基于立体视觉的多气囊柔性人体腹部重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体腹部体型三维重建技术是个性化服装设计、医疗保健、人机工程等领域的关键技术。本论文在对基于立体视觉的人体体型建模技术进行全面调研和总结之后,结合计算机立体视觉技术、数字图像相关方法、生物智能理论等,对人体腹部体型三维重建以及腹部动态变形的体型三维重建问题进行了深入的研究。本论文主要开展了如下几方面工作:
     (1)介绍了基于立体视觉的人体体型三维重建方法的基本原理,较为详细地阐述和总结了国内外基于立体视觉技术的体型重建方法的研究进展和现状以及应用领域;概述了基于立体视觉的三维重建所涉及的关键技术及相关研究,并介绍了数字图像相关方法的理论及其在图像变形匹配中的应用,为本文研究基于立体视觉的柔性人体腹部体型三维重建等问题提供了理论依据和基本思路。
     (2)对静态腹部体型三维重建方法进行研究,探索了一种适于真实拍摄环境下的人体腹部三维重建方法。该方法采用主动标记法在紧身衣的腹部位置缝织一些易于识别的标记点,结合立体视觉原理,充分考虑了拍摄过程中常出现的光照变化和模糊噪声干扰,设计了一种光照变化鲁棒且抗模糊的特征不变矩,用于解决立体视觉系统中图像特征的立体匹配问题,此外还引入严格的几何约束机制用于剔除误匹配对,再用全局种子点生长算法引导非特征点区域的匹配,获得腹部稠密的三维点云数据,实现柔性人体腹部体型三维重建。实验结果表明该方法能达到与三维扫描仪相同的精度级,能满足服装设计等领域的精度要求。
     (3)在已搭建的立体视觉图像采集平台和对静态腹部体型重建研究的基础上,进一步探索了腹部体型动态变形时的特征匹配方法,提出了一种腹部变形的体型三维形貌重建技术。该技术以数字图像相关方法的原理为基础,设计了一种子区大小可根据变形程度自适应调整的椭圆形匹配模板,另外,对基本的分形维进行了改进,提出了一种基于子区面积的分形维数,实现变形前后时间序列腹部图像中同名特征点的整像素粗搜索;接着在整像素粗匹配的基础上设计了一种互相学习的自适应粒子群算法实现同名特征点的亚像素精确定位,经过这种粗-精相结合的特征点像素坐标定位方法,建立了变形前后图像中同名特征点的匹配对应关系模型,实现了腹部体型变形的三维重建。围绕多气囊柔性人体腹部变形体型三维重建展开实验验证,结果证实本方案在保证获得可靠精度的前提下,时间性能优于传统的特征点变形匹配方法,尤其是处理大数据量时,其时间优越性更为明显。
     (4)为了克服传统立体匹配过程的繁琐步骤和大量重复操作,构建了B-T免疫神经网络实现特征点的立体匹配。通过分析图像立体匹配的左右一致性约束与生物免疫系统中B细胞与T细胞间的辅助和抑制作用机理,抽象出两者的相似性,在T细胞层加入几何约束机制以满足匹配的唯一性约束,建立基于生物智能的特征点立体匹配方法;为了达到更为精确的匹配效果,将圆形的匹配模板分成多个子栅格,由像素灰度值和表征图像结构信息的单元栅格熵两者组合构成新的特征描述矢量,最后,利用神经网络实现所有特征点的总体最优匹配。该方法结合B-T免疫网络灵活的双向调节机制和神经网络的良好组织架构,实现了智能化的柔性人体腹部体型三维重建。实验结果表明,本方法在确保与传统匹配方法相同精度的前提下,匹配时间优于传统立体匹配方法。这种智能匹配方法为今后立体匹配方法的研究提供了一种全新的思路。
     论文的最后对全文的研究工作做了简要的总结,并对下一步待研究的内容和方向进行了讨论和展望。
The human abdomen shape reconstruction is a crucial technology in a wide range of fields, such as personalized garment design, medical care, man-machine engineering. This thesis conducts a further study on abdomen shape reconstruction and abdomen deformation reconstruction according to the principle of computer stereo vision, digital image correlation method and the theory of biological intelligence. Based on the full investigation and review to precious works related to the techniques of human body reconstruction in terms of stereo vision system, the main contributions carried out in this thesis lie in:
     (1) The basic principle and method of human body3D reconstruction by stereo vision are introduced, and then, a detailed exposition and summarization about the techniques and applications of body shape reconstruction at home and abroad by means of stereo vision are provided. Still, the critical techniques and related research works of3D reconstruction based on stereo vision are outlined. In addition, the theory of digital image correlation method and its application in image deformation matching are also expounded. All these offer the theoretical basis and the fundamental route for solving the problems of3D abdomen reconstruction for soft mannequin through stereo vision in the research.
     (2) Trying to explore a novel approach for the static3D abdomen reconstruction that is suitable for real photographing condition aiming at recovering abdomen shape. With the explicit markers are woven actively in the tight dress on the part of belly, the proposed combing the stereo vision theory, taking full account of the frequent interferences from both illumination variance and blur noise in the process of photographing, an innovative illumination-robust and anti-blur descriptor is designed for solving the binocular images matching problem in stereo vision system. Meanwhile, the strict geometric constraints are involved for eliminating the error mapping pairs, more exact matching pairs obtained at this stage. Subsequently, these exact pairs are taken as seeds to produce dense cloud data by means of global seed growing algorithm for achieving the recover of3D belly panorama for soft mannequin. The experimental results reveal that its precision can up to the highly similar measurement accuracy of3D scanner, which can well satisfy the requirement of fashion designing and facilitates the costume design industry.
     (3) A further exploration concerning the abdomen deformation modeling is performed based on the above proposed stereo vision platform and method for a static belly shape. A methodology of3D abdomen panorama reconstruction is put forward in the course of the belly deformation. A novel strategy of adaptive ellipse subset relying on the deformation degree as well as a new improved fractal dimension on the basis of the subset area is designed for the aim of the integer-pixel displacement search for the same feature point between the abdomen images before and after deformation in sequence. Then, a mutual learning adaptive particle swarm optimization algorithm is employed at sub-pixel registration resolution stage to locate the sub-pixel precisely. Supported by the combined coarse-fine ideology, the corresponding points between images of before and after deformation are established exactly for accomplishing the3D abdomen deformation reconstruction. Testing on the abdomen deformation reconstruction for soft mannequin, experimental results indicate that under the guarantee of its measurement accuracy without any loss, the time-consuming of the proposed scheme is significantly superior to that of the conventional method, particularly, at the large number of interest points.
     (4) In order to overcome the cockamamie steps of traditional matching method further, the stereo matching of feature points by B-T immune neural network is completed. The both similar mechanism between the left-right consistency constraints in image feature mapping and the mutual mechanism assistance and inhibition of B cells and T cells is abstracted. Moreover, the inherent geometry property is also introduced in T cell layer so as to ensure the uniqueness. For the more precise result, in each sub-grid of a circle template, a new combined feature vector is produced by means of involving entropy signifying the structure feature of image, as well as the gray information. Finally, neural network algorithm is utilized to obtain the global optimization effect for the all feature points. The intelligent3D belly recover for soft mannequin is achieved in virtue of the flexible bidirectional regulation of B-T immune network and the well organization property. Experimental results demonstrate that the proposed approach greatly outperforms the traditional matching algorithm on time load under the condition of the same precise, which provides an revolutionary new idea and effective revolutionary for stereo matching in the future.
     Finally a conclusion is made for the whole contents of this dissertation, together with the perspectives of this field for the next step.
引文
[1]Yu, W., Fan, J.-T., Qian, X.-M., et al.. A soft mannequin for the evaluation of pressure garments on human body[J]. Sen'i Gakkaishi,2004,60(2):57-64.
    [2]Yu, W., Li, Y., Zheng, Y. P., et al.. Softness measurements for open-cell foam materials and human soft tissue[J]. Measurement Science and Technology,2006, 17,1785-1791.
    [3]毕研旬,张文斌,杨焰雁等.用于服装压力测试的关节可调节女性上体软体假人[P].中国专利:200810202241.9.
    [4]Petrov, M., Talapov, A., Robertson, T., et al.. Optical 3D digitizers:Bring life to the virtual world[J]. IEEE Computer Graphics and Applications,1998,18(3): 28-37.
    [5]Agarwal, A., Triggs, B.. Recovering 3D human pose from monocular images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1): 44-58.
    [6]Paquette, S..3D scanning in apparel design and human engineering[J]. IEEE Computer Graphics and Application,1996,16(5):11-15.
    [7]Istook, C. L., Hwang, S.-J..3D body scanning systems with application to the apparel industry [J]. Journal of Fashion Marketing and Management,2001,5(2): 120-132.
    [8]Cordier, F., Hyewon, S., Magnenat-Thalmann., N.. Made-to-measure technologies for an online clothing store [J]. IEEE Computer Graphics and Applications,2003,23(1):38-48.
    [9]Wells, J. C. K., Treleaven, P., Cole, T. J.. BMI compared with three-dimensional body shape:the UK national sizing survey [J]. American Journal of Clinical Nutrition,2007,85(2):419-425.
    [10]Wells, J. C. K., Cole, T. J., Bruner, D., et al.. Body shape in American and British adults:between country and inter-ethnic comparisons [J]. International Journal of Obesity,2008,32(1):152-159.
    [11]Wells, J. C. K., Douros, I., Fuller, N. J., et al.. Assessment of body volume using three-dimensional photonic scanning[J]. Annals of the New York Academy of Sciences,2000,904:247-254.
    [12]Wang, J., Gallagher, D., Thornton, J. C., et al.. Validation of a 3-dimensional photonic scanner for the measurement fo body volumes, dimensions, and percentage body fat[J]. American Journal of Clinical Nrtrition,2006,83(4): 809-816.
    [13]Wells, J. C. K., Ruto, A., Treleaven, P.. Whole-body three-dimensional photonic scanning:a new technique for obesity research and clinical practice[J]. Internatioanl Jounal of Obesity,2008,32(2); 232-238.
    [14]Kroemer, K. H. E.. A Survey of ergonomic models of anthropometry, human biomechanics, and operator-equipment interface [M]. New York:Plenum Press, 1990.
    [15]Bonney, M., Case, K., Porter, M.. Applications of SAMMIE and develpment of man modeling[M]. New York:Plenum Press,1990.
    [16]Seidl, A.. RAMSIS-A new CAD-tool for ergonomic analysis of vehicles developed for the German automobile industry [C]. In:Proceedings of the Interantional Congress and Exposition, Feb.24-27,1997, Code:90577.
    [17]Badler, N. I., Phillips, C. B., Webber, B. L.. Simulating humans.[M]. Oxford: Oxford University Press,1993.
    [18]周文莲.物体形态的三维测量技术[J].人类学学报,2000,19(4):326-327.
    [19]由志福.曲面形体三维相位法检测技术及与CAD/CAM集成的研究[D].清华大学工学博士学位论文,1998,12.
    [20]李基拓,王阳生,周霞.由正交图像造型三维个性化虚拟人体模型[J].计算机辅助设计与图形学学报,2008,5(20),554-559.
    [21]Lee, W. S., Gu, K., J., Magnenat-Thalmann, N.. Generating animatable 3D virtual humans from photographs[C]. In:Proceedings of the 21st Annual Conference (EYRIGRAOGUCS 2000), Aug.21-25,2000, pp. c-1-c10.
    [22]Corazza, S., Mundermann, L., Chaudhari, A., et al.. A markerless motion capture system to study musculoskeletal biomechanics:visual hull and simulated annealing approach[J]. Annals of Biomedical Engineering,2006,34(6): 1019-1029.
    [23]Boisvert, J., Shu, C., Wuhrer, S., et al.. Three-dimensional human shape inference from silhouettes:reconstruction and validation [J]. Machine Vision and Applications,2013,24(1):145-147.
    [24]Anguelov. D., Srinivasan, P., Koller, D., et al.. SCAPE:Shape completion and animation of people[J]. ACM Transactions on Graphics,2005,24(3):408-416.
    [25]毛天露,王兆其.一种基于相片的虚拟人体克隆方法[J].计算机研究与发展,2002,39(增刊):40-44.
    [26]周晓晶,赵正旭.基于照片的三维虚拟人重建技术[J].东南大学学报,2008,38(4):632-636.
    [27]Wang, C. C. L., Wang, Y, Chang, T. K. K., et al.. Virtual human modeling from photographs for garment industry [J]. Computer-Aided Design,2003,35(6): 577-589.
    [28]张满囤,王丽,杨璐等.基于RBF算法的快速三维人体建模[J].河北工业大学学报,2013,42(2):24-27.
    [29]Chu, C. H., Tsai, Y. T., Wang, C. C. L., et al.. Exemplar-based statistical model for semantic parametric design of human body[J]. Computers in Industry,2010, 61(6):541-549.
    [30]Hilton, A., Stoddart, A. J., Illingworth, J., et al.. Implicit surface-based geometric fusion[J]. Computer Vision and Image Understanding,1998,69(3): 273-291.
    [31]Birchfield, S., Tomasi, C.. Depth discontinuities by pixel-to-pixel stereo[J]. International Jounal of Computer Vision,1999,35(3):269-293.
    [32]Daanen, H. A. M., De Water, G. J. V. Whole body scanners[J]. Displays,1998, 19(3):111-120.
    [33]刘雁,耿兆丰.三维人体及服装建模方法分析与实现[J].计算机应用与软件,2004,21(10):47-48.
    [34]Wang, C. L. L.. Parameterization and parametric design of mannequins.[J]. Computer Aided Design,2005,1(37):83-98.
    [35]Istook, C. L., Hwang, S. -J..3D body scanning systems with application to the apparel industry[J]. Journal of fashion marketing and management,2001,5(2): 120-132.
    [36]Komatsu, K.. Human skin model capable of natural shape variation[J]. Visual Computer,1988,3(5):265-271.
    [37]宋顺林,詹永照,薛安荣等.三维计算机动画中人体建模方法的研究[J].软件学报,1995,6(5):311-315.
    [38]魏斌,袁修干.人机系统仿真中三维人体建模的研究[J].航天医学与医学工程,1997,10(6):443-446.
    [39]张三元,孙守迁,蒋方炎等.数字化仿真人体模型的设计方法[J].系统仿真学报,2000,12(1):49-50,57.
    [40]胡敏,李勇,张新民.基于特征的三维人体建模[J].天津工业大学学报,2002,21(5):80-82.
    [41]邓卫燕,陆国栋,耿玉磊等.基于神经网络的三维人体建模方法[J].上海交通大学学报,2008,42(10):1631-1634,1639.
    [42]刘欢,郝矿荣,丁永生等.女性束裤舒适性的凸肚体数字化修正[J].计算机工程与应用,2012,48(33):24-28.
    [43]隋婧,金伟其,阮玉峰.双目立体视觉技术的实现及其进展[J].电子技术应用,2004,(10):4-6,12.
    [44]Remondino, F..3D reconstruction of static human body with a digital camera[C]. In:Proceedings of the International Society for Optical Engineering, January, 21-23,2003, pp.38-45.
    [45]Yu, W. R., Xu, B. G.. A portable stereo vision system for whole body surface imaging[J]. Image and Vision Computing,2010,28(4):605-613.
    [46]Remondino, F..3-D reconstruction of static human body shape from image sequence[J]. Computer Vision and Image Understanding,2004,93:65-85.
    [47]周佳立,张树有.基于被动立体视觉的脚型建模与比对方法[J].计算机辅助设计与图形学学报,2009,21(6):782-788.
    [48]高飞,初君,李萌坚等.基于标记点图案的三维脚型建模与测量方法[J].计算机辅助设计与图形学学报,2009,21(10):1412-1419.
    [49]高飞,王青,耿卫东,潘云鹤.三维动态脚型测量方法[J].中国科学:信息科学,2011,41(6):659-674.
    [50]Kimura, M., Mochimaru, M., Kanade, T..3D measurement of feature cross-sections of foot while walking[J]. Machine Vision and Applications,2011, 22(2):377-388.
    [51]Seitz, S. M., Curless, B., Diebel, J., et al. A comparison and evaluation of multi-view stereo reconstruction algorithm[C]. In:Proceedings of CVPR, Jun. 17-22,2006, pp.519-526.
    [52]Scharstein, D., Szeliski, R.. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002,47(1-3):7-42.
    [53]Kanade, T., Saito, H., Vedula, S.. The 3D Room:Digitizing Time-Varying 3D Events by Synchronized Multiple Video Streams[R]. Technique Report, CMU-RI-TR-98-34. Pittsbrugh, Pennsylvania,1998.
    [54]Cipolla, R., Robertson, D. P., Boyer, E. G. PhotoBulider-3D models of architectural scenes from uncalibrated images[C]. In:Proceedings of the IEEE International Conference on Multimedia Computing and Systems, Jun.7-11, 1999, pp.25-31.
    [55]Wilburn, B., Smulski, M., Lee, H. K., et al.. The light field video camera[C]. In: Proceedings of SPIE Media Processors, Jan.23-25,2002, pp.29-36.
    [56]Wilburn, B., Joshi, N., Vaish, V., et al.. High performance imaging using large camera arrays[J]. ACM Transactions on Graphics,2005,24(3):765-776.
    [57]Seitz, S. M., Curless, J.,Diebel, D., et al.. A comparison and evalution of multi-view stereo reconstruction algorithm[C]. In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Jun.17-22,2006, pp:519-526.
    [58]阮晓东,李世伦,诸葛良等.用立体视觉测量多自由度机械装置姿态的研究[J].中国机械工程,2000,11(5):571-573.
    [59]管业鹏,童林夙,陈娜.基于双目立体视觉的偏转线圈测量方法研究[J].电子学报,2003,31(9):1382-1385.
    [60]Kwan-Yee K, W., Mendonca, P. R. S., Cipolla, R.. Reconstruction of surfaces of revolution from single uncalibrated views [J]. Image and Vision Computing, 2004,22(10):829-836.
    [61]于海雁.基于多视图几何的三维重建研究[D].博士学位论文,中国,哈尔滨工业大学,2007.
    [62]Khan, S. M.. Multi-view approaches to tracking,3D reconstruction and object class detection[D]. PhD thesis, University of Central Florida,2008.
    [63]Khan, S. M., Yan, P., Shah, M.. A homographic framework for the fusion of multi-view silhouettes [C]. In:Proceedings of IEEE International Conference on Computer Vision (ICCV), Oct.14-21,2007, Code:73231.
    [64]Sinha, S. N., Pollefeys, M.. Multi-View reconstruction using photo-consistency and exact silhouette constrains:A maximum-flow formulation[C]. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), Oct. 17-20,2005, pp:349-356.
    [65]Furukawa, Y., Ponce., J.. Dense 3D motion capture for human faces[C]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Jun.20-25,2009, Code:78374.
    [66]Furukawa, Y., Ponce, J.. Accurate, dense, and robust multi-view stereopsis[C]. In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Jun.17-22,2007, Code:70350.
    [67]Campbell, N. D. F., Vogiatzis, G., Hernandez, C., et al.. Automatic 3D object segmentation in multiple views using volumetric graph-cuts [J]. Image and Vision Computing,2010,28(1):14-25.
    [68]Campbell, N., Vogiatzis, G., Hernandez, C.. Using multiple hypotheses to improve depth-maps for multi-view stereo [C]. In:Proceedings of the 10th European Conference on Computer Vision(ECCV), Oct.12-18,2008, pp: 766-779.
    [69]Lhuillier, M., Quan, L.. Surface reconstruction by integrating 3D and 2D data of multiple views[C]. In:Proceedings of the IEEE International Conference on Computer Vision (ICCV), Ooc.13-16,2003, pp.1313-1320.
    [70]G. Zeng, S. Paris, L. Quan, F. Sillion. Progressive Surface Reconstruction from Images Using a Local Prior[C]. In:Proceedings of IEEE International Conference on Computer Vision (ICCV), Oct.17-20,2005, pp:1230-1237.
    [71]Wu, F. C., Duan, F. Q., Hu, Z. F.. An affine invariant of·parallelograms and its application to camera calibration and 3D reconstruction[C]. In:Proceedings of the 9th European Conference on Computer Vision (ECCV), May,7-13,2006, pp. 191-204.
    [72]Li, X., Zha, H. B.. Realistic human head modeling with multi-view hairstyle reconstruction[J]. Journal of Computer-Aided Design and Computer Graphics, 2006,18(8):1117-1122.
    [73]刘世霞,胡事民,汪国平等.基于在视图的三维形体重建技术[J].计算机学报,2000,23(2):141-146.
    [74]Wang, L., Hu, W. M., Tan, T. N.. A survey of visual analysis of human motion[J]. Chinese Journal of Computers,2002,25(3):225-237.
    [75]候志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617.
    [76]D'Apuzzo, N.. Surface measurement and tracking of human body parts from multi-image viedo sequences[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2002,56(5-6):360-375.
    [77]Sutton, M. A., Yan, J., Deng. X., et al.. Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode Ⅰ/Ⅱ loading[J]. Optical Engineering,2007,46(5): 051003-051017.
    [78]Gutierrez, S., Marroquin J. L.. Robust approach for disparity estimation in stereo vision[J]. Image and Vision Computing,2004,22(3):183-195.
    [79]Choo, A. M. T., Oxland, T. R.. Improved RSA accuracy with DLT and balanced calibration marker distributions with an assessment of initial-calibration[J]. Journal of Biomechanics,2003,36(2):259-264.
    [80]章毓晋.图像理解[M].北京:清华大学出版社,2007.
    [81]Zhang, Z., A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11): 1330-1334.
    [82]Maybank, S. J., Faugeras, O. D.. A theory of self-calibration of a moving camera[J]International Journal of Computer Vision,1992,8(2):321-334.
    [83]Luong, Q. T., Faugeras, O. D.. Self-calibration of a moving camera from point correspondences and fundamental matrices[J]. International Journal of Computer Vision,1997,22(3):261-289.
    [84]Faugeras, O. D.. Stratification of 3D vision:projective, affine and metric representations[J]. Journal of the optical society of America:optics, Image Seience, and Vision,1995,12(3):465-484.
    [85]Zhu, W., Diao, C., Huang, J.. Calibration of radial distortion via QR factorization[J]. In:Proceedings of the 2010 IEEE International Conference on Progress in Informatics and Computing, Dec.10-12,2010, pp:728-732.
    [86]Kahl, F., Triggs, B., Astrom, K.. Critical motions for auto-calibration when some intrinsic parameters can vary[J]. Journal of Mathematical Imaging and Vision, 2000,13(2):131-146.
    [87]Pollefeys, M., Van Gool, L.. Stratified self-calibration with the modulus constraint J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(8):707-724.
    [88]Polleyfeys, M., Koch, R., Gool, L. V. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters[C]. In:Proceedings of the International Conference on Computer Vision (ICCV), Jan.4-7,1998, pp: 90-95.
    [89]Hartley, R. I.. Self-calibration of stationary cameras[J]. International Journal of Computer Vision,1997,22(1):5-23.
    [90]Ma, S. D.. A self-calibration technique for active vision system[J]. IEEE Transactions on Robotics and Automation,1996,12(1):114-120.
    [91]Moons, T, Van, G. L., Proesmans, M., et al.. Affine reconstruction from perspective image pairs with a relative object-camera translation in between[J]. IEEE Transactions on Pattern Analysis and Machine Intelligent,1996,18(1): 77-83.
    [92]Armstrong, M., Zisserman, A., Hartley, R.. Self-calibration from image triplets[C]. In:Proceedings of the 4th European Conference on Computer Vision, Apr.15-18,1996, pp:1-16.
    [93]Harris, C., Stephens, M.. A combined corner and edge detector[C]. In: Proceedings of the 4th Alvey Vision Conference,1988, pp:147-151.
    [94]Schimid, C., Mohr, R., Bauckhage, C.. Evaluation of interest point detectors[J]. Internatonal Journal of Computer Vision,2000,37(2):151-172.
    [95]谭园园,李俊山,杨威.新的近距离红外目标跟踪算法[J].电光与控制,2007,14(3):8-11.
    [96]刘闯,龚声蓉,崔志明等.基于角点采样的多目标跟踪方法[J].中国图象图形学报,2008,13(10):1873-1877.
    [97]王阿妮,马彩文,刘爽等.基于角点的红外与可见光图像自动配准方法[J].光子学报,2009,38(12):3328-3332.
    [98]仵建宁,郭宝龙,冯宗哲.一种基于兴趣点匹配的图像拼接方法[J].计算机应用,2006,26(3):610-612.
    [99]冯宇平,戴明,张威等.一种用于图像序列拼接的角点检测算法[J].计算机科学,2009,36(12):270-271.
    [100]陈廉清,袁红彬,王龙山.SUSAN算子在微小轴承表面缺陷图像分割中的应用[J].光学技术,2007,33(2):305-307.
    [101]Etienne, V., Robert, L.. Detecting and matching feature points[J]. Journal of Visual Communication and Image Representation,2005,16(1):38-54.
    [102]王荣本,余天洪,顾柏园.基于边界的车道标识线识别和跟踪方法研究[J].计算机工程,2006,32(18):195-196.
    [103]Lowe, D. G.. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110.
    [104]Lowe, D. G.. Object recognition from local scale-invariant features[C]. In: Proceedings of International Conference on Computer Vision, Sep.20-27,1999, pp:1150-1157.
    [105]Fan, Y., Ding, M., Liu, Z., et al.. Novel remote sensing image registration method based on an improved SIFT descriptor[C]. In:Proceedings of Multispectral Image Processing & Pattern Recognition, Nov.15-17,2007, Code: 71953.
    [106]Matas, J., Chum, O., Urban, M., et al.. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing,2004, 22(10):761-767.
    [107]Mikolajczyk, K., Tuytelaars, T., Schmid, C., et al.. A comparison of affine region detectors[J]. International Journal of Computer Vision,2005,65(1/2):43-72.
    [108]Leutenegger, S., Chli, M., Siegwart, R.. BRISK:binary robust invariant scalable keypoints[C]. In:Proceedings of the 2011 International Conference on Computer Vision. Nov.6-13,2011, pp:2548-2555.
    [109]Mair, E., Hager, G. D., Burschka, D., et al.. Adaptive and generic corner detection based on the accelerated segment test[C]. In:Proceedings of the 11th European Conference on Computer Vision. Sep.5-11,2010, pp:183-196.
    [110]Alahi, A., Ortiz, R., Vandergheynst, P.. FREAK:fast retina keypoint[C]. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Jun.16-21,2012, pp:510-517.
    [111]Hu, M. K.. Visual pattern recognition by moment invariants[J]. IEEE Transactions on Information Theory,1962,8(2):179-187.
    [112]Wong, R. Y.. Scene matching with invariant moments[J]. IEEE Transactions on Information Theory,1962,8(2):179-187.
    [113]Liu, H., Hao, K. R., Ding, Y. S.. New anti-blur and illumination-robust combined invariant for stereo vision in human belly reconstruction[J], Imaging science journal,2013, DOI:10.1179/1743131X13Y.0000000061. (http://www.maneyonline.com/doi/abs/10.1179/1743131X13Y.0000000061)
    [114]Wu, G., Wu, C. F., Hou, Q. Y. Target location method based on invariable moment feature matching[J]. Optics and Precision Engineering,2009,17(2): 460-468.
    [115]Scharstein, D, Szeliski, R.. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002,47(1/2/3):7-42.
    [116]Brown, M. Z., Burschka, D., Hager, G. D.. Advances in computational stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8): 993-1008.
    [117]刘莹,曹剑中,许朝晖等.基于灰度相关的图像匹配算法的改进[J].应用光学,2007,9(28):536-540.
    [118]Baha, N., Larabi, S.. Accurate real-time neural disparity MAP estimation with FPGA[J]. Pattern Recognition,2012,45(3):1195-1204.
    [119]Mirzaei, A., Safabakhsh, R.. Optimal matching by the transiently chaotic neural network[J]. Applied Soft Computing,2009,9(3):863-873.
    [120]叶发茂,苏林,李树楷.基于人工免疫网络算法的图像配准方法[J].计算机工程,2007,33(13):197-199.
    [121]Zitnick, C., Kang, S.. Stereo for image-based rendering using image over-segmentation[J]. Internation Journal of Computer Vision,2007,75(1): 49-65.
    [122]Barnard, S. T.. Stochastic stereo matching over scale[J]. International Journal on Computer Vision,1989,3(1):17-32.
    [123]Wang, Z., Zheng, Z.. A region based stereo matching algorithm using cooperative optimization[C]. In:Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Jun.23-28,2008, pp:1-8.
    [124]吕朝辉,张兆扬,安平.一种基于遗传算法的立体匹配方法[J].计算机工程2003,29(20):24-25,30.
    [125]顾征,苏显渝.采用色彩相似性约束的立体匹配[J].光电工程,2007,34(1):95-99.
    [126]Zhang, W., Gao, X., Sung, E., et al.. A feature-based matching scheme M PCD and robust matching strategy[J]. Pattern Recognition Letters,2007,28(10): 1222-1231.
    [127]张辉,张丽艳,陈鉴富等.基于自适应迭代松弛的立体点对匹配鲁棒算法[J].中国图象图形学报,2009,14(7):1378-1385.
    [128]卢阿丽,唐振民,杨静宇.一种基于双向动态规划的立体匹配算法[J].系统仿真学报,2008,2(13):3378-3380,3384.
    [129]Bleyer, M., Gelautz, M.. Graph-cut-based stereo matching using image segmentation wilth symmetrical treament of occlusions[J]. Signal Processing: Image Communication,2007,22(2):127-143.
    [130]罗桂娥,杨欣荣,黄维.基于分块变换-融合滤波的改进EZW算法[J].计算机工程,2009,35(6):49-52.
    [131]杨玉娟,都思丹.分层正交动态规划立体匹配算法[J].中国科学技术大学学报,2009,39(11):1171-1176.
    [132]Luo, P. F., Chao, Y. J., Sutton, M. A., et al.. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision[J]. Experimental Mechanics,1993,33(2):123-132.
    [133]Sutton, M. A., Wolters, W. J., Peters, W. H., et al.. Determination of displacements using an improved digital correlation method[J]. Image and Vision Computing,1983,1(3):133-139.
    [134]Davis, C. Q., Freeman, D. M.. Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching[J]. Optics Engineering, 1998,37(4):1290-1298.
    [135]Pan, B., Asundi, B. A., et al.. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurement[J]. Optics Engineering,2009,47(7-8):865-874.
    [136]Bruck, H. A., Mcneil, S. R., Sutton, M. A., et al.. Digital image correlation using Newton-Rapshon method of partial differential correction[J]. Experimetnal Mechanics,1989,29(3):261-267.
    [137]Cofaru, C., Philips, W., Paepegem, W. V.. Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation[J]. Applied Optics,2010,49(33):6472-6484.
    [138]Pitter, M. C., See, W. C., Somekh, M. G. Subpixel microscopic deformation analysis using correlation and artificial neural networks[J]. Optics Express; 2001, 8(6):322-327.
    [139]高建新.数字散斑相关方法及其在力学测量中的应用[D].清华大学博士学位论文,中国,北京,1989.
    [140]高建新,周辛.数字图象测量系统灵敏度分析[J].固体力学学报,1997,18(2):163-166.
    [141]潘兵,谢惠民,李艳杰.用于物体表面形貌和变形测量的三维数字图像相关方法[J].实验力学,2007,22(6):556-567.
    [142]牛永强,胡秋实,闫德莹等.基于数字图像体相关的物体内部三维位移场分析[J].实验力学,2011,26(3):247-253.
    [143]汪敏,胡小方,伍小平.物体内部三维位移场分析的数字图像相关方法[J].物理学报,2006,55(10):5135-5139.
    [144]潘兵,续伯钦,谢惠民等.面内位移测量的基于梯度的数字图像相关方法[J].光学技术,2005,31(5):643-647.
    [145]Wattisse, B. C., Muracciole, A., Nemoz-Gaillard, J. M.. Analysis of strain localization during tensile tests by digitial image correlation[J]. Experimental Mechanics,2001,41(1):29-39.
    [146]张金奎,李亚智,张丽等.基于移动最小二乘拟合的数字图像相关应变测量[J].科学技术与工程,2010,10(3):686-690.
    [147]潘兵,续伯钦.数字图像相关中亚像素位移测量的曲面拟合法[J].计量学报,2005,27(2):128-134.
    [148]Verhulp, E., Van Reitbergen, B., Husikes, R. A three-dimensional digital image correlation technique for strain measurements in microstructures[J]. Journal of Biomechanics,2004,37(9):1313-1320.
    [149]Wang, H. W., Kang, Y. L. Improved digital speckle correlation method and its application in fracture analysis of metallic foil[J]. Optical Engineering,2002, 41(11):2793-2798.
    [150]高建新,周新庚.数字散斑相关方法的原理与应用[J].力学学报,1995,27(6):724-731.
    [151]Zhang, J., Jin, G. C.. Application of an improved subpixel registration algorithm on digital speckle correlation measurement[J]. Optics & Laser Technolgy,2003, 35(7):533-542.
    [152]Pan, B., Wu, D. F., Xie, H. M., et al. Spatial-gradient-based digital volume correlation technique for internal deformation measurement[J]. Acta optica sinica,2011,31(6):0612005-1-0612005-7.
    [153]王世斌,李翔宇,李林安等.后验概率算法用于位移场的确定[J].实验力学,2004,19(3):371-375.
    [154]Chen, D. J., Chiang, F. F., Tan, Y. S., et al.. Digital speckle-displacement measurement using a complex spectrum method[J]. Appied Optics,1999,32(11): 1839-1849.
    [155]潘兵,谢惠民.基于差分进化的数字图像相关方法[J].光电子·激光,2007,18(1):100-103.
    [156]蒋志年.数字图像散斑相关技术的蚁群优化方法[J].应用光学,2012,33(3):527-531.
    [157]李庆杨,关治,白峰杉.数值计算原理[M].北京:清华大学出版社,2000.
    [158]Zhang, S. P., Yao, H. X., Sun, X., et al.. Sparse coding based visual tracking review and experimental comparison[J]. Pattern Recognition,2013,46(7): 1722-1788.
    [159]Sanz, P. R., Mezcua, B. R., Pena, J. M. S., et al.. Segment-based real time stereo vision matching using characteristic vectors[J]. Journal of Imaging Science and Technology,2011,5(55):502022-502017.
    [160]Flusser, J., Suk, T., Saic, S.. Recognition of blurred images by the method of moments[J]. IEEE Transactions on Image Processing,1996,5(3):533-538.
    [161]Zhang, Y, Wen, C., Zhang, Y, et al.. Determination of blur and affine combined invariants by normalization[J]. Pattern Recognition,2002,1(35):211-221.
    [162]Wang, X., Zhao, R. C. Pattern recognition by combined invariants [J]. Chinese Journal of Electronics.2001,4(10):480-483.
    [163]Bentoutou, Y., Taleb, N., Chikr EI Mezouar, M., et al.. An invariant approach for image registration in digital subtraction angiography[J]. Pattern Recognition, 2002,12(35):2853-2865.
    [164]Zhang, Y. N., Wen, C. Y., Zhang, Y, et al.. Determination of blur and affine combined invariants by normalization[J]. Pattern Recognition,2002,1(35): 211-221.
    [165]Flusser, J., Boldys, J., Zitova, B.. Moment forms invariant to rotation and blur in arbitrary number of dimensions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,2(25):234-246.
    [166]Otto, G, Chau, T.. Region-growing algorithm for matching of terrain images[J]. Image and Vision Computing,1989,2(7):83-94.
    [167]Cofaru, C., Philips, W., Paepegem, W. V.. A three-frame digital image correlation (DIC) method for the measurement of small displacements and strains[J]. Measurement Science and Technology,2012,23(10), Code:105406.
    [168]Sladek, J., Ostrowska, K., Kohut, P., et al.. Development of a vision based deflection measurement system and its accuracy assessment[J]. Measurement, 2013,46(3):1237-1249.
    [169]Weng, M. C., Tung, S. H., Shih, M. H.. Microscopic characteristics of problematic tertiary sandstone as revealed by grain-wide local deformation[J]. International Journal of Rock Mechanics and Mining Science,2009,46(7): 1243-1251.
    [170]Tang, Z. G., Liang, J., Xiao, Z. Z., et al.. Large deformation measurement scheme for 3D digital image correlation method[J]. Optics and Lasers in Engineering,2012,50(2):122-130.
    [171]Chen, X., Xu, N., Yang, L., et al.. High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system[J]. Measurement Science and Technology,2012,23(12), Code:125603.
    [172]Lava, P., Cooreman, S., Coppieters, S., et al.. Assessment of measuring errors in DIC using deformation fields generated by plastic FEA[J]. Optics and Lasers in Engineering,2009,47(7-8):747-743.
    [173]Blenkinsopp, R., Harland, A., Price, D., et al.. A method to measure dynamic dorsal foot surface shape and deformation during linear running using image correlation[J]. Procedia Engineering,2012,34:266-271.
    [174]Bornert, M., Bremand, F., Doumalin, P., et al.. Assessment of digital image correlation measurement errors:Methodology and results[J]. Experimental Mechanics,2009,49(3):353-370.
    [175]Schreier, H. W., Sutton, M. A.. Systematic errors in digital image correlation due to undermatched subset shape functions[J].-Experimental Mechanics,2002, 42(3):303-310.
    [176]Pan, B., Xie, H. M., Wang, Z. Y., et al.. Study on subset size selection in digital image correlation for speckle patterns[J]. Optics Express,2008,16(10): 7037-7048.
    [177]Pan, B., Xie, H. M., Xu, B. Q., et al.. Performance of sub-pixel registration algorithms in digital image correlation[J]. Measurement Science and Technology, 2006,17(6):1615-1621.
    [178]Pan, B., Asundi, A., Xie, H. M., et al.. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements [J]. Optics and Lasers in Engineering,2009,47(7-8):865-874.
    [179]Pan, B., Qian, K. M., Xie, H. M., et al.. Two-dimensional digital image correlation for in-plane displacement and strain measurement:A review[J]. Measurement Science and Technology,2009,20(6), Code:062001.
    [180]Pilch, A., Mahajan, A., Chu, T. Measurement of whole-field surface displacements and strain using a genetic algorithm based intelligent image correlation method[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2004,126(3):479-488.
    [181]Zhao, J. Q., Zeng, P., Lei, L. P., et al.. Initial guess by improved population-based intelligent algorithm for large inter-frame deformation measurement using digital image correlation[J]. Optics and Lasers in Engineering,2012,50(3):473-490.
    [182]Zhang, Z. F., Kang, Y. L., Wang, H. W., et al. A novel coarse-fine search scheme for digital image correlation method[J]. Measurement,2006,39(8):710-718.
    [183]Pan, B., Xie, H. M., Guo, Z. Q., et al.. Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation[J]. Optical Engineering,2007,46(3), Code:033601.
    [184]Lava, P., Cooreman, S., Coppieters, S., et al.. Assessment of measuring errors in DIC using deformation fields generated by plastic FEA[J]. Optics and Lasers in Engineering,2009,47(7-8):747-743.
    [185]潘兵,谢惠民,戴福隆.数字图像相关中亚像素位移测量算法的研究[J].力学学报,2007,36(2):245-252.
    [186]Pan, B., Li, K.. A fast digital image correlation method for deformation measurement[J]. Optics and Lasers in Engineering,2011,49(7):841-847.
    [187]Backes, A. R., Bruno, O. M.. Texture analysis using volume-radius fractal dimension[J]. Applied Mathematics and Computation,2013,219(11): 5870-5875.
    [188]Shen, Z., Chen, X., Tang, X., et al.. Road damage feature extraction in image based on fractal dimension[J]. Applied Mechanics and Materials,2013, 256-259(part 1):2971-2975.
    [189]Chen, W. K., Lee, J. C., Han, W. Y, et al.. Iris recognition based on bidimensional empirical mode decomposition and fractal dimension[J]. Information Sciences,2013,221:439-451.
    [190]Minaev, E. Y., Nikonorov, A. V.. Object detection and recognition in the driver assistance system based on the fractal analysis[J]. Computer Optics,2012,36(1): 124-130.
    [191]Wang, X., Georganas, N. D., Petriu, E. M.. Fabric texture analysis using computer vision techniques[J]. IEEE Transactions on Instrumentation and Measurement,2011,60(1):44-56.
    [192]Campos, K. A. D., Augusto, J., Pereira, T. A., et al..3-D reconstruction by extended depth-of-field in failure analysis-Case study Ⅱ:Fractal analysis of interlaminar fracture in carbon/epoxy composites[J]. Engineering Failure Analysis,2012,25:271-279.
    [193]Salari, V., Sethi, I. K.. Feature point correspondence in the presence of occlusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(1):87-91.
    [194]Jeong, J. M., Moon, Y S.. A feature tracking algorithm using adaptive weight adjustment [J]. Journal of the Institute of Electronics Engineers of Korea S, 1999,36(11):68-78.
    [195]Burie, J. C., Bruyelle, J. L., Postaire, J. G. Detecting and localising obstacles in front of a moving vehicle using linear stereo vision [J]. Math. Comput. Modelling,1995,22(4-7):235-246.
    [196]Hopfield, J. J., Tank, D. W.. Neural computation of decisions in optimization problems [J]. Biology Cybernet,1985,52:141-152.
    [197]Ruichek, Y.. Multilevel and neural network based stereo matching method for real-time obstacle detection using linear cameras [J]. IEEE Transactions on Intelligent Transportation System,2005,6(1):54-62.
    [198]Binaghi, E., Gallo, I., Fornasier, C., et al.. Neural adaptative stereo matching[J]. Pattern Recognition Letters,2004,25:1743-1758.
    [199]Kumar, R., Deva Vikram, B. R.. Fingerprint matching using multi-dimensional ANN[J]. Engineering Applications of Artificial Intelligent,2010,23(2): 222-228.
    [200]Zhong, Zhang, Y., Gong, L., J., et al.. A supervised artificial immune classifier for remote sensing imagery [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45:3957-3966.
    [201]Esponda, F., Forrest, S., Helman, P.. A formal framework for positive and negative detection schemes [J]. IEEE Transactions on Systems, Man and Cybernetics Part B-cybernetics,2004,34(1):357-373.
    [202]Tarakanov, A.O.. Immuno computing for intelligent intrusion detection[J]. IEEE Computational Intelligence Magazine,2008,3(2):22-30.
    [203]Woldemariam, K.M., Yen, G. G... Vaccine-enhanced artificial immune system for multimodal function optimization[J]. IEEE Transactions on Systems, Man and Cybernetics Part B-cybernetics,2010,40(1):218-228.
    [204]Freitas, A. A., Timmis, J.. Revisiting the foundations of artificial immune systems for data mining[J]. IEEE Transactions on Evolutionary Computation, 2007,11:521-540.
    [205]Seredynski, F., Bouvry, P.. Anomaly detection in TCP/IP networks using immune systems paradigm[J]. Computer Communications,2007,30:740-749.
    [206]Kalinli, A., Karaboga, N.. Artificial immune algorithm for IIR filter design[J]. Engineering Applications of Artificial Intelligence,2005,18:919-929.
    [207]Musilek, P., Lau, A., Reformat, M., et al.. Immune programming [J]. Information Sciences,2006,176:972-1002.
    [208]丁永生.计算智能:理论、技术与应用[M].北京:科学出版社,2004.
    [209]Varela, F. J., Coutinho, A.. Second generation immune networks[J]. Immunology Today,1991,12(5):159-166.
    [210]Hunt, J. E., Cooke, D. E.. Learning using an artificial immune system[J]. Journal of Network and Computer Application,1996,19(4):189-212.
    [211]De Castro, L. N., Von Zuben, F. J.. Immune and neural network models: theoretical and empirical comparisons[J]. International Journal of Computational Intelligence and Applications,2001,1(3):239-257.
    [212]De Castro, L. N.. Learning and optimization using the clonal selection principle[J]. IEEE Transaction on Evolutionary Computation,2002,6(3): 239-251.
    [213]Tang, Z., Yamaguchi, T., Tashima, K.. Multiple-Valued immune network model and its simulations[C]. In:Proceedings of the 27th International Symposium on, May,28-30,1997, pp.233-238.
    [214]He, A., Bae, K. K., Newman, T. R., et al.. A survey of artificial intelligence for cognitive radios[J]. IEEE Transactions on Vehicular Technology,2010,59(4): 1578-1592.
    [215]丁永生.自然计算与网络智能[M].上海:上海交通大学出版社,2008.
    [216]刘宝.基于生物网络的智能控制系统及其应用[D].东华大学博士论文,中国:上海,2006,8.
    [217]Nasrabadi, N., Choo, C.. Hopfield network for stereo vision correspondence [J]. IEEE Transactions on Patter Analysis Machine Intelligent,1992,3(1):5-13.
    [218]Khotanazd, A., Bokil, A., Lee, Y.. Stereopsis by constraint learning feed-forward neural networks [J]. IEEE Transactions on Neural Networks,1993,4(2): 332-342.
    [219]Lee, J. J., Shim, C., Ha, Y. H.. Stereo correspondence using the Hopfield neural network of a new energy function[J]. Pattern Recognition,1994,27(11): 1513-1522.
    [220]Pajares, G, Cruz, J., Aranda, J.. Relaxation by hopfield network in stereo image matching[J]. Pattern Recognition,1998,31(5):561-574.
    [221]Pajares, G, Cruz, J., Aranda, J.. Stereo matching based on the self-organizing feature-mapping algorithm[J]. Pattern Recognition Letters,1998,19(3-4): 319-330.
    [222]Pajares, G, De La Cruz, J. M.. Local stereovision matching through the AD ALINE neural network[J]. Pattern Recognition Letters,2001,22(14): 1457-1473.
    [223]Zaki, M., El-Ramsisi, A., Omra, R.. A genetic aggregate stereo algorithm for 3-d classification of occluded shapes[J]. Pattern Recognition Letters,2000,21(5): 349-363.
    [224]Binaghi, E., Gallo, I., Fornasier, C., et al.. Growing aggregation algorithm for dense two-frame stereo correspondence[C]. In:Proceedings of the First International Conference on Computer Vision Theory and Application, Feb. 25-26,2006, pp.326-332.
    [225]Gallo, I., Binaghi, E., Raspanti, M.. Neural disparity computation for dense two-frame stereo correspondence[J]. Pattern Recognition Letter,2008,29(5): 673-687.
    [226]汪亚明.基于神经网络的图像序列特征点匹配[J].中国图象图形学报,2002,7(4):313-318.
    [227]Sun, T. H., Chen. M., Lo, S. C., et al.. Face recognition using 2D and disparity eigenface[J]. Expert Systems with Applications,2007,33:265-273.
    [228]Venkatesh, Y. V., Raja, S. K., Kumar, A. J.. On the application of a modified self-organizing neural network to estimate stereo disparity [J]. IEEE Transactions on Image Processing,2007,16(11):2822-2829.
    [229]Zigh, E., Belbachir, M. F.. Soft computing strategy for stereo matching of multi spectral urban very high resolution IKONOS images[J]. Applied Soft Computing,2012,12:2156-2167.
    [230]Huang, X., K. Hao, G, Ding, Y. S.. Human fringe skeleton extraction by an improved Hopfield neural network with direction features[J]. Neurocomputing, 2012,87:99-110.
    [231]Misra, J., Saha, I.. Artificial neural network in hardware:a survey of two decades of progress [J]. Neurocomputing,2010,74(1-3):239-255.
    [232]Abd El-Wahed, W. F., Zaki, E. M., El-Refaey, A. M.. Artificial immune system based neural networks for solving multi-objective programming problems [J]. Egyptian Informatics Journal,2010,11(2):59-65.
    [233]Mohhammad, A. H., Zitar, R. A.. Application of genetic optimized artificial immune system and neural networks in spam detection[J]. Applied Soft Computing,2011,11:3827-3845.