汉坦病毒疫苗株Z10(HINV)与Z37(SEOV)核蛋白表达及生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汉坦病毒(Hantavirus)是引起人肾综合征出血热(Hemorrhagic fever with renal syndrome,HFRS)和人汉坦病毒性肺炎综合征(Hantavirus pulmonary syndrome,HPS)的病原体,在世界各大洲均有流行。汉坦病毒感染及其引起的相关疾病已成为严重的世界性公共卫生问题之一。
     汉坦病毒基因组为分三节段的单股负链RNA,即大(L)、中(M)、小(S)三个基因片段,依次编码病毒的RNA聚合酶L蛋白,外膜蛋白G1、G2以及核蛋白(NP)。由S基因编码的核蛋白是汉坦病毒重要的结构蛋白成份,对调节病毒的复制,刺激宿主保护性细胞免疫反应以及调控细胞凋亡信号路径等方面有重要的作用。
     汉坦病毒Z10和Z37株是两个分离自不同宿主及不同血清型的重要中国疫苗株,其中Z10株分离自出血热病人血清,血清学分型为汉滩型病毒(Hantaan,HTNV);Z37株分离自家鼠,其血清学分型为汉城型病毒(Seoul,SEOV)。具有血凝滴度高和诱导中和性抗体能力强的特点。本论文主要研究了汉坦病毒疫苗株Z10和Z37核蛋白体内、体外表达,核蛋白与基因组末端反向重复序列相互作用以及核蛋白对鼠源性巨噬细胞生长的影响。
     核蛋白相对保守,常作为汉坦病毒分子进化亲缘性分析的依据。为了解汉坦病毒疫苗株Z10与Z37基因分型及与其他毒株在进化上的亲缘性,克隆并序列测定了Z10和Z37核蛋白全基因,二者核蛋白在核苷酸水平和氨基酸水平的同源性分别为75.1%和80.6%;进化树分析表明Z10株与HTNV代表株76/118以
    
    脚红久~弓理多弓护脱耀_户学企讼戈
    茄萝
    及中国H丁NV分离株Ag有一定的遗传差异,在进化上偏向于HTNV型,但却是
    介于HTNV型与SEOV型之间的毒株:而237株不仅与SEOV型中国分离株R22,
    甚至与SEOV型英国分离株皿461都有很大的亲缘性。该结果说明不同地域来源
    的SEOV型毒株之间有较大的保守性,而HTNV型毒株因地理区域的不同变异
    性较大。
     核蛋白能不仅能刺激宿主保护性细胞免疫,而且可聚合形成的病毒样颗粒
     (vLP),在作为亚单位肤类疫苗目标蛋白以及分型诊断抗原具有很大的应用潜
    力。为了获得纯化的可溶性重组核蛋白,构建了210和237株核蛋白原核表达
    载体并在大肠杆菌中表达,我们发现在较低的温度(18“C)和较低浓度IPTG(100
    mM)条件下诱导表达过夜可提高可溶性核蛋白的产量。然后以液相色谱分别经
    Ni一NAT亲和柱和HIPreP 16厂10 DEAE离子交换柱二步纯化获得高纯度的重组
    核蛋白,产量约为0.2 mg每升菌液。并对纯化的210和237株核蛋白分别以胰
    蛋白酶不完全消化后用\\飞stem blot进行区分和鉴定。本研究建立的表达纯化条
    件对大规模生产纯化的核蛋白具有很好的参考价值。
     核蛋白在细胞内不同区域的分布,表达以及存在方式不仅对病毒本身的复制
    水平而且对被感染的宿主细胞基因调控有重要的影响,为了解内源性核蛋白的表
    达及细胞内的分布情况,构建了汉坦病毒210株核蛋白基因与鼠干细胞反转录病
    毒(入ISCv)重组载体,通过磷酸钙转染法导入产病毒的包装细胞系BOSC23中
    产生完整的重组MscV一FlagNP病毒。然后以重组病毒直接感染NIH 3T3细胞,
    利用P盯。mycin对感染细胞进行连续压力筛选,获得了转核蛋白抗性细胞。分别
    用Southem blot和PCR方法可检测到核蛋白基因在抗性细胞染色体中完整地整
    合,并且用westem blot在抗性细胞中可检测到核蛋白稳定的表达。进一步以Flag
    单克隆抗体介导的免疫荧光染色联合共聚焦激光扫描荧光显微镜分析了内源性
    Flag融合核蛋白在抗性细胞内分布,发现核蛋白主要分布于胞浆及胞核周围区,
    并且部分核蛋白可聚集形成胞浆包涵体。核蛋白主要分布于胞浆及胞核周围区,
    并且部分核蛋白可聚集形成胞浆包涵体。
     汉坦病毒基因组的一个重要特点是每个基因片段两个末端都具有一段长为
    18个核普酸的高度保守的反向重复序列,互补可形成双链发夹结构。为了研究
    
    葫乏乙久弓势治鳌二笋炭,厚士学夕落忿戈
    蔺要
    该双链结构在核蛋白包装病毒基因组RNA中的作用与功能,以T4 DNA激酶同
    位素标记一对人工合成互补的18个核营酸反向重复序列,制备双链探针,以模
    拟基因片段末端反向重复序列形成的双链发夹结构。然后以电泳移动阻滞实验
    (E MSA)分析了210和237株纯化重组核蛋白在非变性胶中与反向重复序列双
    链探针相互作用的可能性,发现重组210和237核蛋白在体外非变性胶中均能
    特异结合基因组末端反向重复序列形成的双链探针,该结果提示基因片段末端反
    向重复序列形成的双链发夹结构可能是保证核蛋白正确包装病毒基因组重要信
    号序列和作用位点。
     在汉坦病毒感染过程中,巨噬细胞是除上皮细胞外最早被感染的细胞。为了
    解核蛋白在汉坦病毒感染巨噬细胞时的作用,
    刺激或细胞内大量表达对鼠源性巨噬细胞系
    分析了210和237核蛋白细胞外
    J774的影响。
    和237大肠杆菌表达的重组的核蛋白与鼠源性巨噬细胞系
    发现以Zmg/l的210
    J774共培养可引起明
    显的生长抑制以及细胞出现脱落,破碎等病理变化;而在转染有210核蛋白真核
    瞬时表达载体的巨噬细胞中虽然用Westem blot能检测到核蛋白大量表达,但并
    ?
Hantaviruses are the major causative agents of human hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which have been becoming one of global serious issues for human public health. Hantavirus possesses a tripartite, single-strand RNA genome, with segments designated as small (S), medium (M) and large (L) encoding the viral nucleocapsid protein (NP), envelope glycoproteins (Gl and G2) and RNA polymerase L protein, respectively. The viral NP is involved in the virus replication, stimulation of the protective cell immune response and regulation of apoptosis pathway.
    Hantaviruses Z10 and Z37 are two important Chinese vaccine strains, which were isolated from the serum of a HFRS patient and apodemus agrarius, and serologically grouped into HTNV and SEOV type, respectively. To study the evolutionary relationship of these two Chinese vaccine strains to other recognized hantaviruses, the cDNAs encoding complete NPs of Z10 and Z37 were cloned and subsequently sequenced. Phylogenetic analysis of the NP sequences at both nucleotide and deduced amino acid levels revealed that Z37 strain is closely related to SEO virus Chinese strain R22 and AH09 and even UK strain IR461, whereas Z10 strain is genetically distinct from the HTNV Korean strain 76-118 and Chinese isolate
    
    
    A9, forming a sub-lineage between HTNV and SEOV serotype. This data suggest that HTNV serotype with geographic differences is more variable than SEOV.
    To obtain soluble and native NPs, the sequences encoding NPs of Z10 and Z37 were expressed in E.coli at 18 with 100 mM IPTG overnight and the His- tagged recombinant NPs were then purified with Ni-NAT affinity chromatography and DEAE ion exchange chromatography by using a FPLC system. The purified recombinant NPs of Z10 and Z37 were distinguished by trypsin incomplete digestion, followed by western blot using anti-His monoclonal antibody.
    A unique structure feature of the viral genome is a highly conserved about 18-nucleotide inverted repeat sequence is present at the terminals of each gene segment in different types of Hantaviruses, which can form a special hairpin structure when it got complemented. However, the function of the hairpin structure has not been clearly known. Electrophoresis mobility shift assay (EMSA) showed that both NPs of Z10 and Z37 hantaviruses bound specifically to the double strand DNA probe possessing the 18- nucleotide inverted repeat sequences in vitro, suggesting the inverted repeat sequence at the ends of each gene segment could be an important target site for nucleocapcid protein, and therefore plays an important role during Hantavirus packaging the viral apparatus into a complete viral particle.
    To investigate the intracellular NP expression and translocation, the NP coding sequence of hantavirus Z10 was introduced into NEH 3T3 cells through a retrovirus MSCV system. The integration of NP gene in the selected cell clones was confirmed by PCR and southern blot, and the expression of NP was detected by western blot. IFA in combination with laser scanning confocal fluorescent microscope shows the NP predominantly locates and partially polymerizes into inclusion bodies in the cytoplasm and membrane region of nucleus in selected cells.
    Macrophages are one of the target cells of Hantavirus at the early stage of infection. To explore the possible roles of NP during hantavirus infection in macrophages, the effects of NP on a mouse macrophage lineage J774 were studied. It
    
    was found that over-expression of Z10 NP had very little effects on J774 cells compared to the control cells, whereas there was an obvious inhibitory and cytopathic effects on macrophages J774 by stimulating with E.coli produced recombinant NPs of both Z10 and Z37 at a concentration of 2 mg/ml. These data indicate that hantavirus NP has cytopathic effects on macrophages as a extracellular stimulating signal.
引文
1. Hart CA, Bennett M. Hantavirus infections: epidemiology and pathogenesis. Microbes Infect. 1999, 1:1229-37. Review.
    2. Khaiboullina, S. F., and S. C. St Jeor. Hantavirus immunology. Viral Immunol. 2002, 15:609-25.
    3. Graziano KL, Tempest B. Hantavirus pulmonary syndrome: a zebra worth knowing. Am Faro Physician. 2002, 15;66:1015-20.
    4. Meyer B J, Schmaljohn CS. Persistent hantavirus infections: characteristics and mechanisms. Trends Microbiol. 2000,8:61-7.
    5. Kruger DH, Ulrich R, Lundkvist A A. Hantavirus infections and their prevention. Microbes Infect. 2001, 3:1129-44.
    6. Vapalahti, O., J. Mustonen, A. Lundkvist, H. Henttonen, A. Plyusnin, and A. Vaheri. Hantavirus infections in Europe. Lancet Infect Dis. 2003, 3:653-61.
    7. Hjelle B, Bennett S, Webb J. Hantavirus infections in rodents Am J Trop Med Hyg. 1999, 61:864
    8. Mackow ER, Gavrilovskaya IN. Cellular receptors and hantavirus pathogenesis. Curr Top Microbiol Immunol. 2001, 256:91-115. Review.
    9. Ludwig B, Kraus FB, Allwinn R, Doerr HW, Preiser W. Viral zoonoses - a threat under control? Intervirology 2003, 46:71-8.
    10.朱智勇,唐汉英,李岩金.自出血热病人分离到一株EHF病毒的特性.浙江医学1984,6:1
    11.朱智勇,唐汉英,李岩金 流行性出血热病灭活疫苗毒株选择 中华微生物和免疫学杂志 1991,11:158
    12. Zhu ZY, Tang HY, Li Y J, Weng JQ, Yu YX, Zeng RE Investigation on inactivated epidemic hemorrhagic fever tissue culture vaccine in humans.Chin Med J (Engl). 1994, 107:167-70.
    13. Lu Q, Zhu Z, Weng J. Immune responses to inactivated vaccine in people naturally infected with hantaviruses. J Med Virol. 1996, 49: 333-5.
    14. Bohlman MC, Morzunov SP, Meissner J, Taylor MB, Ishibashi K, Rowe J, Levis S, Enria D, St Jeor SC.Analysis of hantavirus genetic diversity in Argentina: S segment-derived phylogeny.J Virol. 2002,76:3765-73.
    15. Song, J. W., L. J. Baek, I. N. Gavrilovskaya, E. R. Mackow, B. Hjelle, and R. Yanagihara. Sequence analysis of the complete S genomic segment of a newly identified hantavirus isolated from the white-footed mouse (Peromyscus leucopus): phylogenetic relationship with other sigmodontine rodent-borne hantaviruses. Vires Genes 1996,12:249-56.
    16. Giebel, L. B., K. Raab, L. Zoller, E. K. Bautz, and G. Darai. Identification and characterization of a Hantavirus strain of unknown origin by nucleotide sequence analysis of the cDNA derived from the viral S RNA segment. Vires Genes 1991, 5:111-20.
    17. Parrington, M. A., and C. Y. Kang. Nucleotide sequence analysis of the S genomic segment of
    
    Prospect Hill virus: comparison with the prototype Hantavirus. Virology 1990, 175:167-75.
    18. Van Epps HL, Schmaljohn CS, Ennis FA. Human memory cytotoxic T-lymphocyte (CTL) responses to Hantaan virus infection: identification of virus-specific and cross-reactive CD8(+) CTL epitopes on nucleocapsid protein. J Virol. 1999, 73:5301-8.
    19. Geldmacher, A., M. Schmaler, D. H. Kruger, and R. Ulrich. Yeast-expressed hantavirus dobrava nucleocapsid protein induces a strong, long-lasting, and highly cross-reactive immune response in mice. Viral Immunol. 2004, 17:115-22.
    20. Gedvilaite, A., A. Zvirbliene, J. Staniulis, K. Sasnauskas, D. H. Kruger, and R. Ulrich. Segments ofpuumala hantavirus nucleocapsid protein inserted into chimeric polyomavirus-derived virus-like particles induce a strong imnmne response in mice. Viral Immunol. 2004, 17:51-68.
    21. de Carvalho Nicacio, Co, M. Sallberg, C. Hultgren, and A. Lundkvist. T-helper and humoral responses to Puumala hantavirus nucleocapsid protein: identification of T-helper epitopes in a mouse model. J Gen Virol. 2001, 82:129-38.
    22. Ennis, F. A., J. Cruz, C. F. Spiropoulou, D. Waite, C. J. Peters, S. T. Nichol, H. Kariwa, and F. T. Koster. Hantavirus pulmonary syndrome: CD8+ and CD4+ cytotoxic T lymphocytes to epitopes on Sin Nombre virus nucleocapsid protein isolated during acute illness. Virology 1997, 238:380-90.
    23. Van Epps, H. L., M. Terajima, J. Mustonen, T. P. Arstila, E. A. Corey, A. Vaheri, and F. A. Ennis. Long-lived memory T lymphocyte responses after hantavirus infection. J Exp Med. 2002,196:579-88.
    24. Van Epps HL, Schmaljohn CS, Ennis FA. Human memory cytotoxic T-lymphocyte (CTL) responses to Hantaan virus infection: identification of virus-specific and cross-reactive CD8(+) CTL epitopes on nucleocapsid protein. J Virol. 1999, 73:5301-8.
    25. Alexeyev, O. A., F. Elgh, C. Ahlm, T. Stigbrand, B. Settergren, G. Wadell, and P. Juto. Hantavirus antigen detection using human serum immunoglobulin M as the capturing antibody in an enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1996, 54:367-71.
    26. Yoshimatsu, K., J. Arika~va, R. Yoshida, H. Li, Y. C. Yoo, H. Kariwa, N. Hashimoto, M. Kakinuma, T. Nobunaga, and I. Azuma. Production of recombinant hantavirus nucleocapsid protein expressed in silkworm larvae and its use as a diagnostic antigen in detecting antibodies in serum from infected rats. Lab Anim Sci. 1995, 45:641-6.
    27. Zoller, L., M. Faulde, H. Meisel, B. Ruh, P. Kimmig, U. Schelling, M. Zeier, P. Kulzer, C. Becker, M. Roggendorf, and et al. Seroprevalence ofhantavirus antibodies in Germany as determined by a new recombinant enzyme immunoassay. Eur J Clin Microbiol Infect Dis. 1995, 14:305-13.
    28. Yoshimatsu, K., J. Arikawa, and H. Kariwa. Application of a recombinant baculovirus expressing hantavirus nucleocapsid protein as a diagnostic antigen in IFA test: cross reactivities
    
    among 3 serotypes of hantavirus which causes hemorrhagic fever with renal syndrome (HFRS). J Vet Med Sci. 1993, 55:1047-50.
    29. Takakura, A., K. Goto, T. Itoh, K. Yoshimatsu, I. Takashima, and J. Arikawa. Establishment of an enzyme-linked immunosorbent assay for detection of hantavirus antibody of rats using a recombinant of nucleocapsid protein expressed in Escherichia coli. Exp Anita. 2003, 52:25-30.
    30. Sjolander, K. B., F. Elgh, H. Kallio-Kokko, O. Vapalahti, M. Hagglund, V. Palmcrantz, P. Juto, A. Vaheri, B. Niklasson, and A. Lundkvist. Evaluation of serological methods for diagnosis of Puumala hantavirus infection (nephropathia epidemica). J Clin Microbiol. 1997, 35:3264-8.
    31. Hjelle, B., S. Jenison, N. Torrez-Martinez, B. Herring, S. Quan, A. Polito, S. Pichuantes, T. Yamada, C. Morris, F. Elgh, H. W. Lee, H. Artsob, and R. Dinello. Rapid and specific detection of Sin Nombre virus antibodies in patients with hantavirus pulmonary syndrome by a strip immunoblot assay suitable for field diagnosis. J Clin Microbiol. 1997, 35:600-8.
    32. Tang, J., M. Cao, T. Tang, C. Wang, C. Wei, and W. Lei. Genotyping and preparation of the recombinant nucleocapsid protein antigen of hantavirus. Chin Med J (Engl). 2001, 114:1030-4.
    33. Ulrich R, Koletzki D, Lachmann S, Lundkvist A, Zankl A, Kazaks A, Kurth A, Gelderblom HR, Borisova G, Meisel H, Kruger DH. New chimaeric hepatitis B virus core particles carrying hantavirus (serotype Puumala) epitopes: immunogenicity and protection against vires challenge. J Biotechnol. 1999 , 73:141-53. Review
    34. Kazaks, A., S. Lachmann, D. Koletzki, I. Petrovskis, A. Dislers, V. Ose, D. Skrastina, H. R. Gelderblom, A. Lundkvist, H.Meisel, G. Borisova, D. H. Kruger, P. Pumpens, and R. Ulrich. Stop codon insertion restores the particle formation ability of hepatitis B virus core-hantavirus nucleocapsid protein fusions. Intervirology 2002, 45:340-9.
    35. Gedvilaite, A., A. Zvirbliene, J. Staniulis, K. Sasnauskas, D. H. Kruger, and R. Ulrich. Segments of puumala hantavirus nucleocapsid protein inserted into chimeric polyomavirus-derived virus-like particles induce a strong inunune response in mice. Viral Imrnunol. 2004, 17:51-68.
    36. Koletzki, D., S. S. Biel, H. Meisel, E. Nugel, H. R. Gelderblom, D. H. Kruger, and R. Ulrich. HBV core particles allow the insertion and surface exposure of the entire potentially protective region of Puumala hantavirus nucleocapsid protein. Biol Chem. 1999, 380:325-33.
    37. Koletzki, D., A. Lundkvist, K. B. Sjolander, H. R. Gelderblom, M. Niedrig, H. Meisel, D. H. Kruger, and R. Ulrich. Puumala (PUU) hantavirus strain differences and insertion positions in the hepatitis B virus core antigen influence B-cell inmmnogenicity and protective potential of core-derived particles. Virology 2000, 276:364-75.
    38. Ulrich, R., A. Lundkvist, H. Meisel, D. Koletzki, K. B. Sjolander, H. R. Gelderblom, G. Borisova, P. Sctmitzler, G. Darai, and D. H. Kruger. Chimaeric HBV core particles carrying a defined segment of Puumala hantavirus nucleocapsid protein evoke protective immunity in an animal model. Vaccine 1998, 16:272-80.
    
    
    39. Kaukinen, P., A. Vaheri, and A. Plyusnin. Non-covalent interaction between nucleocapsid protein ofTula hantavirus and small ubiquitin-related modifier-l, SUMO-1. Virus Res. 2003, 92:37-45.
    40. Li, X. D., T. P. Makela, D. Guo, R. Soliymani, V. Koistinen, O. Vapalahti, A. Vaheri, and H. Lankinen. Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. J Gen Virol. 2002, 83:759-66.
    41. Markotic A, Hensley L, Geisbert T, Spik K, Schmaljohn C. Hantaviruses induce cytopathic effects and apoptosis in continuous human embryonic kidney cells. J Gen Virol. 2003 Aug; 84:2197-202.
    42. Kang JI, Park SH, Lee PW, Ahn BY. Apoptosis is induced by hantavirus in cultured cells. Virology 1999,264 : 99-105.
    43. Lee BH, Yoshimatsu K, Maeda A, Ochiai K, Morimatsu M, Araki K, Ogino M, Morikawa S, Arikawa J. Association of the nucleocapsid protein of the Seoul and Hantaan hantaviruses with small ubiquitin-like modifier-l-related molecules. Virus Res. 2003,98:83-91.
    44. Ravkov, E. V., and R. W. Compans. Hantavirus nucleocapsid protein is expressed as a membrane-associated protein in the perinuclear region. J Virol. 2001, 75:1808-15.
    45. Severson W, Partin L, Schmaljohn CS, Jonsson CB. Characterization of the Hantaan nucleocapsid protein-ribonucleic acid interaction. J Biol Chem. 1999,274:33732-9.
    46. Muranyi, W., R. Kehm, U. Bahr, S. Muller, M. Handermann, G. Darai, and M. Zeier. Bovine aortic endothelial cells are susceptible to hantavirus infection; a new aspect in hantavirus ecology. Virology 2004, 318:112-22.
    47. Yao, J. S., H. Kariwa, I. Takashima, K. Yoshimatsu, J. Arikawa, and N. Hashimoto. Antibody-dependent enhancement ofhantavirus infection in macrophage cell lines. Arch Virol. 1992, 122:107-18.
    48. Raftery M J, Kraus AA, Ulrich R, Kruger DH, Schonrich G. Hantavirus infection of dendritic cells. J Virol. 2002,76:10724-33.
    49. Ravkov EV, Nichol ST, Peters C J, Compans RW.Role ofactin microfilaments in Black Creek Canal virus morphogenesis.J Virol. 1998, 72:2865-70.
    50. Gu XS, You ZQ, Meng GR, Luo FJ, Yang SH, Yang SQ, Ma WH, He JR, Song ZB, Su QA, et al.Hemorrhagic fever with renal syndrome. Separation of human peripheral blood T and B cells and detection of viral antigen.Chin Med J (Engl). 1990, 103:25-8.
    51. Kaukinen, P., A. Vaheri, and A. Plyusnin. Mapping of the regions involved in homotypic interactions of Tula hantavirus N protein. J Virol. 2003, 77:10910-6.
    52. Yoshimatsu, K., B. H. Lee, K. Araki, M. Morimatsu, M. Ogino, H. Ebihara, and J. Arikawa. The multimerization of hantavirus nucleocapsid protein depends on type-specific epitopes. J Virol. 2003, 77:943-52.
    53. Alfadhli, A., E. Steel, L. Finlay, H. P. Bachinger, and E. Barklis. Hantavirus nucleocapsid
    
    protein coiled-coil domains. J Biol Chem. 2002, 277:27103-8.
    54. Kaukinen, P., V. Koistinen, O. Vapalahti, A. Vaheri, and A. Plyusnin. Interaction between molecules of hantavirus nucleocapsid protein. J Gen Virol. 2001, 82:1845-53.
    55. Alfadhli, A., Z. Love, B. Arvidson, J. Seeds, J. Willey, and E. Barklis. Hantavirus nucleocapsid protein oligomerization. J Virol. 2001, 75:2019-23.
    56. Nemirov, K., A. Lundkvist, A. Vaheri, and A. Plyusnin. Adaptation of Puumala hantavirus to cell culture is associated with point mutations in the coding region of the L segment and in the noncoding regions of the S segment. J Virol. 2003, 77:8793-800.
    57. Bohlman, M. C., S. P. Morzunov, J. Meissner, M. B. Taylor, K. Ishibashi, J. Rowe, S. Levis, D. Enria, and S. C. St Jeor. Analysis ofhantavirus genetic diversity in Argentina: S segment-derived phylogeny. J Virol. 2002, 76:3765-73.
    58. Wang M, Pennock DG, Spik KW, Schmaljohn CS. Epitope mapping studies with neutralizing and non-neutralizing monoclonal antibodies to the G1 and G2 envelope glycoproteins of Hantaan virus.Virology. 1993, 187:757-66.
    59. Hooper, J. W., K. I. Kamrud, F. Elgh, D. Custer, and C. S. Schmaljohn. DNA vaccination with hantavirus M segment elicits neutralizing antibodies and protects against seoul virus infection. Virology 1999, 255:269-78.
    60. Hjelle, B., F. Chavez-Giles, N. Torrez-Martinez, T. Yamada, J. Sarisky, M. Ascher, and S. Jenison. Dominant glycoprotein epitope of four comers hantavirus is conserved across a wide geographical area. J Gen Virol. 1994,75:2881-8.
    61. Jenison, S., T. Yamada, C. Morris, B. Anderson, N. Torrez-Martinez, N. Keller, and B. Hjelle. Characterization of human antibody responses to four comers hantavirus infections among patients with hantavirus pulmonary syndrome. J Virol. 1994, 68:3000-6.
    62. Bharadwaj M, Nofchissey R, Goade D, Koster F, Hjelle B.Humoral immune responses in the hantavirus cardiopulmonary syndrome.J Infect Dis. 2000, 182:43-8.
    63. de Carvalho Nicacio C, Lundkvist A, Sjolander KB, Plyusnin A, Salonen EM, Bjorling E. A neutralizing recombinant human antibody Fab fragment against Puumala hantavirus. J Med Virol. 2000, 60:446-54.
    64. Heiskanen T, Lundkvist A, Soliymani R, Koivunen E, Vaheri A, Lankinen H. Phage-displayed peptides mimicking the discontinuous neutralization sites of puumala Hantavirus envelope glycoproteins.Virology. 1999, 262:321-32.
    65. Hooper JW, Kamrud KI, Elgh F, Custer D, Schmaljohn CS. DNA vaccination with hantavirus M segment elicits neutralizing antibodies and protects against seoul virus infection.Virology. 1999, 255:269-78.
    66. Xu X, Severson W, Villegas N, Schmaljohn CS, Jonsson CB, The RNA binding domain of the hantaan vires N protein maps to a central, conserved region. J Virol. 2002, 76:3301-8.
    67. Cusi MG, Valensin PE, Donati M, Valassina M.Neutralization of Toscana virus is partially
    
    mediated by antibodies to the nucleocapsid protein.J Med Virol. 2001, 63:72-5.
    68. Koletzki, D., R. Schirmbeck, A. Lundkvist, H. Meisel, D. H. Kruger, and R. Ulrich. DNA vaccination of mice with a plasmid encoding Puumala hantavirus nucleocapsid protein mimics the B-cell response induced by virus infection. J Biotechnol. 2001, 84:73-8.
    69. Yamada, T., B. Hjelle, R. Lanzi, C. Morris, B. Anderson, and S. Jenison. Antibody responses to Four Corners hantavirus infections in the deer mouse (Peromyscus maniculatus): identification of an immunodominant region of the viral nucleocapsid protein. J Virol. 1995, 69:1939-43.
    70. Lundkvist, A., H. Meisel, D. Koletzki, H. Lankinen, F. Cifire, A. Geldmacher, C. Sibold, P. Gott, A. Vaheri, D. H. Kruger, and R. Ulrich, Mapping of B-cell epitopes in the nucleocapsid protein of Puumala hantavirus. Viral Immunol. 2002, 15:177-92.
    71. Mori M, Rothman AL, Kurane I, Montoya JM, Nolte KB, Norman JE, Waite DC, Koster FT, Ennis FA.High levels of cytokine-producing cells in the lung tissues of patients with fatal hantavirus pulmonary syndrome.J Infect Dis. 1999 Feb;179:295-302.
    72. Krakauer T., Leduc J.W., Krakauer H. Serum levels of tumor necrosis factor-alpha interleukin-1 and interleukin-6 in hemorrhagic fever with renal syndrome. Viral Immunol. 1995, 8:75-79.
    73. Makela, S., J. Mustonen, I. Ala-Houhala, M. Hurme, J. Partanen, O. Vapalahti, A. Vaheri, and A. Pasternack. Human leukocyte antigen-BS-DR3 is a more important risk factor for severe Pt, umala hantavirus infection than the rumor necrosis factor-alpha(-308) G/A polymorphism. J Infect Dis. 2002, 186:843-6.
    74. Miyamoto, H., H. Kariwa, K. Araki, K. Lokugamage, D. Hayasaka, B. Z. Cui, N. Lokugamage, L. I. Ivanov, T. Mizutani, M. A. Iwasa, K. Yoshimatsu, J. Arikawa, and Ⅰ.Takashima. Serological analysis of hemorrhagic fever with renal syndrome (HFRS) patients in Far Eastern Russia and identification of the causative hantavirus genotype. Arch Virol.2003, 148:1543-56.
    75. Nemirov, K., O. Vapalahti, A. Papa, A. Plyusnina, A. Lundkvist, A. Antoniadis, A. Vaheri, and A. Plyusnin. Genetic characterization of new Dobrava hantavirus isolate from Greece. J Med Virol.2003, 69:408-16.
    76. Lledo, L., M. I. Gegundez, J. V. Saz, M. J. Alves, and M. Beltran. Serological study of hantavirus in man in the Autonomous Community of Madrid, Spain. J Med Microbiol. 2002, 51:861-5.
    77. Bharadwaj, M., J. Botten, N. Torrez-Martinez, and B. Hjelle. Rio Mamore virus: genetic characterization of a newly recognized hantavirus of the pygmy rice rat, Oligoryzomys microtis, from Bolivia. Am J Trop Med Hyg. 1997, 57:368-74.
    78. Plyusnin, A., Y. Cheng, H. Lehvaslaiho, and A. Vaheri. Quasispecies in wild-type tula hantavirus populations. J Virol. 1996, 70:9060-3.
    79. Bowen, M. D., H. Kariwa, P. E. Rollin, C. J. Peters, and S. T. Nichol. Genetic characterization
    
    of a human isolate of Puumala hantavirus from France. Virus Res. 1995, 38:279-89.
    80. Song, W., N. Torrez-Martinez, W. Irwin, F. J. Harrison, R. Davis, M. Ascher, M. Jay, and B. Hjelle. Isla Vista virus: a genetically novel hantavirus of the California vole Microtus californicus. J Gen Virol.1995, 76:3195-9.
    81. Schmaljohn, A. L., D. Li, D. L. Negley, D. S. Bressler, M. J. Turell, G. W. Korch, M. S. Ascher, and C. S. Schmaljohn. Isolation and initial characterization of a newfound hantavirus from California. Virology 1995, 206:963-72.
    82. Hjelle, B., S. Jenison, N. Torrez-Martinez, T. Yamada, K. Nolte, R. Zumwalt, K. MacInnes, and G. Myers. A novel hantavirus associated with an outbreak of fatal respiratory disease in the southwestern United States: evolutionary relationships to known hantaviruses. J Virol. 1994, 68:592-6.
    83. Feldmann, H., A. Sanchez, S. Morzunov, C. F. Spiropoulou, P. E. Rollin, T. G. Ksiazek, C. J. Peters, and S. T. Nichol. Utilization of autopsy RNA for the synthesis of the nucleocapsid antigen of a newly recognized virus associated with hantavirus pulmonary syndrome. Virus Res. 1993, 30:351-67.
    84.刘刚,李川,扈光伟,李悦,姚米顺,陈玉庆,黄飚,任明,陈允志,吴世新,于传友,那宝终,钟向东, 孙悦新,李文新,李德新;在我国发现普马拉(PuumaIa)型汉坦病毒.中华实验利临床病毒学杂志 2002(04).
    85. Botten J, Mirowsky K, Ye C, Gottlieb K, Saavedra M, Ponce L, Hjelle B. Shedding and intracage transmission of Sin Nombre hantavirus in the deer mouse (Peromyscus maniculatus) model. J Virol. 2002, 76:7587-94.
    86. Sibold, C., H. Meisel, D. H. Kruger, M. Labuda, J. Lysy, O. Kozuch, M. Pejcoch, A. Vaheri, and A. Plyusnin. Recombination in Tula hantavirus evolution: analysis of genetic lineages from Slovakia. J Virol. 1999, 73:667-75.
    87. Lopez, N., P. Padula, C. Rossi, M. E. Lazaro, and M. T. Franze-Fernandez. Genetic identification of a new hantavirus causing severe pulmonary syndrome in Argentina. Virology 1996,220:223-6.
    88. Spiropoulou, C. F., S. Morzunov, H. Feldmann, A. Sanchez, C. J. Peters, and S. T. Nichol. Genome strncture and variability of a virus causing hantavirus pulmonary syndrome. Virology 1994, 200:715-23.
    89. Plyusnin, A., S. K. Kukkonen, A. Plyusnina, O. Vapalahti, and A. Vaheri. Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. Embo J. 2002, 21:1497-503.
    90. Sironen, T., A. Plyusnina, H. K. Andersen, J. Lodal, H. Leirs, J. Niemimaa, H. Henttonen, A. Vaheri, A. Lundkvist, and A. Plyusnin. Distribution of Puumala hantavirus in Denmark: analysis of bank voles (Clethrionomys glareolus) from Fyn and Jutland. Vector Borne Zoonotic Dis. 2002, 2:37-45.
    
    
    91. Kariwa, H., C. B. Zhong, K. Araki, K. Yoshimatsu, K. Lokugamage, N. Lokugamage, M. E. Murphy, T. Mizutani, J. Arikawa, H. Fukushima, H. Xiong, C. Jiehua, and I. Takashima. Epizootiological survey of hantavirus among rodent species in Ningxia Hui Autonomous Province, China. Jpn J Vet Res. 2001, 49:105-14.
    92. Plyusnin, A., O. Vapalahti, H. Lankinen, H. Lehvaslaiho, N. Apekina, Y. Myasnikov, H. Kallio-Kokko, H. Henttonen, A. Lundkvist, M. Brummer-Korvenkontio, and et al. Tula virus: a newly detected hantavirus carried by European common voles. J Virol. 1994, 68:7833-9.
    93. Green, W., R. Feddersen, O. Yousef, M. Behr, K. Smith, J. Nestler, S. Jenison, T. Yamada, and B. Hjelle. Tissue distribution of hantavirus antigen in naturally infected humans and deer mice. J Infect Dis. 1998, 177:1696-700.
    94. Mori, F., K. Kobayashi, C. Itakura, J. Arikawa, and N. Hashimoto. Pathological studies on central nervous tissues of rats infected with Rattus serotype hantavirus (SR-11 strain). Zentralbl Veterinarmed B. 1991, 38:665-72.
    95. Kobayashi, K., C. Itakura, J. Arikawa, and N. Hashimoto. Renal lesions in rats infected with Rattus serotype hantavirus (SR-11 strain). Zentralbl Veterinarmed B. 1991, 38:657-64.
    96. Gu XS, You ZQ, Meng GR.Hemorrhagic fever with renal syndrome: separation of human peripheral blood T and B cells and detection of viral antigen.Mater Med Pol. 1989, 21:103-5.
    97.刘合宾,刘克洲,翁景清,朱智勇.汉坦病毒疫苗株Z10与Z37重组核蛋白NP的表达纯化及其特异结合基因组末端反向重复序列的功能的研究.病毒学报2004(In press).
    98. Mustonen J, Partanen J, Kanerva M, Pietila K, Vapalahti O, Pasternack A, Vaheri A.Association of HLA B27 with benign clinical course of nephropathia epidemica caused by Puumala hantavirus.Scand J Immunol. 1998,47:277-9.
    99. Ennis FA, Cruz J, Spiropoulou CF, Waite D, Peters CJ, Nichol ST, Kariwa H, et al..Puumala hantavirus genome in patients with nephropathia epidemica: correlation of PCR positivity with HLA haplotype and link to viral sequences in local rodents.J Clin Microbiol. 1997,35:1090-6.
    100. Mustonen J, Partanen J, Kanerva M, Pietila K, Vapalahti O, Pasternack A, Vaheri A.Genetic susceptibility to severe course of nephropathia epidemica caused by Puumala hantavirus.Kidney Int. 1996, 49:217-21.
    101. Yoo, Y. C., K. Yoshimatsu, Y. Koike, R. Hatsuse, K. Yamanishi, O. Tanishita, J. Arikawa, and I. Azuma. Adjuvant activity of muramyl dipeptide derivatives to enhance immunogenicity of a hantavirus-inactivated vaccine. Vaccine 1998, 16:216-24.
    102. Schmaljohn CS, Chu YK, Schmaljohn AL, Dalrymple JM.Antigenic subunits of Hantaan virus expressed by baculovirus and vaccinia virus recombinants.J Virol. 1990, 64:3162-70.
    103. mrud, K. I., J. W. Hooper, F. Elgh, and C. S. Schmaljohn. Comparison of the protective efficacy of naked DNA, DNA-based Sindbis replicon, and packaged Sindbis replicon vectors expressing Hantavirus structural genes in hamsters. Virology 1999, 263:209-19.
    
    
    104. Bucht, G., K. B. Sjolander, S. Eriksson, L. Lindgren, A. Lundkvist, and F. Elgh. Modifying the cellular transport of DNA-based vaccines alters the immune response to hantavirus nucleocapsid protein. Vaccine 2001, 19:3820-9.
    105. Johansson, P., T. Lindgren, M. Lundstrom, A. Holmstrom, F. Elgh, and G. Bucht. PCR-generated linear DNA fragments utilized as a hantavirus DNA vaccine. Vaccine 2002, 20:3379-88.
    106. Xu, X., S. L. Ruo, J. B. McCormick, and S. P. Fisher-Hoch. Immunity to Hantavirus challenge in Meriones unguiculatus induced by vaccinia-vectored viral proteins. Am J Trop Med Hyg. 1992, 47:397-404.
    107. Dargeviciute, A., K. Brus Sjolander, K. Sasnauskas, D. H. Kruger, H. Meisel, R. Ulrich, and A. Lundkvist. Yeast-expressed Puumala hantavirus nucleocapsid protein induces protection in a bank vole model. Vaccine 2002, 20:3523-31.
    108. Yoshimatsu, K., J. Arikawa, H. Li, H. Kariwa, N. Hashimoto, and N. Suzuki. Western blotting using recombinant Hantaan virus nucleocapsid protein expressed in silkworm as a serological confirmation of hantavirus infection in human sera. J Vet Med Sci. 1996, 58:71-4.
    109. Schuldt, C., L. Zoller, E. K. Bautz, and G. Darai. Baculovirus expression of the nucleocapsid protein of a Puumala serotype Hantavirus, Virus Genes 1994, 8:143-9.
    110. Gott, P., L. Zoller, S. Yang, R. Stohwasser, E. K. Bautz, and G. Darai. 1991. Antigenicity of hantavirus nucleocapsid proteins expressed in E. coli. Virus Res 19:1-15.
    111. Geldmacher, A., M. Schmaler, D. H. Kruger, and R. Ulrich. Yeast-expressed hantavirus dobrava nucleocapsid protein induces a strong, long-lasting, and highly cross-reactive immune response in mice. Viral Immunol. 2004, 17:115-22.
    112. Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell. 2002, 108: 165-70.
    113. Beck,K and Brodsky, B. Supercoiled protein motifs: The collagen triple-helix and or-helical coiledcoil. J Struct Biol. 1998, 122: 17-29,