,刘新星,童真. NIPA/DMAA共聚物及其水溶性相变温度的研究[J].高分子材料科学与工程,1997,(5):100-103
    [70] Katono H, Sanui K. Drug release of behavior and deswelling kinetics of thermo-responsive IPNs composed of poly (acryl amide-co-butyl methacrylate) and poly (acrylic acid). Polymer journal, 1991, 23 (10): 1179-1189
    [71]陈国珍主编.荧光分析法[M].北京:科学技术出版社,1985:5-30
    [72] De Gennes P.E.,Scaling Concepts in Polymer Physics,Cornell Univ Press, Ithaca, NY,1979:320-324
    [73]许元泽.高分子结构流变学[M].四川成都:四川教育出版社,1988:196
    [74] Goddard E D. Polymer-surfactant interaction part I,uncharged water–soluble polymers and charged surfactants [J]. Colloids and Surfaces, 1986, 19:255-300
    [75]管海凤.改性β-环糊精系水凝胶的合成与性能研究[C].广东工业大学化学工艺,2005:8-11
    [76]贡长生.新型功能材料[M].北京:化学工业出版社,2001:101-104
    [77] Flory P J,Huggins J. D. Principle of polymer Chemistry [M]. Comell University Press, Ithaca, New York, 1953:345-461
    [78] Tanaka Toyoichi, Gorti Sridhar, Konnert John,et al. Lysozyme diffusion adjacent to the crystal surface. Journal of crystal Growth, 1981, 232(1):256-261
    [79]刘晓华,王晓工等.智能型水凝胶结构及其响应机理的研究进展[J].化学通报,2000,(10):1-6
    [80] Mewis J, Vermant J. Rheology of Sterically Stabilized Dispersions and Latices, Progress in Organic Coatings, 2000, 40:111-117
    [81] Russel W R,Saville D A,Schowaler W R.Colliodal Dispersions,Cambridge: Cambridge University Press,1989:310-326
    [82] De Kruif C G,Van Iersel E M F,Vrij A.Hard Sphere Colloids Dispersions: Viscosity as a Function of Shear Rate and Volume Fraction, J Chem. Phys. 1986, 83: 4717-4725
    [83]左榘.激光散射原理及在高分子科学中的应用[M].河南郑州:河南科学技术出版社,1994:251-254
    [84]董姝丽,徐桂英.激光光散射和电子自旋共振技术研究十二烷基硫酸钠与聚乙烯吡咯烷酮的相互作用[J].化学学报,2004,62(7):674-679
    [85] Cheng R. On the concentration regimes of a flexible chain polymer solution. Macromolecular Symposia, 1997, 124: 27-34
    [86]邓字巍,胡晓熙等.微波法制备聚(苯乙烯-N-异丙基丙烯酰胺)热敏性微球[J].高分子学报,2005,2:293-29
    [87]徐佩弦编著.高聚物流变学及其应用[M] .北京:化学工业出版社,2003:1-8、131-133
    [88] Gebhard Schramm,李晓晖译.实用流变测量学[M].北京:石油工业出版社,1998:7-9
    [89]邝清林.温敏甲基纤维素基凝胶的转变及性质研究[D].天津大学材料科学与工程学院,2004:12
    [90]李兆敏,蔡国琰编著.非牛顿流体力学[M].山东东营:石油大学出版社,1998:1-13
    [91] Macosko,C.W,Rheology Principles, Measurements, and Applications Wiley-Vch,1994:175-231
    [92]陈明强,孙志强,王江顺.配注过程中聚合物溶液的粘度损失分析[J].西安石油大学学报(自然科学版),2007,22(3):56-59
    [93]夏惠芬著.粘弹性聚合物溶液的渗流理论及其应用[M].北京:石油工业出版社,2002:21-48
    [94] Walters,K,Relation Between Coleman and Noll,Rivlin and Ericksen,Green and Rivlin,and oldroyd Fluids,ZAMP,1970,(21):586-592
    [95]周持兴主著.聚合物流变性实验与应用[M].上海:上海交通大学工业出版社,2003:5-6、36-44
    [96] L. Li, P. M. Thangamathesvaran, C. Y Yue, K. C.Tam, X. Hu, Y C. Lam, Gel of methylcellulose in water, Langmuir 2001, 17, 8062
    [97] Masanobu Takeuchi,Shinji Kageyama,Hidekazu Suzuki,et al.Rheologicalproperties of reversible thermo-setting in situ gelling solutions with themethylcellulose-polyethylene glycol-citric acid ternary system.Colloid and polymer science.2003,281:1178-1183
    [98] J. D. Ferry, Vscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York,1980
    [99] B.Cabane, K.Lindell, S.Engstom, B.Lindman, Micro phase separation in polymer + surfactant systems, Macromolecules 1996, 29, 3188.
    [100] W. Brown, R. A. Wiskston, Viscosity-molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation, Eur. Polym. J. 1965, 1, 1
    [101]江体乾著.化工流变学[M].上海:华东理工大学出版社,2004,4:116-161
    [102] Peppas N A, Merrill E W.Crosslinked polyvinyl alcohol) hydrogels as swollen elastic networks.Journal of Applied Polymer Science,1977, 21:1763-1770
    [103] D.M. Dolan, J.L. Thiele and G.P. Willhite, Effects of pH and Shear on the Gelation of a Xanthan System, SPE:25454
    [104]闵召辉,黄卫,钱振东.环氧树脂沥青混合料粘弹行为的力学模型分析[J].公路交通科技,2007,24(7):6-10
    [105]贺建国,刘忠富,高垠等.新疆顶山软岩隧洞工程反分析研究[J].东北水利水电,2006,24(259):1-5
    [106]李永太.弱凝胶调驱技术研究[C].西南石油大学博士学位论文,2004:52-54
    [107] Seright,R.S.Placement of Gel to Modify Injection Profiles,SPE:17332
    [108] Liang,J.r,Seright,R.S.Gel Placement in Production Wells,SPE:20211
    [109] Y-S.Wu,Karsten. Pruss.Flow and displacement of bingham non-newtonian fluids in porous media[J].SPE Reservoir Engineering,1992,8:369-376
    [110]胡常忠.稠油开采技术[M] .北京:石油工业出版社,1998:21-23
    [111]李仙根,解通成等.油溶性酚醛树脂堵水剂的选堵性能的实验研究[J].石油大学学报(自然科学版),1992,16(4):86-89
    [112]黎钢,张松梅,郝立根.两步碱催化法合成水溶性酚醛树脂[J].中国胶粘剂,2003,12(1):18-21
    [113]石油天然气行业标准《油田酸化互溶剂性能评价方法(SY/T5754-1995)》
    [114]石油天然气行业标准《油气储层评价方法(SY/T6285-1997)》
    [115]张国荣,严锦根,陈应琳等.FSJ-Ⅲ酚醛树脂胶粘剂的地下合成[J].中国胶粘剂,2000,10(3):24-26
    [116]戴彩丽,张贵才,周洪涛.中低温油水井固砂剂实验研究[J].石油大学学报(自然科学版),2001,25(4):58-61
    [117]伍林,欧阳兆辉,曹淑超等.酚醛树脂耐温性的改性研究进展[J].中国胶粘剂,2005,14(6):45-49
    [118]吴奇等编译.国际稠开采技术论文集[M] .北京:石油工业出版社,2002,4:13-17
    [119]吴华,董宪武著.基础化学[M].北京:化学工业出版社,2008:174-188
    [120]陈铁龙,周晓俊,赵秀娟等.弱凝胶在多孔介质中的微观驱替机理[J].石油学报,2005,26(5):74-78
    [121]孙更涛,李华斌,黎锡瑜等.下二门油田微凝胶驱微观驱油机理实验研究[J].石油钻采工艺,2005,27(2):38-43
    [122]韩洪升,魏兆胜,崔海青等编.石油工程非牛顿流体力学[M] .黑龙江哈尔滨:哈尔滨工业大学出版社,1993:22-26
    [123]柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水,1997,19(2):59-62
    [124] Philip, J.R. Evaporation, moisture and heat fields in the soil [J]. Metoro, 1957,14:354-366
    [125]盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,25(S1):3028-3033
    [126]王自明,杜志敏.弹性油藏中多相渗流的流-固-热耦合数学模型[J].大庆石油地质与开发,2003,22(1):29-37
    [127]陈益峰,周创兵,周创兵等.多相流传输THM全耦合数值模型及程序验证[J].岩石力学与工程学报,2009,28(4):649-665
    [128]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流数学模型[J].水动力学研究与进展,2003,18(4):419-426
    [129]催传智,栾志安.热-聚合物驱油研究[J].石油学报,1997,18(3):56-61
    [130]朱怀江,刘玉章,绳德强等.弱凝胶对油水相对渗透率的影响[J].石油学报,2002,23(3):69-72
    [131]吴行才,朱维耀,马庆坤等.可动凝胶体系非线性流渗流特征及数学模型研究[J].石油钻采工艺,2006,28(5):42-45
    [132]凌建军,宋振宇.蒸汽吞吐阶段“汽窜”现象实质研究[J].江汉石油学院学报,1996,18(1):58-61
    [133]张豆娟,郭海敏,戴家才等.稠油油藏蒸汽驱阶段汽窜的研究[J].中国测试技术,2004,30(3):45-50
    [134]张天孙主编.传热学[M].北京:中国电力出版社,2006:60-76
    [135]翟云芳.渗流力学[M].北京:石油工业出版社,2003:80-85
    [136]杨继盛.采气工艺基础[M].北京:石油工业出版社,1992:52-56