改造HBV作为肝靶向性基因治疗载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目 的
     HBV具备改造作为肝靶向性基因治疗载体的基本条件:天然嗜肝特异性;能够在肝细胞内持续复制、反复感染,病毒本身对细胞无明显细胞毒性;能够携带外源基因并被包装成病毒颗粒,介导目的基因转移和表达。但因基因结构复杂,目前改造的HBV载体系统均存在载容量小、复制包装效率低及安全性差等缺点。基于此,本课题借鉴体内天然HBV变异株的生物学特性,优化HBV载体改造策略,探索性构建C基因截短型HBV载体,并对其表达、复制、包装等分子生物学特性进行探讨。
     方 法
    1. 用外源GFP报告基因取代野生HBV质粒pHBV3091 S基因编码区,同时保留S基因前9个碱基与GFP融合,构建携带外源报告基因的HBV载体pHBV-S-GFP。应用脂质体单独转染该HBV重组体,以GFP表达阳性质粒pCMV-GFP作对照,荧光显微镜下观察GFP在肝细胞中表达。重组体pHBV-S-GFP与缺失包装信号ε的辅助质粒pHBV3142共转染HepG2细胞,提取细胞核中病毒DNA,根据HBV 基因组复制特点设计包含GFP及HBV DNA序列在内的特异性引物,半巢式PCR检测HBV重组体复制中间体ccc DNA的生成;提取胞外上清液中病毒颗粒DNA,对同一样本依次PCR检测GFP基因及HBV DNA,验证分泌到上清液中携带外源基因的“治疗性”子代病毒颗粒生成;Southern blot检测重组HBV载体的包装效率,并与野生HBV质粒对照组进行比较。
    以野生型HBV质粒pHBV3091为骨架,通过基因定点突变技术构建C基因截短型HBV突变体:pHBV-CΔ188(缺失220-407nt)和pHBV-CΔ141(缺失267-407nt)。应用脂质体单独转染或与缺失包装信号ε的辅助质粒pHBV3142共转染HepG2细胞,提取细胞浆及细胞培养上清液中病毒颗粒DNA进行Southern blot,检测C基因截短型HBV突变体的复制包装能力;提取细胞核中病毒DNA,根据HBV 基因组复制特点设计特异性引物,PCR检测C基因截短型HBV突变体复制中间体ccc DNA的生成;通过实时荧光定量PCR对胞外上清液中病毒颗粒进行定量分析,比较C基因截短型HBV突变体与野生型HBV的包装效率。以野生HBV质粒pHBV3091
    
    2. 作对照,单独转染C基因截短型HBV突变体质粒,Trizol法提取转染细胞总RNA,荧光定量RT-PCR定量分析C基因截短对HBV RNA转录水平的影响;提取细胞浆中病毒颗粒,Western blot检测S蛋白的表达,ELISA方法定量分析C基因截短对S蛋白表达的影响。
    3. 用外源GFP报告基因取代HBV S基因编码区(同方法1),构建C基因截短型(同方法2)HBV载体:pHBVΔC188-S-GFP与pHBVΔC141-S-GFP。应用脂质体分别转染HepG2细胞,以C基因非截短型HBV载体pHBV-S-GFP质粒作阳性对照,荧光显微镜下观察细胞中GFP表达。与缺失包装信号ε的辅助质粒pHBV3142共转染HepG2细胞,提取细胞核中病毒DNA,根据HBV 基因组复制特点设计同时包含GFP基因及HBV DNA序列在内的特异性引物,半巢式PCR检测该类HBV重组体复制中间体ccc DNA的生成;提取细胞浆中病毒颗粒进行病毒包装实验,验证C基因截短型HBV载体的包装能力:非变性 Western blot检测病毒颗粒的C蛋白, Southern blot检测C蛋白包裹的DNA;提取胞浆中病毒颗粒DNA,常规Southern blot后对杂交信号进行扫描,定量分析C基因截短型HBV载体的包装效率;提取上清液中病毒DNA,设计同时包含GFP基因片段及HBV DNA序列在内的特异性引物,PCR验证携带外源基因的“治疗性”子代病毒颗粒分泌到胞外上清液中。
    结 果
    1. 外源GFP报告基因取代HBV S基因读码框破坏了P基因结构的完整性,因此重组体pHBV-S-GFP自身复制能力丧失,为复制缺损型载体。单独转染HepG2细胞后,可在蓝光(488nm)激发下发出绿色荧光,但荧光强度相对弱于阳性对照。与缺失包装信号ε的辅助质粒pHBV3142共转染肝细胞,可在细胞核提取物中检测到含有GFP基因的HBV复制中间体ccc DNA生成;常规PCR检测发现,携带GFP基因的子代病毒颗粒能够分泌到胞外上清液中;进一步Southern blot证实,pHBV-S-GFP/ pHBV3142共转染后病毒包装效率明显低于野生HBV质粒pHBV3091。
    HBV突变体pHBV-CΔ141 与pHBV-CΔ188的C基因截短变异均发生在P基因读码框5’近端附近,但P基因结构没有受到影响。其中前者为模拟体内天然变异株的基因结构构建,后者则在前者基础上进一步将C基因截短延长到Δ188nt。两者分别单独转染HepG2细胞,提取胞浆及上清液中病毒DNA进行Southern blot,杂交结果均阴性;后分别与缺失包装信号ε的辅助质粒pHBV3142共转染肝细胞,提取胞浆及上清液中病毒DNA
    
    2. 进行Southern blot,两者杂交结果均阳性,可见到HBV DNA各种复制中间体杂交信号:如RC DNA、DS DNA、SS DNA等;通过特异性PCR可在细胞核内检测到HBV变异体ccc DNA的生成;与pHBV3091/pHBV3142转染组相比,C基因截短型HBV突变体的Southern blot杂交信号显著增强;进一步对培养上清液中子代病毒颗粒DNA进行定量:pHBV-CΔ188 / pHBV3142组为2.2×109copies/ml、pHBV-CΔ141 / pHBV3142组为1.5×108copies/ml、pHBV3091 / pHBV3142为4.8×107 copies/ml,提示C基因截短型HBV突变体的包装效率显著提高,其中C基因截短188nt后效果更为明显;荧光定量RT-PCR显示,C基因截短对HBV RNA的转录水平没有影响?
Objectives
    Hepatitis B virus (HBV) is naturally provided with the prerequisite for being transformed as the liver-targeting gene therapeutic vector because of its hepatotropism specificity. It can specifically infect the liver and continuously replicate in the hepatocytes without obvious cytotoxicity by itself. Moreover, it has also the capability of carrying, transferring and expressing the gene of interest, which is ultimately encapsidated into the viral particles. However, it is a pity that there are many shortcomings in the present developed HBV-based vectors such as the poor capability of carrying long foreign gene, the low efficiency of replication and encapsidation, the potential risk of immunogenicity etc, which all result from the complex genomic structure of HBV. In view of the biological features of the naturally occurring defective HBV mutants obtained from the hepatitis patients, the C gene-truncated HBV vectors were experimentally constructed in this study as well as investigated for their molecular biological features including the expression, replication and encapsidation etc. in order to seek for the ideal strategy for developing the HBV-based vector.
    Methods
    The recombinant HBV vector of pHBV-S-GFP carrying the gene of interest was constructed in which a fragment encompassing the S gene was replaced by a DNA fragment encoding GFP fused to the first three amino acids of S. After the recombinant plasmid of pHBV-S-GFP was solely transfected to HepG2 by using the liposome method, the expression of GFP was observed with the fluorescence microscope. At the same time the plasmid of pCMV-GFP was selected as the positive control in parallel, which could effectively express the green fluorescence protein in the liver cells. After the plasmid of pHBV-S-GFP was co-transfected with the helper construct of pHBV3142 devoid of the encapsidation signal ε, the viral DNA were
    
    1. extracted from the transfected HepG2 nucleolus about 48 hours later. The rHBV cccDNA was testified by using Semi-Nested-PCR with the specific primers designed to encompass both GFP and HBV DNA sequence in terms of the characteristic of HBV replication. The extract from culture medium was detected by PCR for both GFP and HBV DNA in order to testify the possibility that the "therapeutic" rHBV progeny particles carrying the GFP gene could be encapsidated to secrete into the supernatant. The encapsidation efficiency of the rHBV vector was evaluated by southern blot assay in which the wild plasmid pHBV3091 was used as control.
    2. The C-truncated HBV mutants, pHBV-C△188( 220-407nt) and pHBV-C△141(267-407nt), were constructed by the molecular cloning and PCR-based deletion from the wild HBV plasmid of pHBV3091.The DNA of virus mutants were extracted from the cytoplasm and supernatant after the mutants plasmids were transfected solely or co-transfected with the helper construct of pHBV3142 devoid of the encapsidation signal ε.The replicating and encapsidating capabilities of both C-truncated HBV mutants were investigated by southern blot assay. These replication intermediate ccc DNA of both mutants extracted from the nucleolus of transfected HepG2 were testified by using Semi-Nested-PCR with the specific primers which were designed in terms of the characteristic of HBV replication. These mutants DNA extracted from the extracelluar supernatant were analyzed by using the Real-time fluorescence quantitative PCR in order to compare the encapsidation efficiency between the C-truncated HBV mutants and the wild HBV. The mutants RNA were extracted from the transfected HepG2 cells to evaluate quantitatively the effect on HBV RNA transcription in both C-truncated HBV mutants by using the Real-time fluorescence quantitative RT-PCR. The S protein expression was detected from the cytoplasmic lysates by western blot assay and further analyzed quantitatively by ELISA to determine the effect of the truncated C gene on S protein expression.
    The C-truncated rHBV vectors carrying the reporter gene of GFP were constructed as pHBV-C△188-S-GFP and
引文
1. 顾建人,曹雪涛 主编.基因治疗. 北京:科学出版社,2001:13-99
    2. Miyake K, Ikjima O, Suzuki N, et al. Selective killing of human immunodeficiency virus-infected cells by targeted gene transfer and inducible gene expression using a recombinant human immunodeficiency virus vector. Hum Gene Therapy, 2001,12:227-233
    3. Mazarakis N, Azzouz, M, Rohll, J, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet, 2001,10:2109-2121
    4. Connolly J. Lentiviruses in gene therapy clinical research. Gene Therapy, 2002,9:1730-1734
    5. Seeger C, Mason W. Hepatitis B virus biology. Microbiol Mol Biol Rew, 2000,64(1): 51-68
    6. Junker-Niepmann M, Bartenschiager R, Schaller H. A short cis- acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. J EMBO, 1990,9(10): 3389-3396
    7. Ziermann R, Ganem D. Homologous and heterologous complementation of HBV and WHV capsid and polymerase function in RNA encapsidation. Virology, 1996,219:350-356
    8. Jeong J, Yoon G, Ryu W. Evidence that the 5'-end cap structure is essential for encapsidation of hepatitis B virus pregenomic RNA. J Virol, 2000,74(12): 5502-5508
    9. Okamoto H, Omi S, Wand Y, et al. Trans-compementation of the C gene of human and the P gene of woodchuck hepadnaviruses. J Gen Virol, 1990,71:959-963
    10. Kratz P, Bottcher B, Nassal M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc. Natl. Acad. Sci.1999, 96: 1915-1920
    11. Yoo J, Rho J, Lee D, et al. Hepatitis B virus vector carries a foreign gene into liver cells in vitro. Virus Gene, 2002,24(3): 215-224
    Wang L, Kaneko S, Honda M, et al. Approach to establishing a liver targeting gene gherapertic vector using naturally occurring defective hepatitis B
    
    12. viruses devoid of immungenic T cell epitope. Virus Res., 2002,85:187-197
    13. Protzer U, Nassal M, Chiang P, et al. Interferon gene transfer by a hepatitis B virus vector efficiently suppresses wild-type virus infection. Proc. Natl. Acad. Sci. 1999,96:10818-10823
    14. Chaisomchit S, Tyrrell D, Chang LJ, et al. Development of replicative and nonreplicative hepatitis B virus vectors. Gene therapy, 1997,4:1330-1340
    15. Melegari M, Bruno S, Wands JR. Properties of Hepatitis B virus pre-S1 detection mutants. Virology, 1994,199: 292-300
    16. Radziwill G, Tucker W, Schaller H. Mutational analysis of the hepatitis B virus P gene product: domain structure and Rnase H activity. J Virol, 1990,64:613-620
    17. Hanafusa T, Yumoto Y, Hada H, et al. Replication of hepatitis B virus which carries foreign DNA in vitro. Bioch Biophy Res Com, 1999,262:530-533.
    18. Gamem D. An advance in liver-specific gene delivery. Proc Natl Acad Sci, 1999,96:10818-10823
    19. 孙殿兴,胡大荣,邬光惠等. 基因重组HBV联合表达反义RNA和显性阴性突变体抗HBV作用及HBV包装细胞系的构建. 中华肝脏病杂志,2002,10:260-265.
    20. 孙殿兴,胡大荣,邬光惠等. 逆转录病毒载体携带HBV载体表达显性阴性突变体抗HBV作用的研究.肝脏,2001;6N S 74
    21. 孙殿兴,胡大荣,邬光惠等. 重组逆转录病毒载体携带HBV栽体构建与表达.中华实验和临床病毒学杂志,2002,16: 2162-165
    22. Gunther S, Piwon N, Jung Annegret, et al. Enhanced replication contributes to enrichment of hepatitis B virus with a deletion in the core gene. Virology, 2000,273: 286-299
    23. Yuan T, Lin M, Qiu S, et al. Functional characterization of naturally occurring variants of human hepatitis B virus containing the core internal deletion mutation. J Virol, 1998,72(3): 2168-2176
    24. Yuan T, Lin M, Chen D, et al. A defective interference-like phenomenon of human hepatitis B virus in chronic carriers. J Virol, 1998,72(1): 578-584
    25. Nassal M, Junker-Niepmann M, Schaller H. Translational inactivation of RNA function: discrimination against a subset of genomic transcripts during HBV nucleocapsid assembly. Cell, 1990, 63: 1357-1363
    
    
    26. J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯 著. 金东雁等 译. 分子克隆实验指南(第二版),北京:科学出版社,1999:16-69
    27. Kock J, Theilmann L, Galle P, et al. Hepatitis B virus nucleic acids associated with human peripheral blood mononuclear cells do not originate from replicating virus. Hepatology, 1996,23:405-413
    28. Ilan E, Burakova T, Dagan S, et al. The hepatitis B virus-trimera mouse: a model for human HBV infection and evaluation of anti-HBV therapeutic agents. Hepatology, 1999,29:553-562.
    29. Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994,263:802-805
    30. 成军,杨守纯 主编. 现代肝炎病毒分子生物学. 北京:人民军医出版社,1997:190-195
    31. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that moduates translation by eukaryotic ribosomes. Cell, 1986,44:283-292
    32. Dimmock N. Aantiviral activity of defective interfering influenza virus in vivo. In S. Myint and D. Taylor Robinson (ed.), Viral and other infections of the human respiratory tract. Champan 8 Hall. Inc., London England.1996: 421-445.
    33. Holland J. Defective interfering rhabodoviruses. In R. Wagner(ed). The rhabdoviruses. Plenum Publishing Co., New York, N. Y.1987: 297
    34. Roux L, Simon A, Holland J. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv. Virus Res, 1991,40: 181-211
    35. Lott L, Beames B, Notvall L, et al. Interaction between hepatitis B virus core protein and reverse transcriptase. J Virol, 2000,74(24): 11479-11489
    36. Nassal M, Rieger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J Virol, 1996,70(5): 2764-2773
    37. Hui E, Chen K, Lo S. Hepatitis B virus maturation is affected by the incorporation of core proteins having a C-terminal substitution of arginine or lysine stretches. J Gen Virol, 1999,80:2661-2671.
    Chiang P, Hu C, Su T, et al. Encapsidation of truncated human hepatitis B
    
    38. virus genomes through trans-complementation of the core protein and polymerase. Virology, 1990,176:355-361
    39. Bargenschlager R, Junker-Niepmman M, Schaller H. The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol, 1990,64:5324-5332
    40. Hirsch R, Lavien J, Chiang L, et al. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcripton. Nature, 1990,344: 552-555
    41. Hirsch R, Loeb D, Pollack J, et al. Cis-acting sequences required for encapsidation of duck hepatitis B virus pregenomic RNA.1991, 65: 3309-3316
    42. Gazina E, Fielding J, Lin Bo, et al. Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J Virol, 2000,74(10): 4721-4728
    43. Yu M, Summers J. Multiple functions of capsid protein phosphorylation in duck hepatitis B virus replication. J Virol, 1994,68(7): 4341-4348
    44. Yuan T, Faruqi A, Shih J, et al. The mechanism of natural occurrence of two closely linked HBV precore predominant mutations. Virology, 1995, 211:144-156
    45. Akarca U, Lok A. Naturally occurring core-gene-defective hepatitis B viruses. J Gen Virol, 1995,76: 1821-1826
    46. Hosono S, Tai P, Wang W, et al. Core antigen mutations of human hepatitis B virus in hepatomas accumulate in MHC class II-restricted T cell epitopes. Virology, 1995,212:151-162
    47. Tsubota A, Kumada H, Takaki K, et al. Deletions in the hepatitis B virus core gene may influence the clinical outcome in hepatitis B e antigen-positive asymptomatic healthy carries. J Med Virol, 1998,56:287-293
    48. Melegari M, Bruno S, Wands J. Properties of hepatitis B virus pre-S1 deletion mutants. Virology, 1994,1999:292-300
    49. Marinos G, Torre F, Gunther S, et al. Hepatitis B virus variants with core gene deletions in the evolution of chronic hepatitis B infection. Gastroenterology, 1996,111:183-192
    Tsai S, Chen M, Yeh C. Purification and characterization of a naturally
    
    50. processed hepatitis B virus peptide recognized by CD8+ cytotoxic T lymphocytes. J Clin Invest, 1996,97:577-584
    51. Galle P, Hagelstein J, Kommerell B, et al. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology, 1994,106: 664-673
    52. Paran N, Geiger B, Shaul Y. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMSO J, 2001,20: 4443-4453
    53. 韩聚强,胡大荣. 反义治疗乙型肝炎研究现状. 国外医学病毒学分册,2001,8(4):109-111
    54. Morrissey D, Lee P, Johnson D, et al. Characterization of nuclease-resistant ribozymes directed against hepatitis B virus RNA. J Viral Hepat, 2002,9:411-418
    55. Bass B. RNA interference-the short answer. Nature, 2001,411:428-429
    56. Elbashir S, Harborth J, Lendecked W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411:494-498
    57. Gitlin Leonid, Kareisky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature, 2002, 418:430-434
    58. Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol, 2001,75(11): 5084-5089
    59. Walter E, Keist R, Niederost B, et al. Hepatiits B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology, 1996, 24:1-5
    60. Yan R, Su J, Huang D, et al. Human hepatitis B virus and hepatocellular carcinoma I. Experimental infection of tree shrews with hepatitis B virus. J Cancer Res. Clin. Oncol. 1996, 122: 283-288