pHSA介导的重组逆转录病毒靶向肝细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
携带外源性治疗基因的靶向性载体是基因治疗的一个中心环节,靶向导入治疗的外源基因能够极大地减少不利的副作用。本课题组在反义寡核苷酸抑制乙型肝炎病毒(hepatitis B virus, HBV)的表达、HDV核酶体外和细胞内切割HBV活性等方面作了大量工作,研究证实了HDV核酶作为HBV反义抑制剂的可行性。目前存在的问题是如何构建高效、安全且具有靶向性的转移载体携带HDV核酶进入肝细胞内发挥作用,使其更接近于临床治疗途径。
     自从80年代中期逆转录病毒(retrovirus, RV)载体面世以来,其结构功能较为清楚、感染效率高、无须辅助病毒等优点使遗传病的基因治疗获得了一次飞跃性进展。典型的逆转录病毒基因组可分为3个独立的转录单位,gag、pol和env。gag区即所谓组特异抗原,编码病毒核心蛋白;pol区编码蛋白酶、逆转录酶和整合酶;env区编码病毒表面蛋白或称包膜蛋白。逆转录病毒的宿主范围主要由病毒包膜蛋白组成,它决定了病毒与宿主细胞结合的能力;另一个重要因素是启动子和增强子,它们影响病毒在特定细胞中的表达能力。
     逆转录病毒的包膜蛋白由两部分组成:表面蛋白(surface protein, SU protein)包含受体结合区域;跨膜蛋白(transmembrane protein, TM protein)包含融合肽。SU与细胞表面受体结合后诱导TM构象发生变化,暴露出融合肽,激活了病毒包膜与宿主细胞膜的融合作用,最终使得病毒核心进入细胞。在通过修饰包膜蛋白构建靶向性逆转录病毒载体的研究中,国内外学者做了大量的工作。HBV preS2基因编码产物由55个氨基酸组成,含有聚合人血白蛋白受体(plymerized human serum albumin receptor, pHSA-R)。血液中的pHSA可与肝细胞膜上的相应受体以及HBV包膜上的特异性受体相结合,这样,HBV颗粒通过pHSA就可以与肝细胞膜结合在一起,从而介导HBV进入肝细胞中。本课题将主要利用preS2基因的编码产物进行肝细胞靶向性重组逆转录病毒载体的构建及验证。
     有关HBV侵入肝细胞的机制尚没有一致的结论。除了聚合人血清白蛋白受体激活机制外,HBV也可以以PreS1肽的某一区域附着于细胞,而且这种结合属于非肝细胞特异的。然而,这两种机制的主从关系尚无探讨。本研究额外构建了两种PreS1肽相关的重组质粒并进行病毒包装,构建肝细胞靶向性病毒载体的同时间接探讨在HBV入侵肝细胞过程中PreS1肽与PreS2肽发挥的作用。
     本室前期的pcDNA3.1(-)-env-preS2融合表达载体是将来源于PT67包装细胞的Env蛋白与HBV preS2基因编码产物相融合的基础上构建的。PT67包装细胞的Env蛋白是嵌合蛋白,它来源于10A1 Amphotropic MLV、4070A AmphotropicMLV和MoMLV,可与天然靶细胞表面的pit1和pit2受体结合且相互影响,因此,为了比较重组逆转录病毒载体的靶向性,必须阻断其经此途径感染肝细胞以及其他靶细胞。研究表明,MoMLV Env蛋白的第60位Tyr和第61位Val氨基酸残基对pit1和pit2受体的识别起着决定性的作用,相关基因序列突变后的逆转录病毒感染原靶细胞效率很低甚至不发生感染。
     研究目的:
     探讨以pHSA介导的,重组逆转录病毒导入肝源细胞的靶向性。
     研究方法:
     1.生产重组逆转录病毒相关表达载体的构建:利用DNA重组技术将本课题组前期构建的表达载体pcDNA3.1(-)-env-preS2进行定点突变,封闭掉MLV的天然受体结合位点,同时构建PreS1相关的新的表达载体及对照性载体。
     2.重组逆转录病毒的生产:将构建好的上述四种载体及pcDNA3.1(-)-env-preS2分别与质粒pL–EGFP、pcDNA4/HisMaxA-gag-pol共转染293T包装细胞系中,收获逆转录病毒颗粒。
     3.重组逆转录病毒载体感染性的测定:包装的五种重组逆转录病毒分别感染肝源细胞系HepG2215及非肝源细胞NIH 3T3、HEK,荧光定量PCR测定各逆转录病毒的感染效率。
     研究结果:
     1.经酶切鉴定和PCR鉴定,构建了四种新的表达载体,分别命名为pcDNA3.1(-)-envm-preS2、pcDNA3.1(-)-envm、pcDNA3.1(-)-envm-preS1、pcDNA3.1(-)-envm-preS1+S2。
     2.利用磷酸钙沉淀法将env相关质粒与质粒pL–EGFP、pcDNA4/HisMaxA-gag-pol共转染到293T细胞中,收集含有短暂产生病毒颗粒的培养上清,-70℃贮存备用。
     3.将获得的病毒上清分别感染肝源细胞系HepG2215及非肝源细胞NIH 3T3、HEK,利用荧光定量PCR方法证明以质粒pcDNA3.1(-)-envm-preS2为基础构建的重组逆转录病毒对肝细胞有较好的靶向性。
     4.在pHSA介导下,preS1和preS2相关的重组逆转录病毒都可以感染肝细胞,但聚合人血清白蛋白受体激活机制占主导地位。
     5. pHSA可增强HBV PreS1相关重组病毒感染肝细胞的作用。
     6. pHSA存在或缺失的情况下,PreS2相关的重组逆转录病毒也可以感染非肝源细胞且病毒感染力相当,但是感染力比较低,推测可能是由于HBV PreS2肽与非肝源细胞表面某种或者某类受体相互作用引起的。
     结论:
     本实验构建了具有肝细胞靶向性的基因治疗载体系统,在细胞水平上验证具有可行性,为其进入临床治疗提供实验依据;证明了HBV主要通过聚合人血清白蛋白受体激活机制感染肝细胞,为HBV分子生物学理论研究、相关的基因治疗及研发新型治疗载体建立基础。
Targeting retroviral entry is a central theme in the development of vectors for gene therapy. The attractiveness of the approach is the selective delivery of a therapeutic gene, which would immensely reduce unfavorable side effects and ease the clinical application of gene therapy. Recently, the study on the relation between HDV ribozyme structure and activity have been done at home and abroad, and our laboratory have proved that HDV ribozyme is a new potent of the antisense regent for HBV gene therapy. But how to carry HDV ribozyme gene into defined target cells or tissues has been a tackling problem.
     The ability of viruses to introduce foreign DNA into target cells is being exploited in many gene therapy strategies aimed at treating genetic diseases, including cancer. Of the various viral vectors developed for this purpose, those based on retroviruses are best understood and the most widely used. These vectors integrate their genomes stably into host cell DNA allowing long term expression of inserted therapeutic genes. The processes of viral entry and genome integration do not require viral protein synthesis. In order to produce vector particles,the viral proteins such as the core protein, the reverse transcriptase and the envelope protein are provided in trans in the packaging cell lines. These cell lines release vector genomes packaged into infectious particles that are free from contaminating helper virus and replication-competent recombinant virus.
     The host range of the retroviral vector is dependent upon its envelope glycoprotein (Env), which recognizes and binds to a specific cell surface receptor protein. After binding, the envelope protein undergoes conformational changes allowing induction of membrane fusion. The murine leukemia virus (MLV) Env protein, like all retroviral Envs, consists of two subunits: SU, which contains the receptor binding domain, and TM which contains the fusion peptide. Binding of SU to the receptor is thought to induce a conformational change in TM, resulting in the exposure of the fusion peptide and activation of the process of fusion of the viral and cellular membranes, and eventual delivery of the viral core into the cell. So the host range of a virus that does not infect human cells may be extended to a predetermined human cell type. The ecotropic MLV envelope protein has most frequently been used for this approach. Since ecotropic MLV recognizes receptors only on rodent cells and not on human cells, its host range is restricted to rodent cells. This targeting approach requires the inclusion of a novel attachment site and the induction of fusion via a novel receptor interaction.
     The mechanism for the entry of Hepatitis B Virus (HBV)-particles into target cells, in particular into hepatocytes is yet not understood. Several receptors on liver cells have been previously suggested which could bind either to wild-type HBV particles or to genetically engineered virus. The envelope of the HBV particle is composed of three related surface (S) proteins. The major or small S protein is 226 amino acids in length. The two other S proteins include the small S sequence at their carboxyl termini. In addition, the middle S protein contains an amino-terminal extension to the small S protein of 55 amino acids (PreS2). The large S protein contains a further amino-terminal extension to the middle S protein of 108 to 119 (depending on subtype ay or ad, respectively) amino acids (PreS1). It has been suggested that the large S protein performs the attachment function since a synthetic peptide containing a PreSl amino acid sequence and an antiserum raised against this peptide inhibited the attachment of cultured hepatoma (HepG2) cells to immobilized HBsAg particles. It also has been suggested that the middle S protein, which binds to polymerized human serum albumin (pHSA), may use pHSA to attach to hepatocytes, which express albumin receptors. In this study, we have investigated whether Moloney murine leukemin virus (MoMLV)-based retroviral vector that contains the HBV PreS2 peptide fused to aa +1 at the N-terminus of Env could be applied to target hepatocytes.
     Amphotropic murine leukemin virus (A-MLV) and MoMLV use sodium-dependent phosphate symporters, Pit1 and Pit2 as receptors for infection. Studies of naturally occurring MLVs have identified the amino-terminal domain of the SU glycoprotein as responsible for receptor recognition and binding. Specially, residues Tyr-60 and Val-61 of MoMLV VRA are critical for receptor recognition. We use site-specific mutagenesis to investigate the new infectivity of recombinant retroviruses, mediated by HBV PreS1 or PreS2 peptide.
     Purpose
     To explore the possibility of targeting hepatocytes mediated by pHSA by recombinant retrovirus vector which carries pHSA-R.
     Methods
     1. The construction of recombinant retrovirus-associated expression vectors: The env gene of vector pcDNA3.1(-)-env-preS2 was mutated by PCR and additional preS1-associated expression vectors were constructed.
     2. To obtain the supernatant of the packaging cell lines. The plasmids pL–EGFP and pcDNA4/HisMaxA-gag-pol were cotransfected into the packaging 293T cell lines in combined with env-associated expression vectors, respectively, by calcium phosphate precipitation method.
     3. The detection of recombinant retroviral vectors infectivity was studied in HepG2215, NIH3T3 and HEK cells by real-time quantitative PCR.
     Results
     1. The design of expression vectors. Four eukaryote expression vectors pcDNA3.1(-)-envm-preS2, pcDNA3.1(-)-envm, pcDNA3.1(-)-envm-preS1 and pcDNA3.1(-)-envm-preS1+S2, were successfully constructed and identified by DNA sequencing and digestion with restriction enzymes.
     2. Transient transfection was performed on 293T cells by calcium phosphate treatment. The high-titer retrovirus carrying eGFP gene were obtained from supernatant of the packaging cell line.
     3. The packaged recombinant retrovirus based on pcDNA3.1(-)-envm-preS2 had a better hepatocellular tropism.
     4. In the presence of polymerized human serum albumin, both preS1 and preS2- associated recombinant retrovirus were capable of infect hepatocytes. preS2-associated recombinant retrovirus had a higher infectivity.
     5. pHSA could enhance the preS1-associated recombinant retrovirus infectivity to NIH 3T3 and HEK cells.
     6. preS2-associated recombinant retrovirus could infect NIH 3T3 and HEK cells with or without pHSA with a similar titer, though the infectivity was lower. Our results indicated that the transduction of NIH 3T3 and HEK cells was caused by the interactions between HBV PreS2 peptide and some receptors rather than pHSA-R on cells surface.
     Conclusions
     The packaged recombinant retrovirus based on pcDNA3.1(-)-envm-preS2 had a better hepatocellular tropism mediated by pHSA. The efficiency of this system in gene transfer might provide an optimal system for hepatocyte gene therpy.
引文
[1] 王传玺, 韩金祥, 鲁艳芹. 基因转移技术中几种常见的病毒载体. 生命的化学. 2004, 24: 229-232.
    [2] 唐冬生, 夏家辉. 基因治疗载体及其基因转移技术的关键问题与研究现状. 生命科学研究. 1997, 1: 16-22.
    [3] 曹明媚, 戚中田. 基因治疗载体的研究进展. 国外医学肿瘤学分册. 2004, 31: 22-26.
    [4] Lundstrom K. Latest development in viral vectors for gene therapy. Trends Biotechnol. 2003, 21: 117-122.
    [5] Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002, 9: 1647-1652.
    [6] Weiss RA. Cellular receptors and viral glycoproteins involved in retroviral entry. In: J. Levy (ed.) The Retroviridae. Plenum Press, New York, 1993, p.1-108.
    [7] Hunter E. Viral entry and receptors. In: J. Coffin, S. Hughes, H. Varmus (Eds.) Retroviruses. Cold Spring Harbor Press, New York, 1997.
    [8] Neda H, Wu C, Wu G. Chemical modification of an ecotropic murine leukemia virus results in redirection of its target cell specificity. J Biol Chem. 1991, 266: 141-143.
    [9] Goud B, Legrain P, Buttin G. Antibody-mediated binding of a murine ecotropic Moloney retroviral vector to human cells allows internalization but not the establishment of the proviral state. Virology. 1988, 163: 251-254.
    [10] Roux P, Jeanteur P, Piechaczyk M. A versatile and potentially general approach to the targeting of specific cell types by retroviruses: Application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus derived viruses. Proc Natl Acad Sci USA. 1989, 86: 9079-9083.
    [11] Etienne-Julan M, Roux P, Carillo S, Jeanteur P, Piechaczyk M. The efficiency of cell targeting by recombinant retroviruses depends on the nature of the receptor and composition of the artificial cell-virus linker. J Gen Virol. 1992, 73: 3251-3255.
    [12] Russell SJ, Hawkins RE, Winter G. Retroviral vectors displaying factional antibody fragments. Nucleic Acids Res. 1993, 21: 1081-1085.
    [13] Somia NV, Zoppe M, Verma IM. Generation of targeted retroviral vectors byusing single-chain variable fragment: An approach to in vivo gene delivery. Proc Natl Acad Sci USA. 1995, 92: 7570-7574.
    [14] Ager S, Nilson BHK, Morling F, Peng KW, Cosset FL, Russell SJ. Retroviral display of antibody fragments; interdomain spacing strongly influences vector infectivity. Hum Gene Ther. 1996, 7: 2157-2164.
    [15] Marin M, Noel D, Valsesla-Wittman S, Brockly F, Etienne-Julan M, Russell S, Cosset FL, Piechaczyk M. Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J Virol. 1996, 70: 2957-2962.
    [16] Schnierle BS, Moritz D, Jeschke M, Groner B. Expression of chimeric envelope proteins in helper cell lines and integration into Moloney murine leukemia virus particles. Gene Ther. 1996, 3: 334-342.
    [17] Kayman SC, Park H, Saxon M, Pinter A. The hypervariable domain of the murine leukemia virus surface protein tolerates large insertions and deletions, enabling development of a retroviral particle display system. J Virol. 1999, 73: 1802-1808.
    [18] Lorimer IA, Lavictoire SJ. Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J Immunol Methods. 2000, 237: 147-157.
    [19] Kasahara N, Dozy AM, Kan YW. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science. 1994, 266: 1373-1376.
    [20] Cosset FL, Morling FJ, Takeuchi Y, Weiss RA, Collins MKL, Russell S. Retroviral retargeting by envelopes expressing an N-terminal binding domain. J Virol. 1995, 69: 6314-6322.
    [21] Wu BW, Lu J, Gallaher TK, Anderson WF, Cannon PM. Identification of regions in the Moloney murine leukemia virus SU protein that tolerate the insertion of an integrin-binding peptide. Virology. 2000, 269: 7-17.
    [22] Gollan TJ, Green MR. Redirecting retroviral tropism by insertion of short, nondisruptive peptide ligands into envelope. J Virol. 2002, 76: 3558-3563.
    [23] Gollan TJ, Green MR. Selective targeting and inducible destruction of human cancer cells by retroviruses with envelope proteins bearing short peptide ligands. J Virol. 2002, 76: 3564-3569.
    [24] Petit MA, Dubanechet S, Capel F. A monoclonal antibody specific for the hepatocyte receptor binding site on hepatitis B virus. Mol Immunol. 1989, 26: 531-537.
    [25] Neurath A, Strick N, Sproul P. Search for hepatitis B virus cell receptors reveals binding sites for interleukin 6 on the virus envelope protein. J Exp Med. 1992, 175: 461-469.
    [26] Dash S, Das KV, Panda SK. Receptor for preS1 (21-47) component of hepatitis B virus on the liver cell: role in virus cell interaction. J Med Virol. 1992, 37: 116-121.
    [27] Hertogs K, Leenders WP, Depla E, De-Bruin WC, Meheus L, Raymackers J, Moshage H, Yap SH. Endonexin II, present on human liver plasma membranes, is a specific binding protein of small hepatitisB virus (HBV) envelope protein. Virology. 1994, 197: 549-557.
    [28] Mehdi H, Kaplan MJ, Anlar FY, Yang X, Bayer R, Sutherland K, Peeples ME. Hepatitis B virus surface antigen binds to apoliprotein H. J Virol. 1994, 68: 2415-2424.
    [29] Franco A, Paroli M, Testa U, Benvenuto R, Peschle C, Balsano V, Barnaba V. Transferrin receptor mediates uptake and presentation of hepatitis B envelope antigen by T-lymphocytes. J Exp Med. 1992, 175: 1195-1205.
    [30] Treichel U, Meyer zum Buschenfelde KH, Stockert RJ, Poralla T, Gerken G. The asialoglycoprotein receptor mediates hepatic binding and uptake of natural hepatitis B virus particles derived from viremic carriers. J Gen Virol. 1994, 75: 3021-3029.
    [31] 姚桢. 分子乙型肝炎病毒相关病学. 北京: 中国医药科技出版社, 1997. 4-11.
    [32] Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J Biol Chem. 1988, 263: 14621-14624.
    [33] Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res. 1997, 38: 2173-2192.
    [34] Franssen EJ, Jansen RW, Vaalburg M, Meijer DK. Hepatic and intrahepatic targeting of an anti-inflammatory agent with human serum albumin and neoglycoproteins as carrier molecules. Biochem Pharmacol. 1993, 45: 1215-1226.
    [35] Nishikawa M, Kamijo A, Fujita T, Takakura Y, Sezaki H, Hashida M. Synthesis and pharmacokinetics of a new liver-specific carrier, glycosylatedcarboxymethyl-dextran, and its application to drug targeting. Pharm Res. 1993, 10: 1253-1261.
    [36] Hara T, Kuwasawa H, Aramaki Y, Takada S, Koike K, Ishidate K, Kato H, Tsuchiya S. Effects of fusogenic and DNA-binding amphiphilic compounds on the receptor-mediated gene transfer into hepatic cells by asialofetuin-labeled liposomes. Biochim Biophys Acta. 1996, 1278: 51-58.
    [37] Madon J, Blum HE. Receptor-mediated delivery of hepatitis B virus DNA and antisense oligodeoxynucleotides to avian liver cells. Hepatology. 1996, 24: 474-481.
    [38] Wu G, Zhan P, Sze LL, Rosenberg AR, Wu CH. Incorporation of adenovirus into a ligand-based DNA carrier system results in retention of original receptor specificity and enhances targeted gene expression. J Biol Chem. 1994, 269: 11542-11546.
    [39] Marshall E. Gene Therapy' s growing pains. Science. 1995, 269: 1050-1055.
    [40] Parveen Z, Krupetsky A, Engelstadter M, Cichutek K, Pomerantz RJ, Dornburg R. Spleen necrosis virus-derived C-type retroviral vectors for gene transfer to quiescent cells. Nat Biotechnol. 2000, 18: 623-629.
    [41] 万涛, 曹雪涛. 肿瘤基因治疗的病毒载体研究进展. 国外医学肿瘤分册, 1996, 23: 5-9.
    [42] 薛京伦, 邱信芳, 卢大儒, 王飞, 侍鼎, 高啸波. 微小腺病毒载体介导的人凝血Ⅸ因子小基因的离体表达. 病毒学报. 2000,16: 294-298.
    [43] Mulligan RC. The basic science of gene therapy. Science. 1993, 260: 926-932.
    [44] Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA. 1997, 94: 1426-1431.
    [45] Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O'Malley KL, During MJ. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. 1994, 8: 148-154.
    [46] Fukuda Y, Yamamura J, Uwano T, Nishijo H, Kurokawa M, Fukuda M, Ono T, Shiraki K. Regulated transgene delivery by ganciclovir in the brain without physiological alterations by a live attenuated herpes simplex virus vector. Neurosci Res. 2003, 45: 233-241.
    [47] Tevenson AJ, Frolova-Jones E, Hall KT, Kinsey SE, Markham AF, Whitehouse A, Meredith DM. herpesvirus saimiri-based gene therapy vector with potential for use in cancer immunotherapy. Cancer Gene Ther. 2000, 7: 1077-1085。
    [48] Moriuchi S, Krisky DM, Marconi PC, Tamura M, Shimizu K, Yoshimine T, Cohen JB, Glorioso JC. HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Ther. 2000, 7: 1483-1490.
    [49] Erlwein O, Buchholz CJ , Schnierle BS. The proline-rich region of the ecotropic Moloney murine leukaemia virus envelope protein tolerates the insertion of the green fluorescent protein and allows the generation of replication-competent virus. J Gen Virol. 2003, 84: 369-373.
    [50] Suzuki S,Shimada T. A retroviral vector capable of targeted gene transfer into cells expressing HIV envelope glycoprotein. Biochem Biophys Res Commun. 2000, 271: 672-676.
    [51] Zavorotinskaya T, Albritton LM. Two point mutations increase targeted transduction and stabilize vector association of a modified retroviral envelope protein. Mol Ther. 2001, 3: 323-328.
    [52] Benedict CA, Tun RY, Rubinstein DB, Guillaume T, Cannon PM, Anderson WF. Targeting retroviral vectors to CD34-expressing cells: binding to CD34 does not catalyze virus-cell fusion.Hum Gene Ther. 1999, 10: 545-557.
    [53] Lavillette D, Russell SJ, Cosset FL. Retargeting gene delivery using surface-engineered retroviral vector particles. Curr Opin Biotechnol. 2001, 12: 461-466.
    [54] Zhao Y, Zhu L, Lee S, Li L, Chang E, Soong NW, Douer D, Anderson WF. Identification of the block in targeted retroviral-mediated gene transfer. Proc Natl Acad Sci USA. 1999, 96: 4005-4010.
    [55] Pizzato M, Marlow SA, Blair ED, Takeuchi Y. Initial binding of murine leukemia virus particles to cells does not require specific Env-receptor interaction. J Virol. 1999, 73: 8599-8611.
    [56] Pizzato M, Blair ED, Fling M, Kopf J, Tomassetti A, Weiss RA, Takeuchi Y. Evidence for non-specific adsorption of targeted retrovirus vector particles to cells. Gene Ther. 2001, 8: 1088-1096.
    [57] Doms RW, Trono D. The plasma membrane as a combat zone in the HIV battlefield. Genes Dev. 2000, 14: 2677-2688.
    [58] Haynes C, Erlwein O, Schnierle BS. Modified envelope glycoproteins to retarget retroviral vectors. Curr Gene Ther. 2003, 3: 405-410.
    [59] 王传玺,韩金祥,鲁艳芹,高雪芹,张翠. 肝细胞靶向性系统表达载体的构建.生物技术通讯,2004,15:429-432.
    [60] Miller AD, Chen F. Retrovirus packaging cells based on 10A1 Murine Leukemia Virus for production of vectors that use multiple receptors for cell entry. J Virol. 1996, 70: 5564-5571.
    [61] Tailor CS, Kabat D. Variable regions A and B in the envelope glycoproteins of feline leukemia virus subgroup B and amphotropic murine leukemia virus interact with discrete receptor domains. J Virol. 1997, 71: 9383-9391.
    [62] 金奇.医学分子病毒学.北京:科学出版社.2001.254.
    [63] 姜泊,张亚历,周殿元.分子生物学常用实验方法.北京:人民军医出版社,1996.166.
    [64] Lorimdr IA, Lavictoire SJ. Targeting retrovirus to cancer cells expressing a mutamt EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J Immunol Methods. 2002, 37: 147-157.
    [65] 王传玺. 靶向性 HDV 核酶反义抑制 HBV 基因表达的初步研究. 硕士学位论文.济南.山东省医学科学院.2005.
    [66] Lu YQ, Han JX, Qi P, Xu W, Zu YH, Zhu B. Rapid quantifi cation of hepatitis B virus DNA by real-time PCR using effi cient TaqMan probe and extraction of virus DNA. World J Gastroenterol. 2006, 12: 7365-7370.
    1 Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2001, 2:986–991.
    2 Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003, 25:930–939.
    3 Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 294:862–864.
    4 Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biol 2003, 4:R42.
    5 Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA 2003, 9:175–179.
    6 Ambros V. The functions of animal microRNAs. Nature 2004, 431:350–355.
    7 Kim VN. Small RNAs: Classification, Biogenesis, and Function. Mol Cells 2005, 19:1-15.
    8 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843–854.
    9 Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001, 294:858–862.
    10 Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408:86–89.
    11 Ying SY, Lin SL. Intronic microRNAs (miRNAs). Biochem Biophys Res Commun 2005, 326:515–520.
    12 Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004,
    32:D109–D111.
    13 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140–D144.
    14 Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P et al. Combinatorial microRNA target predictions. Nat Genet 2005, 37:495–500.
    15 Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003, 115:787–798.
    16 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell2005, 120:15–20.
    17 Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic Shadowing and Computational Identification of Human microRNA Genes. Cell 2005, 120:21-24.
    18 Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J John B, Enright AJ et al. Identification of virus-encoded microRNAs. Science 2004, 304:734–736.
    19 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294:853–858.
    20 Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002, 21:4663–4467.
    21 Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004, 14:1902–1910.
    22 Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev Mol Cell Biol 2005, 6:376–385.
    23 Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs RNA 2004, 10:1957–1966.
    24 Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23:4051–4060.
    25 Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J et al. The nuclear RNase III drosha initiates microRNA processing. Nature 2003, 425:415–419.
    26 Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature 2004, 432:231–235.
    27 Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK Sohn SY et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 2006, 125:887–901.
    28 Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003, 17:3011–3016.
    29 Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004, 303:95–98.
    30 Zeng Y, Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 2004, 32:4776–4785.
    31 Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura KShiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740–744.
    32 Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 2005, 3:e236.
    33 Maniataki E, Mourelatos Z. A human, ATP independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 2005, 19:2979–2990.
    34 Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature 2000, 404:293–296.
    35 Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003, 115:209–216.
    36 Lin SL, Chang D, Ying SY. Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 2005, 356:32–38.
    37 Caudy AA, Hannon GJ. Induction and biochemical purification of RNA-induced silencing complex from Drosophila S2 cells. Methods Mol Biol 2004, 265:59–72.
    38 Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci 2004, 7:113–117.
    39 Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T. Identification of novel Argonauteassociated proteins. Curr Biol 2005, 15:2149–2155.
    40 Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development 2005, 132:4645-4652.
    41 Bartel B, Bartel DP. MicroRNAs: at the root of plant development? Plant Physiol 2003, 132:709–717.
    42 Zamore PD, Haley B. Ribo-gnome: The Big World of Small RNAs. Science 2005, 309:1519-1524.
    43 Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R et al. MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nature Genetics 2004, 36:1079–1083.
    44 Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA.Science 2004, 304:594–596.
    45 Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999, 216:671–680.
    46 Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002, 9:1327–1333.
    47 Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev 2003, 17:438–442.
    48 Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes and Development 2004, 18:504–511.
    49 Jopling CL,Yi M,Lancaster AM,Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309:1577-1581.
    50 Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433:769–773.
    51 Zeng Y Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 2003, 100:9779–9784.
    52 Lakatos L, Szittya G, Silhavy D, Burgyan J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 2004, 23:876-884.
    53 Baulcombe DC, Molnar A. Crystal structure of p19--a universal suppressor of RNA silencing. Trends Biochem Sci 2004, 29:279-281.
    54 Silhavy D, Molnar A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyan J. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to
    25-nucleotide doublestranded RNAs. EMBO J 2002, 21:3070-3080.
    55 Ye K, Malinina L, Patel DJ. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 2003, 426:874-878.
    56 Omarov R, Sparks K, Smith L, Zindovic J, Scholthof HB. Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs. J Virol 2006, 80:3000–3008.
    57 Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N et al.Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2006, 2:e23.
    58 Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarraybased approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 2006, 12:1–18.
    59 Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2006, 442:82–85.
    60 Cai X, Cullen BR. Transcriptional origin of Kaposi’s sarcoma-associated herpesvirus microRNAs. J Virol 2006, 80:2234–2242.
    61 Kliche S, Nagel W, Kremmer E, Atzler C, Ege A, Knorr T, Koszinowski U et al. Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell 2001, 7:833–843.
    62 McCormick C, Ganem D. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 2005, 307:739–741.
    63 Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J. Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 2005, 79:12095–12099.
    64 Dunn W, Trang P, Zhong Q, Yang E, van Belle C, Liu F. Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol 2005, 7:1684–1695.
    65 Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA van Dyk LF, Ho CK et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005, 2:269–276.
    66 Witter RL, K Schat. Marek’s disease. In: Y M Saif (ed) Diseases of poultry, 11th ed. Iowa State University Press, Ames, 2003, pp 407–464.
    67 Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N et al. Marek’s Disease Virus Encodes MicroRNAs That Map to meq and the Latency-Associated Transcript. J Virol 2006, 80:8778-8786.
    68 Xie Q, Anderson A, Morgan R. Marek’s disease virus (MDV) ICP4, pp38, and meq genes are involved in the maintenance of transformation of MDCC-MSB1 MDV-transformed lymphoblastoid cells. J Virol 1996, 70:1125–1131.
    69 Liu JL, Ye Y, Lee LF, Kung HJ. Transforming potential of the herpesvirus oncoprotein MEQ: morphological transformation, serumindependent growth, andinhibition of apoptosis. J Virol 1998, 72:388–395.
    70 Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 1998, 248:295–304.
    71 Levy AM, Gilad O, Xia L, Izumiya Y, Choi J, Tsalenko A, Yakhini Z et al. Marek’s disease virus Meq transforms chicken cells via the v-Jun transcriptional cascade: a converging transforming pathway for avian oncoviruses. Proc Natl Acad Sci USA 2005, 102:14831–14836.
    72 Lupiani B, Lee LF, Cui X, Gimeno I, Anderson A, Morgan Rw, Silva RF et al. Marek’s disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc Natl Acad Sci USA 2004, 101:11815–11820.
    73 Cantello JL, Parcells MS, Anderson AS, Morgan RW. Marek’s disease virus latency-associated transcripts belong to a family of spliced RNAs that are antisense to the ICP4 homolog gene. J Virol 1997, 71:1353–1361.
    74 Bowden RJ, Simas JP, Davis AJ, Efstathiou S. Murine γherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 1997, 78:1675–1687.
    75 Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005, 435:682–686.
    76 Sullivan CS, Ganem D. MicroRNAs and Viral Infection. Mol Cell 2005, 20:3–7.
    77 Cantalupo P, Doering A, Sullivan CS, Pal A, Peden KW, Lewis AM, Pipas JM. Complete nucleotide sequence of polyomavirus SA12. J Virol 2005, 79:13094–13104.
    78 Mathews MB, Shenk T. Adenovirus virus-associated RNA and translation control. J Virol 1991, 65:5657–5662.
    79 Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10:185-191.
    80 Lu S, Cullen BR. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 2004, 78:12868–12876.
    81 Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G. Suppression of RNA interference by adenovirus virus-associated RNA. J Virol2005, 79:9556–9565.
    82 Sano M, Kato Y, Taira K. Sequence-specific interference by small RNAs derived from adenovirus VA1 RNA. FEBS Lett 2006, 580:1553–1564.
    83 Bennasser Y, Le SY, Yeung ML, Jeang KT. HIV-1 encoded candidate microRNAs and their cellular targets. Retrovirology 2004, 1:43.
    84 Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005, 22:607–619.
    85 Omoto S, Fujii YR. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 2005, 86:751–755.
    86 Nair V, Zavolan M. Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 2006, 14:169-175.
    87 Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116:281–297.
    88 Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006, 13:13-21.
    89 Luciano D J, Mirsky H, Vendetti NJ, Maas S. RNA editing of a miRNA precursor. RNA 2004, 10:1174–1177.
    90 Lindsay MA. Target discovery. Nat Rev Drug Discov 2003, 2:831-838.
    91 Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003, 113:25–36.
    92 Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303:83–86.
    93 Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004, 279:52361–52365.
    94 Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432:226–230.
    95 Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006, 103:2257-2261.
    96 Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer Res 2005,65:3509–3512.
    97 Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 2003, 9:180–186.
    98 Boutla A, Delidakis C, Tabler M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res 2003, 31:4973–4980.
    99 Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequencespecific inhibition of small RNA function. PLoS Biol 2004, 2:E98.
    100 Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005, 65:6029–6033.
    101 Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006, 3:87–98.
    102 Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006, 34:2294-2304.
    103 Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005, 438:685–689.
    104 Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci USA 2005, 102:2561–2566.
    105 Ye J, Wang C, Sumpter R Jr, Brown MS, Goldstein JL, Gale M Jr. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc Natl Acad Sci USA 2003, 100:15865–15870.
    106 Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005, 23:709–717.
    107 Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005, 23:1002–1007.
    108 (2006) Recent patent applications in microRNAs. Nat Biotechnol 24:44.