复制缺损型HBV的构建及其表达反义RNA和显性阴性突变体抗HBV作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性乙型肝炎病毒感染是我国的常见病,迄今尚无满意疗法。基因治
    疗为乙型肝炎提供了新的治疗策略,已显示出诱人的应用前景。但目前存
    在的主要问题是载体缺乏导向性及难以向众多的靶细胞导入足量的目的基
    因。体内有众多的HBV感染细胞,目的基因到达体内如果没有导向性及放
    大效应,很难获得满意的临床疗效。经我们对HBV基因组的分析,在HBV
    复制非关键区域改造其基因组结构,使其表达抗HBV产物用于抗乙肝病毒
    治疗。与其它病毒载体相比,理论上具有明显的优势,它可利用乙肝患者
    这个天然“包装细胞”,目的基因在慢性HBV感染者体内将有嗜肝导向性
    及放大效应,在体内长期表达;当HBV复制水平下降时,重组HBV也将
    随之减少或消失,有可能从根本上克服上述基因载体的缺陷。本课题对HBV
    基因组作了五种类型改造,使其分别或联合表达反义RNA和显性阴性核心
    蛋白突变体,并利用EB病毒载体或逆转录病毒载体转导经修饰的HBV全
    基因组进入细胞,利用表达HBV抗原并分泌HBV颗粒的2.2.15细胞为模
    型,观察其抗HBV作用及能否利用野生型HBV作为辅助病毒包装并分泌
    HBV样颗粒。
     方 法
    1.把HBV基因进行如下修饰:①把部分S区基因反向插入HBV基因组,
     表达该区域的反义RNA;②把S启动子区基因反向插入HBV基因组,
     表达该区域的反义RNA;③在核心蛋白末端与P蛋白重叠区引入突变
     点,使其表达核心蛋白与部分P蛋白的融合蛋白;④把核心蛋白末端至
     表面抗原之间的区域删除,使其表达核心蛋白与表面膜蛋白的融合蛋
     白;⑤在核心蛋白末端与P蛋白重叠区引入突变点,使其表达核心蛋白
     与P蛋白的融合蛋白,同时再把部分S区基因反向插入表达反义RNA。
    
    
    L 把上述经修饰的HBV完整复制单元插入潮霉素抗性EB病毒pMEP4载
     体,分别构建质粒pMEPSas(表达S区反义KNA人pMEPFas(表达
     S启动子区反义RNA人pMEP(P(表达核心蛋白与P蛋白融合蛋白人
     pMEPCS(表达核心蛋白与表面膜蛋白融合蛋白人pMEP(PAS(表达
     核心蛋白与P蛋白融合蛋白及S区反义RNA人 以空载体pMEP4为对
     照,应用脂质体分别转染整合了 HBV全基因的 2.2.15细胞,潮霉素加
     压筛选,各组形成的细胞克隆分别混合培养。
    3.把表达显性阴性核心蛋白突变体的两种突变型HBV全基因插入逆转录
     病毒载体GINa,构建质粒pRV(P(表达核心蛋白与P蛋白融合蛋白)
     和 pRV(S(表达核心蛋白与表面膜蛋白融合蛋白),以空载体 GINa为
     对照,转染包装细胞系并制备重组逆转录病毒,感染二.2刁 细胞。
    4.连续收集培养上清液,ELISA法检测HBsAg、HBeAg;提取细胞内核
     心蛋白颗粒中 HBV DNA,进行 DNA狭缝斑点杂交,以检测对 HBV复
     制的抑制作用;提取细胞培养上清液中病毒DNA,分别以各自跨连接
     区或跨突变点区引物行PCR检测,以证实有无突变型HBV颗粒的分泌。
    5.HBV全基因经删除包装信号。区后,分别插入到 G4 18抗性 pCIneo及
     潮霉素抗性 pMEP4载体,构建质粒pCI*HBV和 pMEP刁HBV,分别转
     染 HepGZ细胞系,并分别用 G4或潮霉素筛选形成细胞克隆,检测表
     达HBSAg及HBCAg较多者作为HBV包装细胞系,转染表达复制缺损
     型HBV的质粒以观察包装效果。
     会 果
    1.在 2.2.15细胞内稳定表达多种抗病毒产物,共分为 7组:2.2.15中MEP4、
     2.2.15-Sas、2.2.15-Pas、2.2.15-CP、2.2.15(S和 2.2二5-CPAS,以 2.2.15
     细胞为对照,计算对HBSAg的平均抑制率分别为:2厂4土3.83%、66.54
     士4.45%(p<0刀1)、55* 士3二7%(p<0刀1)、40刀8士2刀5%(p<0.01)、52.94
     士1.93%(P<0*1)和*.68士5*7%…<0*1);对HBCAg的平均抑帘率分别
     为:4.46士4.250、26.36士l.690(<0.0)、65.54土3.22%(<0.01)、52.86
     X
     )。。
    
     上1.32%(p<0刀1)、41.60土1石5%(p<0刀1)和 59二8上2.10%O<0刀1);对
     HBV复制的抑制率分别为:0%、59.9%、72.8%、82刀%、67二%和 96石%。
    2.把表达显性阴性核心蛋白突变体的HBV全基因插入逆转录病毒载体
     GINa,制备重组逆转录病毒,感染HepGZ细胞后,应用免疫荧光法可
     检出HBcAg的表达,感染22三5细胞以观察疗效,分4组:GINa、pRV(P
     和 PRV(S组,以 2.2l 5细胞为对照,观察对 HBSAg的平均抑制率分别
     为:2.58士3.77%、28.86上4.73%(p<0*1)和39.30士7*4%O<0*1);对
     *B<吨的平均抑韦率分另为:3月4土3刀2%、40.38土2.59%(<0刀1)和
     33*8士4*7%O<0.01);对**V复帘的抑韦率分别为:13.4%、67.2%和
     55.8%。
    3.经对 HBV基因组进行 5种类型改造后,质粒转染 2.2.15细胞,应用 PCR
     法检测突变型 HBV的
Chronic infection with the hepatitis B virus (I-IBV) is a major problem of
     public health and a common disease in our country, and currently available
     therapies have limited efficacy. New antiviral approaches are needed to reduce
     the risk of developing chronic liver disease and hepatocellular carcinoma. Gene
     therapy, which has become one of the most attractive antiviral strategies, is
     bringing a promising light. But HBV gene therapy poses formidable obstacles to
     gene delivery. The more intractable problem is the development of methods to
     target the infected tissues or cell type and express efficiently therein. It is
     impossible for the present vectors to target so many HBV infected liver cells.
     HBV has many distinct features that make it attractive candidates as vectors for
     gene therapy of acquired liver diseases. Viral gene expression is directed by
     hepatocyte-specific promoter-enhancer elements, and, it establishes a stable
     episomal transcription template. It can selectively target the liver, and it
     efficiently infects quiescent hepatocytes. If it may express anti-HBV products
     and meanwhile be packaged, the antiviral function will be amplified in vivo.
     The fact that a large number of HBV-infected humans appear continuously to
     harbor the HBV genome and express HBsAg without pathogenic consequences
     offers a great advantage in terms of long-term maintenance and expression of a
     recombinant HBV vector bearing a desired gene. A recombinant HBV genome
     might be attenuated to the extent that the HBV replication level is reduced. So
     the limitation of other vectors for HBV gene therapy might be overcome. In this
     study, the HBV genome was manipulated to express antisense RNA or/and
     dominant negative mutants of HBV core protein. Transducted by EB virus
    
     111
    
    
    
    
    
    
    
    
    
     vector or retrovirus vector, the constructs was tested whether it has anti-HBV
     effects and can still be packaged in helper cell lines.
    
     Methods
    
     1. The HBV genome was modified as follows: (1) partial S gene was
     reversedly recombined back into HBV genome in order to express antisense
     RNA complementary to S region; (2) S promoter region was reversedly
     recombined back into HBV genome in order to express antisense RNA
     complementary to the S promoter region; (3) two nucleotide acids were
     inserted at BsrBR I site (in the superposition region of core and the P protein)
     in order to express a fusion protein of core and partial P protein with a stop
     codon at EcoRI site; (4) BsrBR Ito EcoRI fragment was removed in order to
     express a fusion protein of core and partial HBsAg; (5) two nucleotide acids
     were inserted at BsrBR I site as stated above, and then partial S region was
     reversedly recombined back, which expressed a fusion protein of core and
     partial P protein combined with antisense RNA complementary to partial S
     region.
    
     2. The modified HBV genomes in head-to-tail configuration were inserted into
     the pMEP4 vector with a hygromycin-resistance gene. Accordingly, five
     constructs were established as follows: (1) pMEP-Sas, which expressed
     antisense RNA complementary to partial S region of HBV genome; (2)
     pMEP-Pas, which expressed antisense RNA complementary to S promoter
     region; (3) pMEP-CP, which expressed a fusion protein of core and partial P
     protein; (4) pMEP-CS, which expressed a fusion protein of core and HBsAg;
     (5) pMEP-CPAS, which expressed a fusion protein of core and p
引文
1.Putlitz JZ, Wieland S, Blum HE, et al. Antisense RNA complementary to hepatitis B virus specifically inhibits viral replication. Gastroenterology.1998; 115(3):702-13.
    2.Ji W, St CW. Inhibition of hepatitis B virus by retroviral vectors expressing antisense RNA. J Viral Hepat. 1997;4(3):167-73.
    3.Tung FYT, Bowen SW. Targeted inhibition of hepatitis B virus gene expression: a gene therapy approach. Front Biosci.1998;1(3): all-5.
    4.Wu J, Gerber MA. The inhibitory effects of antisense RNA on hepatitis B virus surface antigen synthesis. J General Virology. 1997;78 (Pt 3): 641-647.
    5.Wands JR, Geissler M, Putlitz JZ, et al. Nucleic acid-based antiviral and gene therapy of chronic hepatitis B infection. J Gastroenterology and Hepatology. 1997;12(Suppl.):S354-S369.
    6.杨林,张定凤,任红等,反义乙肝病毒S基因真核载体构建及体外抗乙肝病毒作用,中华肝脏病杂志,1997;5(4):229—230.
    7.张建军,陈枫,钟森等,乙型肝炎病毒C区反义RNA靶向肝细胞抗病毒的研究,中华肝脏病杂志.2000;8(3):169—170.
    8.Shahabuddin M,Khan AS. Inhibition of human immunodeficiency virus type 1 by packageable, multigenic antisense RNA. Antisense Nucleic Acid Drug Dev. 2000;10(3):141-51.
    9.Chadwick DR, Lever AM. Antisense RNA sequences targeting the 5' leader packaging signal region of human immunodeficiency virus type-1 inhibits viral replication at post-transcriptional stages of the life cycle. Gene Ther. 2000;7(16):1362-8.
    10.Dornburg R, Pomerantz RJ. HIV-1 gene therapy:promise for the future. Adv Pharmacol. 2000; 49:229-61.
    11.Von Weizsacker F, Kock J, Wieland S, et al. Dominant negative mutants of the duck hepatitis B virus core protein interfere with RNA pregenome
    
     packaging and viral DNA synthesis. Hepatology. 1999; 30: 308-315.
    12. Koschel M, Oed D, Gerelsaikhan T, et al. Hepatitis B virus core gene mutations which block nucleocapsid envelopment. J Virol. 2000; 74(1) : 1-7.
    13. Scaglioni P, Melegari M, Takahashi M, Use of dominant negative mutants of the hepadnaviral core protein as antiviral agents. Hepatology. 1996; 24(5) : 1010-7.
    14. von Weizsacker F, Wieland S, Blum HE. Inhibition of viral replication by genetically engineered mutants of the duck hepatitis B virus core protein. Hepatology. 1996; 24(2) : 294-9.
    15. Smith RM, Wu GY. Hepatocyte-directed gene delivery by receptor-mediated endocytosis. Semin Liver Dis. 1999; 19(1) : 83-92.
    16. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990; 10(8) : 4239-4242.
    17. Roe T, Reynolds TC, Yu G, et al. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 1993; 12(5) : 2099-2108.
    18. Chirmule N, Hughes JV, Gao GP, et al. Role of E4 in eliciting CD4 T-cell and B-cell responses to adenovirus vectors delivered to murine and nonhuman primate lungs. J Virol. 1998; 72(7) : 6138-45.
    19. Raper SE, Haskal ZJ, Ye X, et al. Selective gene transfer into the liver of non-human primates with E1-deleted, E2A-defective, or E1-E4 deleted recombinant adenoviruses. Hum Gene Ther. 1998; 9(5) : 671-9.
    20. Xiao W, Berta SC, Lu MM, et al. Adeno-associated virus as a vector for liver-directed gene therapy. J Virol. 1998; 72(12) : 10222-6.
    21. Marshall E. Gene therapy's growing pains. Science. 1995; 269: 1050-55.
    22. 孙殿兴,胡大荣。抗乙型肝炎病毒分子生物学治疗新策略,中华肝脏病杂志,2001;9(4)
    23. Hirsch RC, Lavine JE, Chang LJ, et al. Polymerase gene products of
    
    hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription. Nature. 1990; 344(6266):552-555.
    24.Hanafusa T, Yumoto Y, Hada H, et al. Replication of Hepatitis B Virus Which Carries Foreign DNA in Vitro. Biochem Biophys Res Commun. 1999;262(2):530-533.
    25.Protzer U, Nassal M, Chiang PW, et al. Interferon gene transfer by a hepatitis B virus vector efficiently suppresses wild-type virus infection. Proc Natl Acad Sci USA. 1999; 96(19):10818-23.
    26.杨林,陈幼明,高志良,等,三螺旋形成寡核苷酸抑制乙型肝炎病毒复制及抗原合成的实验研究,1999;7(1):8-10.
    27.Weiss B, Davidkova G, Zhou LW. Antisense RNA gene therapy for studying and modulating biological processes. Cell Mol Life Sci. 1999;55(3):334-58.
    28.Sureau C, Romer J, Mullin J, et al. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell. 1986;47(1):37-47.
    29.Snmbrook J, Fristsch EF, Maniatis T. Molecular Cloning: A laboratory manual, 2~(nd) ed, Cold Spring Harbor, 1989.
    30.zu Putlitz J, Yu Q, Burke JM, et al. Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. J Virol. 1999;73(7):5381-7.
    31.Pasek M, Goto T, Gilbert W, et al. Hepatitis B virus genes and their expression in E. coli. Nature. 1979;282(5739):575-79.
    32.Gerelsaikhan T, Tavis JE, Bruss V, Hepatitis B virus nucleocapsid envelopment doesnot occur without genomic DNA synthesis. J Virology. 1996;70(7):4269-74.
    33.Guidotti LG, Matzke B, Pasquinelli C, et al. The hepatitis B virus (HBV) precore protein inhibits HBV replication in transgenic mice. J Virology. 1996;
    
     70(10) : 7056-61.
    34. To RY, Booth SC,Neiman PE. Inhibition of retroviral replication by anti-sense RNA. Mol Cell Biol. 1986; 6 (12) : 4758-62.
    35. Dornburg R, Pomerantz RJ. HIV-1 gene therapy: promise for the future. Adv Pharmacol. 2000; 49: 229-61.
    36. Chadwick DR, Lever AM. Antisense RNA sequences targeting the 5' leader packaging signal region of human immunodeficiency virus type-1 inhibits viral replication at post-transcriptionalstages of the life cycle. Gene Ther. 2000; 7(16) : 1362-8.
    37. Dal Monte P, Bessia C, Ripalti A, et al. Stably expressed antisense RNA to cytomegalovirus UL83 inhibits viral replication. J Virol. 1996; 70 (4) : 2086-94.
    38. Koschel K, Brinckmann U, Hoyningen HV. Measles virus antisense sequences specifically cure cells persistently infected with measles virus. Virology. 1995; 207 (1) : 168-78.
    39. Elela SA, Igel H, Ares MJ. RNase III cleaves eukaryotic preribosomal RNA at aU3 snoRNP-dependent site. Cell. 1996; 85 (1) : 115-124. -
    40. Rebagliati MR, Melton DA. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell. 1987; 48(4) : 599-605.
    41. Poison AG, Bass BL, Casey JL. RNA editing of hepatitis delta virus antigenome by dsRNA-asenosine deaminase. Nature. 1996; 380 (6573) : 454-56.
    42. Proud CG. PKR: a new name and new roles. Trends Biochem Sci. 1995; 20(6) : 241-246.
    43. Desai SY, Patel RC, Sen GC, et al. Activation of interferon-inducible 2'-5' oligoadenylate synthetase by adenoviral VAI RNA. J Biol Chem. 1995; 270(7) : 3454-61.
    44. Desai P, Person S, Incorporation of the green fluorescent protein into the
    
    herpes simplex virus type 1 capsid. J Virol. 1998;72(9):7563-68.
    45.McNamee EE, Taylor TJ, Knipe DM. A dominant-negative herpesvirus protein inhibits intranuclear targeting of viral proteins: effects on DNA replication and late gene expression. J Virol. 2000;74(21):10122-31.
    46.Tasaki T, Taharaguchi S, Kobayashi T, et al. Inhibition of pseudorabies virus replication by a dominant-negative mutant of early protein O expressed in a tetracycline-regulated system. Vet Microbiol. 2001;78(3):195-203.
    47.Posada R, Pettoello-Mantovani M, Sieweke M, et al. Suppression of HIV type 1 replication by a dominant-negative Ets-1 mutant. AIDS Res Hum Retroviruses. 2000; 16(18):1981-9.
    48.Szilvay AM, Boe SO, Kalland KH. Co-expression of a trans-dominant negative mutant of the human immunodeficiency virus type 1 (HIV-1) Rev protein affects the Rev-dependent splicing pattern and expression of HIV-1 RNAs. J Gen Virol.1999;80(Pt 8):1965-74.
    49.Bloss TA, Sugden B. Optimal lengths for DNAs encapsidated by Epstein-Barr virus. J Virol.1994;68(12):8217-22.
    50.孙殿兴,胡大荣,邬光惠,HBV核心蛋白结构与功能及其在基因治疗策略上的应用,国外医学(流行病与传染病分册),2001;28(1):19-24
    51.苏海滨,王惠芬,季伟,抗病毒药物联合应用的策略与问题,国外医学(流行病与传染病分册),2001;28(1):24-27.
    52.Mclachlin JR, Mittereder N,Daucher MB,et al.Factors affecting retroviral vector function and structural integrity. Virology.1993;195(1):1-5.
    53.Freshney RI. Culture of animal cells: a manual of basic technique,2nd ed,Alan R Liss, New York, 1987.
    55.Sureau C, Eichberg JW, Hubbard GB, et al. A molecularly cloned hepatitis B virus produced in vitro is infectious in a chimpanzee. J Virol.1988; 62 (8):3064-3067.
    
    
    56. Yaginuma K, Shirakata Y, Kobayashi M, et al. Hepatitis B virus (HBV) particles are produced in a cell culture system by transient expression of transfected HBV DNA. Proc Natl Acad Sci USA. 1987; 84 (9) : 2678-2682.
    57. Pacchia AL, Adelson ME, Kaul M, et al. An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of hiv-1 accessory proteins. Virology. 2001; 282(1) : 77-86.
    58. Young WB, Link CJ Jr. Chimeric retroviral helper virus and picornavirus IRES sequence to eliminate DNA methylation for improved retroviral packaging cells. J Virol. 2000; 74(11) : 5242-9.
    59. Polo JM, Belli BA, Driver DA, et al. Stable alphavirus packaging cell lines for Sindbis virus-and Semliki Forest virus-derived vectors. Proc Natl Acad Sci USA. 1999; 96(8) : 4598-4603.
    60. Nassal M, Riger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J Virology. 1996; 70(5) : 2764-73.
    61. Riger A, Nassal M. Distinct requirements for primary sequence in the 5'-and 3'-part of a bulge in the hepatitis B virus RNA encapsidation signal revealed by a combined in vivo selection / in vitro amplification system. Nucleic Acids Research. 1995; 23(19) : 3909-15.
    62. Delecluse HJ, Pich D, Hilsendegen T, et al. A first-generation packaging cell line for Epstein-Barr virus-derived vectors. Proc Natl Acad Sci USA. 1999; 96(9) : 5188-93.
    63. Kempkes B, Pich D, Zeidler R, et al. Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein-Barr virus DNA. J Virol. 1995; 69(1) : 231-8.
    64. Guidotti LG, Matzke B, Pasquinelli C, et al. The hepatitis B virus (HBV) precore protein inhibits HBV replication in transgenic mice. J Virol. 1996; 70(10) : 7056-61.
    
    
    
    65.杨长青,王吉耀,温守明等,不同载体和不同导入途径对外源基因肝脏靶向导入效果的比较,中华肝脏病杂志,2000;8(4):227-229
    66.翟为溶,3种产生乙型肝炎病毒的裸鼠移植瘤模型比较,上海医科大学学报,1994;21(4):267-70
    67.Huang YH,Wu JC,Chau GY,et al.Detection of serum hepatitis B,C,and D viral nucleic acids and its implications in hepatocellular carcinoma patients.J Gastroenterol.1998;33(4):512-6.