人类免疫缺陷病毒B亚型在中国的起源与传播过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前中国HIV-1的流行传播主要由四种亚型推动,分别是CRF07_BC,CRF08_BC, CRF01_AE亚型以及B'亚型。其中B'亚型在中国HIV-1疫情的发展中扮演着比较特殊的角色。B'亚型最初发现于泰国吸毒人群中,并随后扩散到周围的缅甸,马来西亚,印度以及中国的吸毒人群中。B'亚型同时还是六种流行重组亚型的重要组成部分,包括CRF07_BC, CRF08_BC,CRF15_01B,CRF34_01B,CRF33_01B以及CRF48_01B。
     最近的研究表明B'毒株是中国中原地区HIV-1在既往献血人群中(Formerplasma donors, PFDs)快速传播的起始毒株。据2005年统计,90年代早期到中期通过献血途径感染HIV-1的报告人数为约为70,000。感染最严重的几个省份依次为河南,安徽,湖北,山东和山西。而最近的研究表明,在该地区HIV-1正在由高危人群向普通人群尤其是异性性活动人群扩散。
     近期,最新的动态系统发育学和分子钟理论的方法被广泛用于重建某一流行疾病的流行历史和起源时间的计算等。1989年,云南省瑞丽市在静脉吸毒人群(injecting drug user, IDU)中筛查出146例HIV-1感染者,这是我国境内首次爆发的HIV-1疫情,表明HIV已在我国开始流行。分子流行病学调查结果表明,该人群流行的HIV-1毒株为B'毒株。上世纪90年代中期,我国中原地区因不规范采血导致既往献浆(血)人群(former plasma donor, FPD)大量感染HIV-1病毒。随后的研究发现,该毒株同样是B'亚型毒株,这是HIV-1B'毒株在我国境内引发的另一流行。最近的一项相关研究表明在中原地区既往献血人群中流行的HIV-1B'亚型毒株相对于金三角地区流行的B'毒株形成独立的流行簇,这表明其与金三角地区早期的B'毒株流行有紧密关系。但是上世纪90年代中期在我国中原地区由B'毒株引起的疫情与最早发现于我国云南地区由B'亚型毒株引起的疫情之间是否存在内在关联并不清楚。其次最早发现于我国云南地区的B'亚型毒株的来源也并不清楚。第三,B'亚型毒株最初经由何种方式在我国中原地区进行传播以及后续如何进行扩散也未进行深入的探讨。
     为探讨HIV-1B'亚型毒株在中国的起源,进化历史和当下的流行态势,本研究利用47条1993-2009年间来自泰国,缅甸和中国11个省份的B'亚型近全长基因组序列(near full-length genomes,NFLGs)。通过Bayesian分子钟理论对新获得的NFLGs序列进行分析,推算其最近共同祖先株的起源时间(time of the mostrecent common ancestor, tMRCA),利用合并理论并结合现场流行病学数据重建subtype B'在中国时间-空间的进化过程。同时在近全长基因组研究的基础上,对不同的基因区进行分析,比较不同基因去结果的差异,发现可以吻合近全长基因组的结果的基因区,以节省成本和资源。
     研究结果发现,subtype B'在中国可以分为两组。一组主要由采样于云南省的静脉吸毒人群构成(B'YN),并且在进化树上位于中国B'亚型毒株群体的根部。另一组主要由中国云南省以外的其它省份主要为中原地区来源的既往献血感染人群和异性性传播人群序列组成(B'CN*),同时还包括少量的男男同性恋人群,静脉吸毒人群等。B'YN和B'CN*的最近共同祖先株的起源时间分别为1985年(1983-1987)和1989年(1987-1991)。本研究同时还计算了B'亚型毒株在亚洲的起源时间(B'TH)为1983年(1981-1985)。通过重建B'亚型毒株在亚洲地区的流行史显示其在90年代中期在中国中部地区引起了HIV-1的快速流行。本研究表明中国中原地区B'亚型毒株在既往献血人群和异性性传播人群中的流行起源于中国云南省静脉吸毒人群。河南是B'亚型毒株在中国中原地区扩散的中心,云南省在金三角地区早期B'亚型毒株的流行与中国中原地区B'亚型毒株在既往献血人群和异性性传播人群中的流行起到了一个桥梁作用。
     B'亚型毒株不同基因区分析的结果表明,pol基因系统进化分析的结果与近全长基因组系统进化分析的结果相类似,可以分辨出B'CN*,B'YN,B'TH这三个进化簇,具有较高的分辨率,且流行起始时间的顺序一致。而其他几个基因区,vif, env, nef基因可以将B'CN*与B'YN和B'TH区分开,但不能区分开B'YN与B'TH,至于gag,vpr,vpu基因则不能区分这三个进化簇。基因特征性位点分析发现,pol基因所具有的特征性位点在所有的基因之中是最多的,这可能也是其具有最高分辨率的原因。
     本研究探讨了HIV-1B'亚型毒株在中国的输入、变异和扩散的特点与规律,并预测了其发展趋势,无论对于揭示HIV-1B'亚型毒株遗传变异的基本科学问题还是对控制HIV-1感染流行的防治实践都具有理论指导和实用价值。
The HIV-1epidemic in China is primarily driven by four major strains, includingCRF07_BC, CRF08_BC, CRF01_AE, and subtype B'(the Thailand variant ofsubtype B is also referred as to Thai B. Among these HIV-1strains, subtype B' playsunique roles in the genesis of the HIV-1epidemic in China. HIV-1subtype B' wasoriginally identified among injecting drug users (IDUs) in Thailand and subsequentlydisseminated into IDUs populations in neighboring regions, including Myanmar,Malaysia, Eastern India and China. HIV-1subtype B' is also a component of all6circulating recombinant forms (CRFs) known to date that have emerged in Asia:CRF07_BC and CRF08_BC identified in China; CRF15_01B and CRF34_01Bidentified in Thailand; CRF33_01B and CRF48_01B identified in Malaysia.
     It is found that HIV-1subtype B' is a single founding strain responsible for HIV-1outbreaks among former plasma donors (FPDs) in central China. In2005, about70,000people who were living with HIV-1at the time had been infected throughunhygienic plasma collection from the early to mid-1990s. The most heavily affectedprovinces include Henan, Anhui, Hubei, Shandong, Shanxi and Shaanxi in centralChina. Recent studies showed that HIV-1subtype B' infections were identified amongother populations, especially among heterosexuals, in central China.
     Recently-developed phylogenetic and molecular clock methods have been usedto reconstruct the epidemic history and to estimate the time of the most recentcommon ancestors (tMRCAs). These evolutionary analyses foster understanding of thegenesis of global and regional HIV-1epidemics. The recent study by Li et al.demonstrated that the subtype B' strains responsible for outbreaks among FPDs incentral China formed a distinct monophyletic subcluster within subtype B' andsuggested that subtype B' epidemic among FPDs in central China is most closelyassociated with the early epidemics among IDUs in the Golden Triangle, a majorheroine production area where the boundaries of Myanmar, Laos and Thailand meet.However, details on the precise migration of the HIV-1subtype B' to FPDs andheterosexuals in central China were yet to be unearthed.
     To investigate the origin and evolutionary history of HIV-1subtype B' responsible for the epidemic among injecting drug users (IDUs), former plasmadonors (FPDs) and the subsequent heterosexual transmission in China, a total of47sequences of subtype B' near full-length genomes (NFLGs) from Thailand, Myanmarand11provinces across China during1998-2009were used. The NFLGs weresubjected to Bayesian molecular clock analyses to estimate the time of the mostrecent common ancestors (tMRCA) and to reconstitute the time-space process ofsubtype B' dissemination in China combined epidemic data.
     The study revealed that subtype B' strains in China can be classified into twodistinct subgroups: i) a monophyletic B' cluster (B'CN*) consisting of subtype B'sequences mainly from FPDs and heterosexuals across China outside of Yunnan; ii)B' strains circulating among IDUs in Yunnan (B'YN) that occupy the most basalposition of B' clade in China. The tMRCAof B'YN and B'CN*were estimated to be1985(1982-1987) and1989(1987-1991) respectively. At the same time, the tMRCAofB'YN was estimated to be1983(1981-1985). The skyline plot profile revealed theexplosive nature of subtype B' expansion in central China in the mid-1990s. Ourresults suggest that subtype B' epidemics among FPDs and heterosexuals in inlandChina were most likely originated from a single founding subtype B' strain that hadbeen circulating among IDUs in Yunnan province. Henan province was an epidemiccenter during the spread of HIV-1subtype B' in central China. Yunnan province playsa pivotal role in bridging the pre-existing subtype B' epidemics in Southeast Asia withthe subsequent epidemic among FPDs and heterosexuals in inland China.
     The near full-length genomes of subtype B' were divided into different singlegenes and put into phylogenetic analyses. The phylogenetic analyses of partialfragments showed that pol gene have similar results with that of the near full-lengthgenomes. It can separate the three clusters B'CN*,B'YN and B'TH with highposterior probability. As to other genes, vif, env, nef can separate B'CN*from B'YNand B'TH, but can't separate B'YN from B'TH. The gag,vpr,vpu gene can't separateany of the three clusters. After analyses of signature amino acid sites of each gene,pol gene was found to have the highest number of signature amino acid sites amongthese genes. That should be one of the reasons that pol gene have the highestresolution.
     This study investigated the input, evolution and spread of HIV-1subtype B' inChina and predicted the future trends of this epidemic. It helps to reveal the basicscientific questions of HIV-1evolution and provide reference to the control andprevention of HIV-1epidemic.
引文
[1] Barré-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropicretrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).Science,1983,220(4599):868-71.
    [2] Sugamura, K., Y. Hinuma. Human retroviruses: HTLV-I and HTLV-II.1993:399-436.
    [3] Montagnier, L., J. Chermann, F. Barre-Sinoussi, et al. A new humanT-lymphotropic retrovirus:characterization and possible role in lymphadenophthy andacquired immune deficiency syndromes.1984. In R. C.Gallo, M. E.Essex, and L.Gross(ed.), Human T-cell Leukemia/Lymphoma Virus. p.363-379.
    [4] Levy J. A., A. D. Hoffman, S. M. Kramer, et al. Isolation of lymphocytopathicretroviruses from San Francisco patients with AIDS. Science1984,225:840-842.
    [5] Reeves Jacqueline D, Doms Robert W. Human immunodeficiency virus type2.The Jouranl of General Virology200283(6):1253-65.
    [6] Santiago M. L, Range F., Keele B.F, et al. Simian immunodeficiency virusinfection in Free-Ranging Sooty Mangabeys (Cercocebus atys atys) from the TaiForest, Cote dlvoire: Implications for the origin of epidemic humanimmunodeficiency virus type2. Journal of Virology2005,79(19):12512-27.
    [7] Keele B. F, Van Heuverswyn, F, Li Y et al. Chimpanzee Reservoirs of Pandemicand Nonpandemic HIV-1. Science2006,313(5786):523–6
    [8] Van Heuverswyn Fran, Li Yingying, Neel Cecile, et al. Human immunodeficiencyviruses: SIV infection in wild gorillas. Nature2006,444(7116):164.
    [9] Plantier Jean-Christophe, Leoz Marie, Dickerson Jonathan E, et al. A new humanimmunodeficiency virus derived from gorillas. Nature Medicine2009,15(8):871–72.
    [10] Sharp P. M., Bailes E., Chaudhuri R. R., et al. The origins of acquired immunedeficiency syndrome viruses: where and when?. Philosophical Transactions of theRoyal Society B: Biological Sciences2001,356:867–76.
    [11] Gao Feng, Bailes Elizabeth, Robertson David L, et al. Origin of HIV-1in thechimpanzee Pan troglodytes troglodytes. Nature1999,397(6718):436–441.
    [12] Sousa Jo o Dinis de, Müller Viktor, Lemey Philippe, et al. High GUD Incidencein the Early20th century Created a Particularly Permissive Time Window for theOrigin and Initial Spread of Epidemic HIV Strains. PLoS ONE2010,5(4): e9936.
    [13] Hooper Edward. The river: a journey to the source of HIV and AIDS. Boston,MA: Little, Brown and Co ISBN0-316-37261-79780316372619,2000.
    [14] Korber B, Muldoon M, Theiler J, et al. Timing the ancestor of the HIV-1pandemic strains. Science2000,288:1789-1796.
    [15] Salemi, M.. Dating the common ancestor of SIVcpz and HIV-1group M and theorigin of HIV-1subtypes by using a new method to uncover clock-like molecularevolution. The FASEB Journal2000,15(2):276–78.
    [16] Lemey P. Tracing the origin and history of the HIV-2epidemic. Proceedings ofthe National Academy of Sciences2003,100:6588–92.
    [17] Wertheim J. O., Worobey M. Dating the Age of the SIV Lineages That Gave Riseto HIV-1and HIV-2. PLoS Computational Biology,20095(5): e1000377.
    [18] Osseo-Asare AD. The African Aids Epidemic: A History. Social History ofMedicine,2007,20:401–402.
    [19] Salathe′M, Jones JH. Dynamics and Control of Diseases in Networks withCommunity Structure. PLoS Computational Biology6:11.
    [20] Gray RR, Tatem AJ, Lamers S, et al. Spatial phylodynamics of HIV-1epidemicemergence in east Africa. AIDS,2009,23: F9–F17.
    [21] Rambaut A, Posada D, Crandall KA, et al. The causes and consequences of HIVevolution. Nature reviews Genetics,2004,5:52–61.
    [22] Gilbert MT, Rambaut A, Wlasiuk G, et al. The emergence of HIV/AIDS in theAmericas and beyond. Proceedings of the National Academy of Sciences of theUnited States of America,2007,104:18566–70.
    [23] Hue′S, Pillay D, Clewley JP, et al. Genetic analysis reveals the complexstructure of HIV-1transmission within defined risk groups. Proceedings of theNational Academy of Sciences of the United States of America,2005,102:4425–9.
    [24] Perrin L, Kaiser L, Yerly S. Travel and the spread of HIV-1genetic variants. TheLancet,2003,3:22–27.
    [25] Guimaraes ML, Vicente AC, Otsuki K, et al. Close phylogenetic relationshipbetween Angolan and Romanian HIV-1subtype F1isolates. Retrovirology,2009,1958:1–11.
    [26] Bello G, Passaes CP, Guimaraes ML, et al. Origin and evolutionary history ofHIV-1subtype C in Brazil. AIDS,2008,22:1993–2000.
    [27] Murphy E, Korber B, Georges-Courbot MC, et al. Diversity of V3regionsequences of human immunodeficiency viruses type1from the central AfricanRepublic. AIDS Res Hum Retroviruses.1993,9(10):997-1006.
    [28] Li WH, Tanimura M, Sharp PM. Rates and dates of divergence between AIDSvirus nucleotide sequences. Mol Biol Evol,1988,5(4):313-30.
    [29] Smith TF, Srinivasan A, Schochetman G, et al. The phylogenetic history ofimmunodeficiency viruses. Nature,1988,333(6173):573-5.
    [30] Myers RA, Patel JD, Joseph JM. Identifying HIV-2-seropositive individuals byreevaluating HIV-1indeterminate sera. J Acquir Immune Defic Syndr.1992,5(4):417-23.
    [31] Gürtler LG, Hauser PH, Eberle J, et al. A new subtype of humanimmunodeficiency virus type1(MVP-5180) from Cameroon. J Virol.1994,68(3):1581-5.
    [32] Simon F, Mauclère P, Roques P, et al. Identification of a new humanimmunodeficiency virus type1distinct from group M and group O. Nat Med.1998,4(9):1032-7.
    [33] Robertson DL, Sharp PM, McCutchan FE, et al. Recombination in HIV-1.Nature.1995,374(6518):124-6.
    [34] Robertson DL, Hahn BH, Sharp PM. Recombination in AIDS viruses. J MolEvol.1995,40(3):249-59.
    [35] Rousseau CM, Learn GH, Bhattacharya T, et al. Extensive intrasubtyperecombination in South African human immunodeficiency virus type1subtype Cinfections. J Virol.2007,81(9):4492-500.
    [36]. Pang W, Zhang C, Duo L, et al. Extensive and complex HIV-1recombinationbetween B', C and CRF01_AE among IDUs in Northern Myanmar. AIDS.2012Feb13.[Epub ahead of print]
    [37] Batorsky R, Kearney MF, Palmer SE, et al. Estimate of effective recombinationrate and average selection coefficient for HIV in chronic infection. Proc Natl AcadSci U S A.2011,108(14):5661-6.
    [38] Su L, Graf M, Zhang Y, et al. Characterization of a virtually full-length humanimmunodeficiency virus type1genome of a prevalent intersubtype (C/B')recombinant strain in China. J Virol.2000,74(23):11367-76.
    [39] Mamadou S, Vidal N, Montavon C, et al. Emergence of complex and diverseCRF02-AG/CRF06-cpx recombinant HIV type1strains in Niger, West Africa. AIDSRes Hum Retroviruses.2003,19(1):77-82.
    [40] Rousseau CM, Birditt BA, McKay AR, et al. Large-scale amplification, cloningand sequencing of near full-length HIV-1subtype C genomes. J Virol Methods.2006,136(1-2):118-25.
    [41] Sanabani SS, Pastena éR, da Costa AC, et al. Characterization of partial and nearfull-length genomes of HIV-1strains sampled from recently infected individuals inS o Paulo, Brazil. PLoS One.2011,6(10):e25869.
    [42] Carr JK, Salminen MO, Albert J, et al. Full genome sequences of humanimmunodeficiency virus type1subtypes G and A/G intersubtype recombinants.Virology.1998,247(1):22-31.
    [43] Gao F, Robertson DL, Carruthers CD, et al. An isolate of humanimmunodeficiency virus type1originally classified as subtype I represents a complexmosaic comprising three different group M subtypes (A, G, and I). J Virol.1998,72(12):10234-41.
    [44] Salminen, M.1999. Unpublished observations.
    [45] Hemelaar J, Gouws E, Ghys PD, et al. Global trends in molecular epidemiologyof HIV-1during2000-2007. AIDS2011,25(5):679-89.
    [46] Esbjornsson J, Mild M, Mansson F, et al. HIV-1molecular epidemiology inGuinea-Bissau, West Africa:origin, demography and migrations.
    [47]马瑛,李祖正,张开祥等.首次在我国吸毒人群中发现艾滋病感染者.中华流行病学杂志.1990,11:184-185.
    [48]邵一鸣,赵尚德.中国云南德宏地区HIV-1感染者HIV毒株膜蛋白基因序列的序列测定和分析.病毒学报1994,10(4):291-299.
    [49] Luo CC, Tian C, Hu DJ, et al. HIV-1subtype C in China. Lancet1995,345:1051-1052.
    [50]邵一鸣,赵峰,杨维中等.中国西南西北地区吸毒人群重组人类免疫缺陷病毒I型毒株的发现.中华实验和临床病毒学杂志1999,13:109-122.
    [51] Piyasirisilp, Mccutchan FE, Carr JK, et al. A recent outbreak of humanimmunodeficiency virus type1infection in southern China was initiated by twohighby homogeneous, geographically separated strains, circulating recombinant formAE and a novel BC recombinant. J Virol2000,74:11286-11295.
    [52] Tee KK, Pybus OG, Li XJ, et al. Temporal and spatial dynamics of humanimmunodeficiency virus type1circulating recombinant forms08_BC and07_BC inAsia. J Virol2008,82:9206-9215.
    [53] Xin R, He X, Xing H, et al. Genetic and temporal dynamics of humanimmunodeficiency virus type1CRF07_BC in Xinjiang, China. J Gen Virol2009,90:1757-1761.
    [54] Yang R, Xia X, Kusagawa S, et al. On-going generation of multiple forms ofHIV-1intersubtype recombinants in the Yunnan Province of China. AIDS.2002,16(10):1401-7.
    [55] Xiao Y, Kristensen S, Sun J, et al. Expansion of HIV/AIDS in China: lessonsfrom Yunnan Province. Soc Sci Med.2007,64(3):665-75.
    [56] Zhang Y, Lu L, Ba L, et al. Dominance of HIV-1subtype CRF01_AE in sexuallyacquired cases leads to a new epidemic in Yunnan province of China. PLoS Med.2006,3(11):e443.
    [57] Paraskevis D, Pybus O, Magiorkinis G, et al. Tracing the HIV-1subtype Bmobility in Europe: a phylogeographic approach. Retrovirology,20096:49.
    [58] Parekh B, Phillips S, Granade TC, et al. Impact of HIV type1subtype variationon viral RNA quantitation. AIDS research and human retroviruses.1999;15:133–42.
    [59] Hu DJ, Buvé A, Baggs J, et al. What role does HIV-1subtype play intransmission and pathogenesis? An epidemiological perspective. AIDS.1999;13:873–81.
    [60] Chalmet K, Staelens D, Blot S, et al. Epidemiological study of phylogenetictransmission clusters in a local HIV-1epidemic reveals distinct differences betweensubtype B and non-B infections. BMC infectious diseases.2010;10:262.
    [61] Robbins KE, Lemey P, Pybus OG, et al. U.S. Human Immunodeficiency VirusType1Epidemic: Date of Origin, Population History, and Characterization of EarlyStrains. Journal of Virology.2003;77:6359–6366.
    [62] Holmes EC. When HIV spread afar. Proceedings of the National Academy ofSciences.2007;104:18351–18352.
    [63] Lukashov VV, Goudsmit J. Recent evolutionary history of humanimmunodeficiency virus type1subtype B: reconstruction of epidemic onset based onsequence distances to the common ancestor. Journal of Molecular Evolution.2002;54:680–691.
    [64] Dennis Maletich Junqueira, Rúbia Marília de Medeiros, Maria Cristina CottaMatte, et al. Reviewing the History of HIV-1: Spread of Subtype B in the Americas.PLoS One.2011;6(11): e27489.
    [65] Russell KL, Carcamo C, Watts DM, et al. Emerging genetic diversity of HIV-1inSouth America. AIDS.2000,14(12):1785–1791.
    [66] Nadai Y, Eyzaguirre LM, Sill A, et al. HIV-1epidemic in the Caribbean isdominated by subtype B. PloS one2009,4(3): e4814.
    [67] Junqueira DM, de Medeiros RM, Matte MC, et al. Reviewing the history ofHIV-1: spread of subtype B in the Americas. PLoS One.2011,6(11):e27489.
    [68] Hemelaar J, Gouws E, Ghys PD, et al. Global and regional distribution of HIV-1genetic subtypes and recombinants in2004. AIDS2006,20:W13-23.
    [69] Weniger BG, Takebe Y, Ou CY, et al. The molecular epidemiology of HIV inAsia. AIDS1994,8Suppl2:S13-28.
    [70] Kalish ML, Luo CC, Weniger BG, et al. Early HIV type1strains in Thailandwere not responsible for the current epidemic. AIDS Res Hum Retroviruses1994:1573-1575.
    [71] Ou CY, Takebe Y, Weniger BG, et al. Independent introduction of two majorHIV-1genotypes into distinct high-risk populations in Thailand. Lancet1993,341:1171-1174.
    [72] Subbarao S, Limpakarnjanarat K, Mastro T, et al. HIV type1in Thailand,1994-1995:persistence of two subtypes with low genetic diversity. AIDS Res HumRetroviruses1998,14:319-327.
    [73] Weniger BG, Limpakarnjanarat K, Ungchusak K, et al. The epidemiology of HIVinfection and AIDS in Thailand. AIDS1991,5Suppl2:S71-85.
    [74] National Economic and Social Development Board Working Group: Projectionsfor HIV in Thailand,1987-2005: An Application of EPIMODEL. National Economicand Social Development Board, Bangkok, Thailand, November1994.
    [75] Kalish ML, Baldwin A, Raktham S, et al. The evolving molecular epidemiologyof HIV-1envelope subtypes in injecting drug users in Bangkok, Thailand:implications for HIV vaccine trials. AIDS1995,9:851-857.
    [76] Wasi C, Herring B, Raktham S, et al. Determination of HIV-1subtypes ininjecting drug users in Bangkok, Thailand, using peptide-binding enzymeimmunoassay and heteroduplex mobility assay: evidence of increasing infection withHIV-1subtype E. AIDS1995,9:843-849.
    [77] Kusagawa S, Sato H, Watanabe S, et al. Genetic and serologic characterization ofHIV type1prevailing in Myanmar (Burma). AIDS Res Hum Retroviruses1998,14:1379-1385.
    [78] Cheng H, Zhang J, Capizzi J, et al. HIV-1subtype E in Yunnan, China. Lancet1994,344:953-954.
    [79] Luo CC, Tian C, Hu DJ, et al. HIV-1subtype C in China. Lancet1995,345:1051-1052.
    [80] Ma Y, Li Z, Zhao SD. HIV infected people were first identified in intravenousdrug users in China. Chin J Epidemiol1990,11:184-185.
    [81] Piyasirisilp S, McCutchan FE, Carr JK, et al. A recent outbreak of humanimmunodeficiency virus type1infection in southern China was initiated by twohighly homogeneous, geographically separated strains, circulating recombinant formAE and a novel BC recombinant. J Virol2000,74(23):11286-95.
    [82] Li Y, Uenishi R, Hase S, et al. Explosive HIV-1subtype B' epidemics in Asiadriven by geographic and risk group founder events. Virology2010,402:223-227.
    [83] Deng X, Liu H, Shao Y, et al. The epidemic origin and molecular properties of B':a founder strain of the HIV-1transmission in Asia. AIDS2008,22:1851-1858.
    [84] Li Zhe, He Xiang, Wang Zhe, et al. Tracing the origin and history of HIV-1subtype B' epidemic by near full-length genome analyses. AIDS2012,26(7):877–884.
    [85] Dou Z, Chen RY, Wang Z, et al. HIV-infected former plasma donors in ruralCentral China: from infection to survival outcomes,1985-2008. PLoS ONE2010,5:e13737.
    [86] Yu X, Yuan L, Huang Y, et al. Susceptibility of HIV-1subtype B', CRF07_BCand CRF01_AE that are predominantly circulating in China to HIV-1entry inhibitors.PLos One2011,6(3):e17605.
    [87] Qu S, Ma L, Yuan L, et al. Co-receptor usage and prediction of V3genotypingalgorithms in HIV-1subtype B' from paid blood donors experienced anti-retroviraltherapy in Chinese central province. Virol J2010,7:280.
    [88] Ma L, Huang J, Xing H, et al. Genotypic and phenotypic cross-drug resistance ofharboring drug-resistant HIV-1subtype B' strains from former blood donors in centralChinese provinces. AIDS Res Hum Retroviruses2010,26(9):1007-13.
    [89] Gao F. Amplification and cloning of near full-length HIV-2genomes. MethodsMol Biol2005,304:399-407.
    [90] Nadai Y, Eyzaguirre LM, Constantine NT, et al. Protocol for nearly full-lengthsequencing of HIV-1RNA from plasma. PLoS ONE2008,3:e1420.
    [91] Smith RA, Loeb LA, Preston BD. Lethal mutagenesis of HIV. Virus Res,2005;107(2):215-28。
    [92] Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, et al. Deciphering humanimmunodeficiency virus type1transmission and early envelope diversification bysingle-genome amplification and sequencing. J Virol2008,82:3952-3970.
    [93] Lole KS, Bollinger RC, Paranjape RS, et al. Full-length humanimmunodeficiency virus type1genomes from subtype C-infected seroconverters inIndia, with evidence of intersubtype recombination. J Virol.1999Jan;73(1):152-60.
    [94] Ling Lu, Tatsunori Nakano, Yunshao He, et al. Hepatitis C Virus GenotypeDistribution in China: Predominance of Closely Related Subtype1b Isolates andExistence of New Genotype6Variants. Journal of Medical Virology2005,75:538–549.
    [95] Posada D. jModelTest: Phylogenetic Model Averaging. Molecular Biology andEvolution. In press.
    [96] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructingphylogenetic trees. Mol Biol Evol19874(4):406-25.
    [97] Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular EvolutionaryGenetics Analysis using Maximum Likelihood, Evolutionary Distance, andMaximum Parsimony Methods. Molecular Biology and Evolution (submitted).
    [98] Guindon S., Gascuel O. A simple, fast and accurate algorithm to estimate largephylogenies by max-imum likelihood。Systematic Biology.1999,52(5):696-704.
    [99] Wertheim JO, Worobey M. Dating the age of the SIV lineages that gave rise toHIV-1and HIV-2. PLoS Comput Biol2009,5:e1000377.
    [100] Bello G, Passaes CP, Guimaraes ML, et al. Origin and evolutionary history ofHIV-1subtype C in Brazil. AIDS2008,22:1993-2000.
    [101] Drummond AJ, Rambaut A, Shapiro B, et al. Bayesian coalescent inference ofpast population dynamics from molecular sequences. Mol Biol Evol2005,22:1185-1192.
    [102] Pybus OG, Barnes E, Taggart R, et al. Genetic history of hepatitis C virus inEast Asia. J Virol2009,83:1071-1082.
    [103] Tee KK, Pybus OG, Li XJ, et al. Temporal and spatial dynamics of humanimmunodeficiency virus type1circulating recombinant forms08_BC and07_BC inAsia. J Virol2008,82:9206-9215.
    [104] Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis bysampling trees. BMC Evol Biol2007,7:214.
    [105] Drummond AJ, Ho SY, Phillips MJ, et al. Relaxed phylogenetics and datingwith confidence. PLoS Biol2006,4:e88.
    [106] Ronquist F, JP. H. MrBayes3: Bayesian phylogenetic inference under mixedmodels. BIOINFORMATICS2003,19:1572–1574.
    [107] Rodriguez F, Oliver JL, Marin A, et al. The general stochastic model ofnucleotide substitution. J Theor Biol1990,142:485-501.
    [108] Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by amolecular clock of mitochondrial DNA. J Mol Evol1985,22:160-174.
    [109] Li Y, Takebe Y, Yang J, et al. High prevalence of HIV-1subtype B' amongheterosexuals in western Hubei, Central China: Bridging the epidemic into generalpopulation. AIDS Res Hum Retroviruses2011,27(9):1025-8.
    [110] Zhao F, Wang Z, Li WJ. Human immunodeficiency virus type1subtypesprevalence in central China. Yonsei Med J2009,50(5):644-9.
    [111] Liu P, Xiang K, Tang H, et al. Molecular epidemiology of humanimmunodeficiency virus type1and hepatitis C virus in former blood donors in centralChina. AIDS Res Hum Retroviruses200824(1):1-6.
    [112] Leache AD, Reeder TW. Molecular systematic of the Eastern Fence Lizard(Sceloporus undulatus): a comparison of Parsimony, Likelihood and Bayesianapproaches.
    [113] Hall BG. Comparison of the accuracies of several phylogenetic methods usingprotein and DNA sequences. Mol Biol Evol2005,22(4):1160.
    [114] Efron B, Halloran E, Holmes S. Bootstrap confidence levels for phylogenetictrees. Proc Natl Acad Sci U S A1996,93(23):13429-34.
    [115] Hedges SB. The number of replications needed for accurate estimation of thebootstrap P value in phylogenetic studies. Mol Biol Evol1992,9(2):366-9.
    [116] Zharkikh A, Li WH. Statistical properties of bootstrap estimation ofphylogenetic variability from nucleotide sequences. I. Four taxa with a molecularclock. Mol Biol Evol19929(6):1119-47.
    [117] Zharkikh A, Li WH. Statistical properties of bootstrap estimation ofphylogenetic variability from nucleotide sequences: II. Four taxa without a molecularclock. J Mol Evol1992,35(4):356-66.
    [118] Lu L, Jia M, Ma Y, Yang L, Chen Z, Ho DD, et al. The changing face of HIV inChina. Nature2008,455:609-611.
    [119] Goodman S et al. Toward evidence-based medical statistics.1: The P valuefallacy. Ann Intern Med1999,130(12):995–1004.
    [120] Goodman S et al. Toward evidence-based medical statistics.2: The Bayes factor.Ann Intern Med1999,130(12):1005–13.
    [121] Dou Z, Chen RY, Wang Z, et al. HIV-infected former plasma donors in ruralCentral China: from infection to survival outcomes,1985-2008. PLoS ONE2010,5:e13737.
    [122] Wu Z, Liu Z, Detels R. HIV-1infection in commercial plasma donors in China.Lancet1995,346:61-62.