近海养殖场底泥微生物区系结构和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用形态特征和生理生化特性为基础的传统分类学方法、结合以16S rDNA序列为基础的分子系统发育学分析的多相分类学技术,主要应用PCR扩增、16S rDNA限制性酶切(Amplified Ribosomal DNA Restriction Analysis,ARDRA)图谱分析、16S rDNA序列测定等分子生物学方法,研究和探讨了我国福建东山某近海养殖场底泥中各类群细菌数量和种群结构丰度。采用传统的平板菌落计数法(CFU)和最大可能数法(MPN)对底泥样品的各类微生物种群进行了分析和统计,并从中分离到不同形态的菌株106株。同时还探讨了应用ARDRA图谱聚类分析与细菌形态分类和生理生化分类相结合的方法,进行环境微生物生态研究的可行性。
     从细菌形态类群、生理类群的研究,发现养殖场底泥中的细菌形态和生理表观特性具有一定的多样性;ARDRA图谱分析发现这些细菌存在基因细微结构类型的差别,ARDRA图谱聚类分析结果与生理生化和形态表观分类结果具有一定的一致性。
     对分离菌株的进一步研究表明,养殖场底泥中87%的细菌种群为产芽孢细菌,占绝对优势;只有少量(13%)的细菌种群为非产芽孢的革兰氏阳性和阴性细菌。产芽孢细菌中主要是芽孢杆菌属(Bacillus)和盐芽孢杆菌属(Halobacillus)的细菌占优势,其种群在底泥中分布广泛,存在向底泥深处略有增多的现象;非芽孢细菌的种群有革兰氏阳性的微杆菌属、动性球菌属和其它的的革兰氏阳性非芽孢细菌,以及极少量的革兰氏阴性的细菌,并且这些非芽孢细菌是从底泥表层分离出来的。
     分类及系统发育研究表明,有多株细菌的16S rDNA序列与GenBank中的已知序列相似性较低,可能是一些新属种的细菌。本论文对其中一株细菌2-2进行了详细的分类学研究,发现它与芽孢杆菌属的亲缘关系最近,其16S rDNA序列与B.pumilus的相似性为96%,生理生化和细胞壁成分分析都显示菌株2-2是芽孢杆菌属的一个新种,命名为Bacillus catenulatus。此外还发现这株细菌具有营养细胞的分化现象,通过细菌生长体细胞群落形态、个体细胞形态观察、16S rRNA基因序列的比对分析,证实了这一分化现象,并通过质粒提取、全细胞蛋白的SDS-PAGE分析等方法,拓宽了研究芽孢菌分化现象的思路。
     本文还研究了养殖场底泥中细菌代谢各种生源要素的生理特征,分析了不同生理类群细菌的种群结构,以及它们在底泥中的分布情况。结果表明,养殖池底泥中,细菌代谢含碳有机化合物的能力比较强,且分解淀粉的细菌数量和种群均高
Their taxonomy and systematic evolutionary are studied by their morphologic cheracteristics, physiological and biochemical properties, and 16S rDNA sequences. The molecular biological techniques, such as PCR, ARDRA pattern analysis and sequencing 16S rDNA, are used to study their polyphasic taxonomy. Applying analytical method of ARDRA pattern on environment microbical ecology is also discussed. Bacterial community structure and quantity of sediment from near-shore marine-cultural region located in DongShan, FuJian province of China are studied in the thesis. Based on the methods of CFU and MPN, quantity and community structure of bacteria in the samples of the sediment have been analyzed, from which 106 strains were isolated.
    The results indicate that there are morphologic, physiological and biochemical diversities among bacteria from the sediment. Diversity of 16S rDNA sequences of these strains is showed by ARDRA pattern analysis, these results are corresponded with that of morphologic cheracteristics, physiological and biochemical properties of the bacterial strains.
    The results show that 87% of isolates are the most aboundent populations and belong to endospore-forming bacteria, and the others are the lowest population and belong to non spore-forming bacteria. Bacillus, Halobacillus are the most aboundent populations among endospore-forming bacteria, and widely distribute in sediment. Microbium, Planococcus, a few gram-negative bacteria are the lowest populations, and mainly distributed on the top of sediment.
    Some strains might be novel genus or species, based on their 16S rDNA sequence. The bacterial strain 2-2 has been identified. The similarity of its 16S DNA sequence is lower than 96% to Bacillus pumilus, and its morphologic cheracteristics, physiological and biochemical properties, components of cell's wall are also different from those of B. pumilus. These results strongly suggest that strain 2-2 is a novel species of the genus Bacillus and the name Bacillus catenulatus is proposed for this strain. The strain was found to produce the differential phenotypes of cells and this phenotypic difference is confirmed by growing-cells, colonies, 16S rDNA sequence contrasted. We try to widen the view to study the differential cell of Bacillus by extracting plasmid and analysised SDS-PAGE of cell's protein.
引文
[1] 王大珍.微生物生态学的发展及应用.科学,1990年,45卷,第2期:18-20,60
    [2] 周一兵,刘亚军.虾池生态系能量收支和流动的初步分析.生态学报,2000,20(3):474-481
    [3] 季如宝,毛兴华等.贝类养殖对海湾生态系统的影响.黄渤海海洋,1998,16(1):21-27
    [4] 林美兰,倪纯治等.厦门桐安西柯对虾养殖池的细菌数量动态.台湾海峡,1998,11(2):156-161
    [5] 韩家波,木云雷,王丽梅.海水养殖与近海水域污染研究进展.水产科学,1999,18(4):40-43
    [6] Sambasivam S, Chandran R, Khan SA. Role of probiotics on the environment of shrimp pond. J Environ Biol. 2003, 24(1): 103-106
    [7] 李会荣,俞勇等.海洋有益菌的筛选与鉴定.高技术通讯,2001,(9):18-22
    [8] 王刚.微生态制剂在水产养殖上的应用.水产科学,2002,21 (3):34-36
    [9] 郑天凌,庄铁城等.微生物在海洋污染环境中的生物修复作用.厦门大学学报,2001,40(2):524-534
    [10] 李英军,刘忠林.EM有益微生物技术在我国的应用研究进展.环境与开发,2001,16(3):12-13[11] Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soil. In: Collins H P, Robertson G P, Klug M J(eds. ) (1995) The Significance and Regulation of Soil Biodiversity, Netherlands: Kluwer Academic Publishers75-86
    [12] Lammar R T, Dietrich D M (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Applied and Environmental Microbilogy. 56: 3093-3100
    [13] WHO.2001年的食物链———食品安全是一个世界性的挑战.国外医学卫生学分册,2002,29(1):1-5,19
    [14] 李书谦.食品安全问题的思考与对策.中国食物与营养,2002,4:11-12
    [15] 刘连馥.绿色食品与食品生产质量安全.中国食物与营养,200l,11:20-22
    [16] 刘云峰,卢王君,童世吉.浅谈我国食品安全与绿色食品的现状与发展.中国水产,2003,12:71-72
    [17] 赵法箴,李健,刘世禄.水产健康养殖与食品安全发展战略研究.海洋水产研究,2002,23(4):66-70
    [18] 余利岩,姚天爵.微生物生态学研究方法.微生物学报,2001,28 (1):89-93
    [19] Talas R M. Diversity of Microbial communities. In: Marshall K C ed. Advances in Microbial Ecolofg. Vol. Plenum. New York, 1984, 1-47.
    [20] 杨永华,姚健.分子生物学方法在微生物多样性研究中的应用.生物多样性,2000,8(3):337-342
    [21] Saylor G S, Layton A C. Environmental application of nucleic acid hybridization. Annual Review of Microbiology. 1990, 44: 625-648
    [22] Jain R K, Saylor G S, Wilson J T, Houston L, Pacia DMaintenance and stability of introduced genotypes in groundwater aquifer mateial. Applied and Environmental Microbiology. 1987, 63: 4552-4557
    [23] Barkay T, Libebert C, Gillman M Hybridization of DNA probes with whole community genome for detection of genes that encode microbial responses to pollutions. Applied and Environmental Microbiology. 1989, 55: 1574-1577
    [24] Amann R I, Krumholz L, Stahl D A Fluorescent oligonucleitide probing of whole cell for determinative phylogenetic, and environmental studies in microbiology. Journal of Bacteriology. 1990, 172: 762-770
    [25] Lobet-Brossa E, Rosselo-Mora R, Amann R. Microbial community composition of Wadden Sea sedments as revealed by fluorescence in situ hybridization. Applied and Environmental Miceobiology. 1998, 65: 422-430
    [26] Lee S, Fuhrman J A. DNA hybridization to compare specices composition of??natural bacterioplankton assemblages. Applied and Environmental Microbiology, 1990,56: 739-746
    
    [27] Ritz K, Griffitha B S Potential application of a community hybridization technique for assessing changes in the population steucture of soil microbial communities. Soil Biology and Biochemistry. 1994,26: 963-971
    
    [28] Wiches A, Biel S S, Gelderblom H R, Brikoff T, Muyzer G, Schutt C (1998)Bacteriophage diversity in the North Sea. Applied and Environmental Microbiology. 64:4128-4133
    
    [29] De Ley J (1970) Reexamination of association between melting point,bouyant density,and chemical base composition of deoxyribonucleic acid. Journal of Bacteriology. 101:60-63
    
    [30] Heyndrickx M. Vauterin L. Vandamine P. Kersters K. De Vos P. Applicability of combined amplied ribosomal DNA restriction amalysis (ARDRA) patterns in bacterial phylogeny and taxonomy. 1996,26:247-259
    
    [31] Yanagi M. Yamasato K. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer.FEMS Microbiol. Lett.l993,107:115-120
    
    [32] Vaneechoutte M.et al. Evaluation of the applicability of amplified rDNA restriction analysis(ARDRA) to identification of species of the genus Corynebacterium.Research in Microbiology. 1995, 146(8): 633-641
    
    [33] Vaneechoutte M. Rossau R. et al. Rapid identification of bacteria of the comamonadaceae with amplified ribosomal DNA-restriction analysis(ARDRA). FEMS Microbiol. Lett. 1992,93:227-234.
    
    [34] Stackebrandt E. et al. Taxonomic Note: A Place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J.Syst. Bacteriol. 1994,846-849[1] 史君贤,陈忠元,胡夕钢.浙江省海岛沿岸水域微生物生态分布.东海海洋.1996,14(2):35-43
    [2] 陈皓文.桑沟湾细菌的研究.海岸工程.2001,20(1):72-80
    [3] 王国惠,于鲁冀.东湖细菌生理群间的相关性.河北大学学报.1998,18(3):267-269
    [4] 林美兰,倪纯治等.厦门桐安西柯对虾养殖池的细菌数量动态.台湾海峡.1998,11(2):156-161
    [5] 陈灏,唐小树等.不经培养的农田土壤微生物种群构成及系统分类的初步研究.微生物学报.2002,42(4):478-483
    [6] 李秋芬,曲克明,辛福言,袁有宪.虾池环境生物修复作用菌的分离与筛选.应用与环境生物学报.2001,7(3):281~285
    [7] 李会荣,俞勇等.海洋有益菌的筛选与鉴定.高技术通讯.2001,(9):18-22
    [8] 薛廷耀.《海洋细菌学》.科学出版社.1962
    [9] Eguchi M, Nishikawa T, Macdonald K. Responses to Stress and Nutrient Availability by the Marine Ultramicrobactrium Sphingomonas sp. Strain RB2256. Appl??Environ Microbiol. 1996, 62(4): 1287~1294
    [10] 东秀珠,蔡妙英)等.《常见细菌系统鉴定手册》.科学出版社.2001
    [11] 许光辉等.《土壤微生物分析方法手册》.农业出版社.1986.2
    [12] Philipp Gerhardt(美),苏文金(译).普通细菌学方法手册.厦门大学出版社.1989
    [13] 钱学柔,黄仪秀.微生物学实验教程.北京大学出版社.1999
    [14] 沈萍,范秀容,李广武.微生物学实验.高等教育出版社.2001
    [15] R.E.戈登等著,蔡妙英等译.芽孢杆菌属.农业出版社.1983
    [16] Bergey's Manual of Systematic Bacteriology, Vol. 1~4, 1984~1989
    [17] Dalmin G, Kathiresan K, Purushothaman A. Effect of Probiotics on Bacterial Population and Health Status of Shrimp in Culture Pond Ecosystem. Indian Journal of Experimental Biology. 2001, 39: 939-942[1] Heyndrickx M. Vauterin L. Vandamine P. Kersters K. De Vos P. Applicability of combined amplied ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. 1996, 26: 247-259
    [2] Vaneechoutte M. Rossau R. et al. Rapid identification of bacteria of the comamonadaceae with amplified ribosomal DNA-restriction analysis(ARDRA). FEMS Microbiol. Lett. 1992, 93: 227-234.
    [3] Eguchi M, Nishikawa T, Macdonald K. Responses to Stress and Nutrient Availability by the Marine Ultramicrobactrium Sphingomonas sp. Strain RB2256. Appl Environ Microbiol. 1996, 62(4): 1287~1294
    [4] 许光辉等.《土壤微生物分析方法手册》.农业出版社.1986.2
    [5] 东秀珠,蔡妙英等.《常见细菌系统鉴定手册》.科学出版社.2001
    [6] 张德民.紫色非硫细菌多相分类及分子生态学研究.中国科学院微生物研究所??博士学位论文. 27-28
    
    [7] Sambrook J and Russell D W. Molecular Cloning a laboratory Manual(Vol.2).CSHL Press
    
    [8] Kamimura K, Wakai S, Sugio T. Identification of Thiobacillus ferrooxidans strains based on restriction fragment length polymorphism analysis of 16S rDNA.Microbio,2001,105(412): 141-152
    
    [9] Gich F B, Amer E, Figueras JB, et al. Assessment of microbial community structure changes by ampified ribosomal DNA restriction analysis(ARDRA). Int Micrbiol ,2000 ,3(2) : 103-106
    
    [10] Urakawa H, Kita-Tsukamto K, Ohwada K. 16S rDNA restriction fragment length polymorphism analysis of psychrotrophic vibrios from Japanese castal water. Can J Microbiol 1999,45(12) : 1001-1007
    
    [11] Riedel KH, Wingfield BD, Britz TJ. Identification of classical Propionibacterium species using 16S rDNA-restriction fragment length polymorphisms. Syst Appl Microbiol 1998 ,21(3) :419-428
    
    [12] Terence L, Marsh et al. Terminal restriction fragment length polymorphism analysis program, a Web-Based research tool for microbial community analysis. Appl Environ Microbiol. 2000,3616-3620
    
    [13] Osborn AM, Moore ER, Timmis KN. An evaluation of trminal-rstriction fragment length polymorphism(T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbil, 2000,2(1) :39-50
    
    [14] Raghava GP, Solanki RJ, Soni V, Agrawal P. Fingerprinting method for phygenetic classification and identification of microorganismsbased on variatin in 16S rDNA gene sequences. Biotechniques, 2000,29(1) : 108-112,114-116[1] R.E.戈登(美)等著,蔡妙英等译.《芽孢杆菌属》.农业出版社.1983
    [2] 王刚.微生态制剂在水产养殖上的应用.水产科学.2002,21(3):34-36
    [3] Dalmin G, Kathiresan K, Purushothaman A. Effect of Probiotics on Bacterial Population and Health Status of Shrimp in Culture Pond Ecosystem. Indian Journal of Experimental Biology. 2001, 39: 939-942
    [4] 薛廷耀.《海洋细菌学》.科学出版社.1962
    [5] Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Volker H, Thomm M. Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol. 2001, 51(Pt 2): 425-431
    [6] Caccano D, Gugliandolo C, Stackebrandt D, Maugeri TL. Bacilus vulcani sp. mov., a movel thermorhilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol. 200, 50(Pt 6): 2009-2012
    [7] 李贵生,何建国等.海区水与虾塘水异同的研究.中山大学学报论丛.1996,增??刊:40-44
    [8] 胡承彪,朱宏光等.广西岑溪县七坪林区土壤微生物生态分布及生化活性的研究.生态学杂志.1991,10(4):4-8
    [9] Eguchi M, Nishikawa T, Macdonald K. Responses to Stress and Nutrient Availability by the Marine Ultramicrobactrium Sphingomonas sp. Strain RB2256. Appl Environ Microbiol. 1996, 62(4): 1287~1294[1] Peter H., Sneath A. Bergey's Mannual of Dterminative Bacteriology. 10th Edition, Section 13, 1104-1139
    [2] 周德庆.微生物学教程.高等教育出版社.1997,7:33-40
    [3] Palys T, Bakamura L K. & Fox G E. Discovery and classification of ecological diversity in the bacterial world : the role of DNA sequence date. Int. J. Syst. Bacterial 1997. 47: 1145-1156
    [4] 东秀珠,蔡妙英等.《常见细菌系统鉴定手册》.科学出版社.2001
    [5] Eguchi M., Nishikawa T., Macdonald K. Responses to Stress and Nutrient Availability by the Marine Ultramicrobactrium Sphingomonas sp. Strain RB2256. Appl Environ Microbiol. 1996, 62(4): 1287~1294
    [6] Philipp Gerhardt(美),苏文金(译).普通细菌学方法手册.厦门大学出版社.1989
    [7] 阮继生,刘志恒等编著.《放线菌研究及应用》.科学出版社.1990,80-95
    [8] Sambrook J and Russell D W. Molecular Cloning a laboratory Manual(Vol. 2). CSHL Press
    [9] Karl H S. Otto K. Peptidoglycan types of bacterial cell wall and their taxonomic implications. Bacteriological Reviews. 1972, 36(4): 407-477
    [10] Riedel KH., Wingfield BD., Britz TJ. Identification of classical Propionibacterium species using 16S rDNA-restriction fragment length polymorphisms. Syst Appl Microbiol 1998, 21(3) : 419-428
    [11] Oppong, D., King, V. M. and Bowen, J. A. Isolation and characterization of filamentous bacteria from paper mill slmes. Int. Biodeterior. Biodegradation 2003, 52: 53-62
    [12] Yan L. Studies of the production of antimicrobial compounds by marine epiphytic bacteria using bioreactors which mimic their natural ecological habitat. These(2002) Department of Biological sciences, Heriot-watt University, Edinburgh, UNITED KINGDOM
    [13] Yoon J H., Weiss N., et al. Jeotgalibacillus alimentarius gen. nov., sp. Nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Ruger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2001, 51: 2087-2093
    [14] Yoon J H., Kim I G. et al. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 2003, 53: 1297-1303[15] Jeroen H., Bram V., et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov.,Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov.,from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol.2004,54: 47-57
    
    [16] Ajithkumar V P., Ajithkumar B., Mori K. et al. A novel filamentous Bacillus sp.,strain NAF001 forming endspores and budding cell, Microbiology, 2001,147:1415-1423.[1] Bent E J & Goulder R. Planktonic Bacteria in the Humber Estuary: Seasonal Variation in Population Density and Hetertrophic Activity. Mar. Biol. 1962, 62: 35-45.
    [2] Richard T W & Richand B C. Planktonic Bacteria in Estuaris and Coastal Waters of Northern Massachusetts: Spatial and Temporal Distribution. Mar. Ecol. Prog. Ser. 1983, 11: 205-216
    [3] 许光辉等.《土壤微生物分析方法手册》.农业出版社.1986.2
    [4] Eguchi M, Nishikawa T, Macdonald K. Responses to Stress and Nutrient Availability by the Marine Ultramicrobactrium Sphingomonas sp. Strain RB2256. Appl Environ Microbiol. 1996, 62(4): 1287~1294
    [5] 俞毓馨,吴国庆,孟宪庭主编.《环境工程微生物检验手册》.中国环境科学出版社.1990,129-142
    [6] Dalmin G, Kathiresan K, Purushothaman A. Effect of Probiotics on Bacterial Population and Health Status of Shrimp in Culture Pond Ecosystem. Indian Journal of Experimental Biology. 2001, 39: 939-942[1] 宋大祥译.《微生物在湖内物质循环中的作用》.科学出版社.1961,125-169
    [2] 郑天凌,王海黎等.微生物在碳的海洋生物地球化学循环中的作用.生态学杂志.1994,13(4):47-50
    [3] Azam F. et al. Bacterial transformation and transport of organic matle in the southern California Bight. Prog. In Oceangr., 1992, 30(4): 151-161
    [4] Cho B. C. & Azam F. Major robe of bacteria in biogeochemical fluses ij the ocean's interior. Nature, 1988, 332: 441-443
    [5] Dalies G. Biogeochemical significance of bacterial biomass in the ocean's euphoric Zone. Mar. Prog. Ser., 1990, 63: 253-259
    [6] Liw K. W., Dickie P. W. Light and dark C uptake in dimly lit oligotrophic water: relation to bacterial activity. S. Plankton Res. Suppl., 1991, 13: 29-44
    [7] Michaels A. F., Siwer M. W. Primary production sinking flares and microbial food web. Deep-Sea Res., 1988, 35: 473-490
    [8] Nielsen T G., & Richarelson K. Food chain structure of the north sea plankton communities: seasonal variations of the role of the microbial loop. Nar. Ecol. Prog. Ser., 1989, 56: 75-87
    [9] 李秋芬,曲克明,辛福言,袁有宪.虾池环境生物修复作用菌的分离与筛选.应用与环境生物学报).2001,7(3):281~285
    [10] 俞毓馨,吴国庆,孟宪庭主编.《环境工程微生物检验手册》.中国环境科学出版社.1990,129-142
    [11] 东秀珠,蔡妙英等.《常见细菌系统鉴定手册》.科学出版社.2001,370-390
    [12] 周毅,杨红生等.海水双壳贝类的N、P排泄及生态效应.中国水产科学.2003,10(2):165-168
    [13] Paerl HW, Dyble J. et al. Characterizing man-made and natural modifications of microbial diversity and activity in coastal ecosystems. Antonie Van Leeuwenhoek.??2002, 81(1-4): 487-507
    [14] 薛廷耀译.《海洋细菌学》.科学出版社.1962
    [15] 宋大祥译.《微生物在湖内物质循环中的作用》.科学出版社.1961,125-169
    [16] Jana BB, Chakraborty P. et al. Biogeochemical cycling bacteria as andices of pond fertilization: importance of CNP ratios of input fertilizers. Appl Microbiol. 2001, 90(5): 733-740[1] 周德庆.《微生物学教程》.高等教育出版社.1977,301-304
    [2] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO_2 in the ocean. Nature, 1997, 387: 272-275
    [3] 穆兴民,范小林.土壤氮素矿化的生态模型研究.应用生态学报.1999,10(1):114-118
    [4] Hart B T, Grace M R. Nitrogen workshop 2000: sources, Transformations effects and management of nitrogen in freshwater ecosysten. Land & water Australia. 2001, 96-99
    [5] 徐亚同,废水的硝化作用.环境科学进展.1994,2(3):44-49
    [6] Robertson L A, et al. simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl Environ Microbiol, 1998, 54(2): 812-818
    [7] Carter J P, Hsiao Y H, Spiro S, et al. Soil and dediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol, 1995, 61(8): 2852-2858
    [8] 池振明.《微生物生态学》.山东大学出版社.1999,第一版
    [9] 刘志恒.《现代微生物学》.科学出版社.2002,412-424
    [10] 薛廷耀译.《海洋细菌学》.科学出版社.1962
    [11] 宋大祥译.《微生物在湖内物质循环中的作用》.科学出版社.1961,170-195
    [12] 周毅,杨红生等.海水双壳贝类的N、P排泄及生态效应.中国水产科学.2003,10(2):165-168
    [13] 俞毓馨,吴国庆,孟宪庭主编.《环境工程微生物检验手册》.中国环境科学出版社.1990,129-142
    [14] 东秀珠,蔡妙英等.《常见细菌系统鉴定手册》.科学出版社.2001,370-390
    [15] 刘东山,罗启芳.东湖氮循环细菌分布及其作用.2002,23(3):29-35
    [16] 周一兵,刘亚军.虾池生态系能量收支和流动的初步分析.生态学报.2000,20(3):474-481
    [17] Braker G, Alay-del-Rio HL, Devol AH, Fesefeldt A, Tiedje JM. Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific??Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol. 2001 Apr; 67(4): 1893-901.
    [18] Kern J, Darwich A, Furch K, Junk WJ. Seasonal Denitrification in Flooded and Exposed Sediments from the Amazon Floodplain at Lago Camaleao. Microb Ecol. 1996, 32(1): 47-57
    [19] 李霞.微生物在氮循环中的作用.松辽学刊.1998,第4期:30-31,36
    [20] Philips S, Wyffels S, Sprengers R, Verstraete W. Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidizers enables upward motion towards more favourable conditions. Appl Microbial Biotechnol. 2002 , 59(4-5): 557-66. Epub 2002 Jul 03
    [21] 丁爱中,付家谟,盛国英.好氧微生物反硝化反应的证据.科学通报.2000,45(增刊)
    [22] 吕锡武,李峰,稻森悠平,水落元之.氨氮废水处理过程中的好氧反硝化研究.给水排水.2000,25(5):17-20
    [23] Stepanauskas R, Davidsson E T, Leonardson L. Nitrogen transformation in wetland soil cores measured by _(15)N isotope pairing and dilution at dour infiltration rates. Appl Environ Microbiol, 1996, 62(7): 2345-2351
    [24] Neubauer H, Pantel I, Gotz F. Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus. J Bacteriol. 1999 Mar; 181(5): 1481-8.
    [25] 魏泰莉,金瑞兰等.养殖水环境亚硝酸盐对鱼类的危害及防治的研究.水产养殖.1999,3:15-17[1] Zhao F, Wu J, et al. Soil organic sulphur and its turnover. In Humic Substances in Terrestrial Ecosystems. Elsevier Oxford, 1996.
    [2] 王家玲.环境微生物学.科学出版社.1985
    [3] 王桂春,张兆琪等.无机物对河蟹和罗氏诏虾毒性的研究进展.水利渔业.2003,20(6):21-23
    [4] 张晋华,王雷等.水稻土中半胱氨酸分解产生含硫气体的研究.环境化学.2001,20(4):356-361
    [5] Minami k, kanda k, Tsurute H, Emission of biogenic sulfur gases from rice paddies in japan, in biogeochemistry and global change, edited by oremland R S, Chapman & Hall, New York, USA, 1993, PP, 405-419
    [6] 薛廷耀.海洋细菌学.科学出版社,1962
    [7] 宋大祥译.《微生物在湖内物质循环中的作用》.科学出版社.196l,197-231
    [8] 俞毓馨,吴国庆,孟宪庭主编.《环境工程微生物检验手册》.中国环境科学出版社.1990,129-142
    [9] 东秀珠,蔡妙英等.《常见细菌系统鉴定手册》.科学出版社.2001,370-390
    [10] 许光辉等.《土壤微生物分析方法手册》.农业出版社.1986
    [11] Jana BB, Chakraborty P, Biswas JK, Ganguly S. Biogeochemical cycling bacteria as indices of pond fertilization: importance of CNR ratios of input fertilizers. Appl Microbiol. 2001, 90(5): 733-740
    [12] Karnachuk OV, Kurochkina SY, Tuovinen OH. Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Appl Microbiol Biotechnol. 2002, 58(4): 482-486
    [13] Teske A, Brinkhoff T, et al. Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol. 2000, 66(8): 3125-3133
    [14] Castro H, Reddy KR, Ogram A. Composition of sulfate-reducing prokaryotes in eutrophic and pristine areas of the florida everglades. Appl Environ Microbiol. 2002, 68(12): 6129-6137[1] 王光华,赵英等.解磷菌的研究现状与展望.生态环境.2003,12(1):96-101
    [2] 范丙权,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究.中国农业科学.2002,35(5):525-530
    [3] Louw H A, Webley D N, A study of soil bacteria dissolving certain mineral phosphate fertilizers and related compounds. J Appl Bacterial, 1959, 22: 227-233
    [4] 赵小蓉,林启美.微生物解磷的研究进展.土壤肥料.2001,3:7-11
    [5] 杨秋忠等.台湾土生固氮溶铁磷细菌特性之研究.中国农业化学会志.1998,36(2):201-270
    [6] Illmer P, Schinner F. Solubilization of inorganic calcium phosphates solubilization mechanism. Soil boil Biochem, 1995, 27(3): 257-263
    [7] Piccini D, Azcon R. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant and Soil. 1987, 101, 45-50.
    [8] 王锐萍,陈玉翠.海口东湖降解磷细菌研究报告.海南师范学院学报.2001,14(1):84-88
    [9] 俞毓馨,吴国庆,孟宪庭主编.《环境工程微生物检验手册》.中国环境科学出版社.1990,129-142
    [10] Philipp Gerhardt(美),苏文金(译).普通细菌学方法手册.厦门大学出版社.1989
    [11] 东秀珠,蔡妙英)等.《常见细菌系统鉴定手册》.科学出版社.2001
    [12] 许光辉等.《土壤微生物分析方法手册》.农业出版社.1986.2
    [13] 周易勇,付永清.水体磷酸酶:来源、特征及其生态学意义.湖泊科学.1999,11(3):274-282
    [14] Cooper J E, Early J, Holding A J. Mineralization of dissolved organic phosporus from from a shallow eutrophic lake. Hydrobiologia, 1991, 209: 89-94
    [15] James E C, Kuiacy C. Production of citric and oxalic acids and solubilization of calcium pkosphate by Penicillmiu
    [16] 蔡磊,李文鹏,张克勤.高效解磷菌株的分离、筛选及其对小麦苗期生长的促进作用研究.土壤通报.2002,33(1):44-46