阴离子功能化离子液体的合成及其应用于二氧化碳气体捕集的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大气中二氧化碳(CO2)气体含量随着工业的迅速发展不断增加而引起的“全球气候变暖”问题,已经引起了全世界的关注。离子液体(IL)由于它的一些独特性质如蒸汽压低、液程宽、溶解力强、结构性能可调等一系列优良特性,已成为捕集CO2的良好吸收剂。氨基功能化IL首次被合成应用于选择性的捕集CO2之后,一系列改性的氨基功能化ILs被合成并改善吸收CO2的能力。但仍然存在吸收容量低、粘度太大等问题。因此,需要发展新的ILs碳捕集的方法。本文先设计合成一系列唑类、羟基吡啶型阴离子功能化ILs用于高容量的吸收CO2,然后对ILs吸收CO2中结构引起的熵效应进行了初步的探索,最后针对如何避免氨基功能化ILs吸收CO2后粘度大幅度增加的问题,提出使用分子内氢键代替分子间氢键使体系不形成氢键网络结构。
     首先,我们针对目前氨基功能化IL吸收CO2后形成大量的分子间氢键网络结构,造成体系粘度急剧增加,阻碍气体的传质问题,提出了使用不含质子氢的sp2杂化的N阴离子如唑类或者酚羟基阴离子用于CO2的捕集,由于其不合有形成强的氢键的H来源,避免了氢键网络结构的生成,因此吸收速率非常快。另外对阴离子的碱性进行调控,可以调节其吸收CO2的容量及吸收焓变,从而优化得到等摩尔吸收、低吸收焓变的体系[P66614][Triz]。由此出发,更进一步的提出通过阴离子的电荷离域到与其共轭的基团增加IL的作用位点数,来提高CO2吸收容量的新方法。基于此思想我们设计合成了含两个作用位点的羟基吡啶型和咪唑吡啶型ILs。量化计算的结果表明羟基吡啶环上π电子的离域作用,使得阴离子上的氮原子上的电荷密度比吡啶分子的大很多,能够跟CO2产生化学反应。从谱学上也可以看到酚羟基和毗啶基这儿两种化学吸收的CO2。这类ILs有着非常高的CO2吸收容量,通过设计可达1.65mol CO2/mol IL,远远高于两个点位单独作用的总和,存在多位点的协同效应。该类ILs也显示了良好的循环性能,是具有潜力的CO2捕集剂。
     对于ILs吸收CO2热力学方面,吸收焓变对吸收容量的影响的研究较多,但是从理论上分析,吸收容量是由吸收焓变和熵变共同影响的,由于CO2跟ILs的作用较强,熵变的影响往往不如焓变突出,因此大家对熵变的影响不明确。针对这方面的空白,我们设计了具有不同空间结构的ILs研究其空间结构对熵变的影响。通过量化计算和实验分析发现分子结构的不同会造成了分子间的作用方式不同,通过原位红外、变温红外的分析得出分子间氢键对熵变的影响很大,从而影响体系吸收CO2的行为。
     此外,氨基功能化ILs吸收CO2造成粘度的急剧上升主要是体系间形成了大量的分子间氢键网络结构。分子内氢键是除分子间氢键外的另一种氢键形式,但是分子内氢键只是在单个分子内部形成较稳定的氢键,对粘度的影响没有分子间氢键明显。因此我们通过对氨基功能化ILs的结构设计,引入能跟H形成氢键的N或O使其刚好能与分子中的H形成分子内氢键,我们发现在氨基上取代酰基后,其吸收CO后粘度反而有所下降。通过氨基上接入不能跟H形成分子内氢键的甲基作对比,发现甲基取代的氨基功能化ILs吸收CO2之后粘度剧烈增加。
     综上所述,本文设计合成了几类新型阴离子功能化ILs应用于碳捕集中,除了发展具有CO2吸收容量大、稳定性高和循环使用性好的新型ILs外,还对其中的热力学进行了系统的分析,为设计性能良好的气体吸收剂提供了新的思路与方法,为离子液体的酸性气体捕集打下了一定的基础。
Recently, the discharge of carbon dioxide (CO2) into the atmosphere duing to the rapid development of industry has attracted a wide attention for their intribution to climate change. Ionic liquids (ILs) have developed as potentional CO2absorbent for their unique properties such as negligible vapor pressure, wide liquid range, superior dissolved ability, and their tunable structures and properties. Followed by the first reported example of CO2chemisorption by an amino-functionalized IL, lots of works fock on optimizing the CO2capacity of amino-based ILs, but low capacity, high viscosity do exist. Thus, the development of ILs for improving CO2capture is highly desired. In this manuscript, we designed a series of azole and hydrxypydridine-based anion functionalized ILs with high CO2capacity, besides, we tried to investigate the entropy effect design on CO2capture through the ILs'structure. Taking advantage of intramolecular hydrogen bond insteads of intermolecular hydrogen bond network to avoid the sharp increase of viscosity of amino-functionalized ILs.
     One disadvantage of amine-functionalized ILs is its low absorption kinetics due to the relatively high viscosity of the IL during the absorption of CO2for the formation of hydrogen bond network. We developed azole-based ILs with sp2hybridization of N such as azole anion and phenolate interaction with CO2. The azole-based ILs with improved properties such as scanty active hydrogen for strong hydrogen-bond formation, fast absorption rate, ect. The stability, absorption capability, and absorption enthalpy of ILs can be facilely tuned by varying the anions with different pKa values. Thus, highly stable basic ILs [P66614][Triz] for CO2capture with desirable enthalpy of absorption and high absorption capacity can be achieved. We further put forward ILs with multiple site cooperative interactions through conjugation effect of electron to enhance capacity of CO2. Based on this assumption, we present a new method for carbon capture by several hydroxypyridine-based ILs with two kinds of different interacting sites including pyridine and phenolate. Quantum mechanical calculations and spectroscopic investigations demonstrate that such a high capacity originate from the cooperative multiple site interactions between the electronegative nitrogen and oxygen atoms in the anion. The results show that an extremely high capacity up to1.65mol CO2per mol IL can be achieved, in addition, excellent reversible process by those ILs can provide a potential alternative for CO2capture.
     There are lots of works investigated the effect of enthalpy on the capacity of CO2capture by ILs, however, the CO2capacity not only depends on the reaction enthalpy based on the eqution△G=△H-T△S that the entropy is another parallel factor. For CO2chemisorption, the enthalpic change would be far greater than entropic change, which makes the entropy not obvious. It is not clear how the entropy effect on CO2chemisorption. We designed some isomeric anion functionalized ILs with substituent in different position to investigate the effect of structure on entropy of CO2capture. Viscosity measurements, spectroscopic investigations, and quantum chemical calculations showed that such a unique behavior originated from the entropic effect, which was induced by the intermolecular hydrogen bonding in these ionic liquids.
     The sharp increase of viscosity of amino-functionalized ionic liquids through CO2capture is duing to the formation of intermolecular hydrogen bond networks. As we know, hydrogen bond includes intermolecular and intramolecular hydrogen bond, the latter would not form the strong interaction among moleculars and not infulence the viscosity of the system very much. Based on this assumption, we introduce atom N or O to the amino-functionalized ILs, we expect the N or O in the just right position and can form intramolecular hydrogen bond with H of NH or NCOOH after CO2capture. We found the viscosity of amino-functionalized ILs with acetyl group tethered at the amino have slightly decrease during the CO2capture process, while with methy group tethered at the amino, the viscosity increase violently.
     Summary, we developped several class of anion-functionalized ILs for CO2capture, on the basis of the relationship between CO2absorption performance and the structure of the ILs, high capacity, low absorption enthalpy, rapid absorption kinetics, and excellent reversibility can be achieved by tuning the structure of the ILs, and we did a preliminary exploration on thermodynamics, which offer new strategy for enhancing the performace of gas absorbent.
引文
[1]M.R. Raupach, G. Marland, P. Ciais, C. Le Quere, J.G. Canadell, G. Klepper, C.B. Field, Global and regional drivers of accelerating CO2 emissions, P. Nal. Acad. Sci USA,104(2007) 10288-10293.
    [2]M. Hasib-ur-Rahman, M. Siaj, F. Laracbi, Ionic liquids for CO2 capture-Development and progress, Chem. Eng. Process,49 (2010) 313-322.
    [3]Y.X. Pan, P.Y. Kuai, Y.A. Liu, Q.F. Ge, C.J. Liu, Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst, Energ. Environ. Sci.,3 (2010) 1322-1325.
    [4]K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, Recent Advances in CO2 Capture and Utilization, Chemsuschem,1 (2008) 893-899.
    [5]W. Wang, S.P. Wang, X.B. Ma, J.L. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem.Soc. Rev.,40 (2011) 3703-3727.
    [6]Q.A. Wang, J.Z. Luo, Z.Y. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications:current status and new trends, Energ. Environ. Sci.,4 (2011) 42-55.
    [7]G.T. Rochelle, Amine Scrubbing for CO2 Capture, Science, 325 (2009) 1652-1654.
    [8]B. Han, C.G. Zhou, J.P. Wu, D.J. Tempel, H.S. Cheng, Understanding CO2 Capture Mechanisms in Aqueous Monoethanolamine via First Principles Simulations, J. Phys. Chem. Lett.,2 (2011) 522-526.
    [9]P.D. Vaidya, E.Y. Kenig, CO2-alkanolamine reaction kinetics:A review of recent studies, Chem. Eng. Technol.,30 (2007) 1467-1474.
    [10]J. Alejandre, J.L. Rivera, M.A. Mora, V. de la Garza, Force field of monoethanoiamine, J. Phys. Chem. B,104 (2000) 1332-1337.
    [11]R. Lopez-Rendon, M.A. Mora, J. Alejandre, M.E. Tuckerman, Molecular dynamics simulations of aqueous solutions of ethanolamines,J. Phys. Chem. B,110 (2006) 14652-14658.
    [12]N. McCann, M. Maeder, M. Attalla, Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems, Ind. Eng. Chem. Res.,47 (2008) 2002-2009.
    [13]E.F. da Silva, H.F. Svendsen, Study of the carbamate stability of amines using a initio methods and free-energy perturbations, Ind. Eng. Chem. Res.,45 (2006) 2497-2504.
    [14]Q.Y. Wang, J.K. Johnson, Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores,J. Chem. Phys.,110 (1999) 577-586.
    [15]J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advancesn in CO(2) capture technology-The US Department of Energy's Carbon Sequestration Program, Int. J. Greenh. Gas Con.,2 (2008) 9-20.
    [16]J.E. Bara, D.E. Camper, D.L. Gin, R.D. Noble, Room-Temperature Ionic Liquids and Composite Materials:Platform Technologies for CO2 Capture, Accounts Chem. Res.,43 (2010) 152-159.
    [17]S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage, Langmuir, 22 (2006) 1688-1700.
    [18]T. Ben, C.Y. Pei, D.L. Zhang, J. Xu, F. Deng, X.F. Jing, S.L. Qiu, Gas storage in porous aromatic frameworks (PAFs), Energ. Environ. Sci.,4 (2011) 3991-3999.
    [19]M.G. Plaza, S. Garcia, F. Rubiera, J.J. Pis, C. Pevida, Post-combustion CO2 capture with a commercial activated carbon:Comparison of different regeneration strategies, Chem. Eng. J.,163 (2010) 41-47.
    [20]M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, CO2 capture by adsorption with nitrogen enriched carbons, Fuel,86 (2007) 2204-2212.
    [21]P. Cho, T. Mattisson, A. Lyngfelt, Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion, Fuel,83 (2004) 1215-1225.
    [22]Z.S. Li, N.S. Cai, Y.Y. Huang, Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent, Ind. Eng. Chem. Res.,45 (2006) 1911-1917.
    [23]R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science,319 (2008) 939-943.
    [24]W. Morris, C.J. Doonan, H. Furukawa, R. Banerjee, O.M. Yaghi, Crystals as molecules:Postsynthesis covalent functionalization of zeolitic imidazolate frameworks,J. Am. Chem. Soc.,130 (2008) 12626-12627.
    [25]M.G. Plaza, C. Pevida, B. Arias, M.D. Casal, C.F. Martin, J. Fermoso, F. Rubiera, J.J. Pis, Different Approaches for the Development of Low-Cost CO2 Adsorbents,J. Environ. Eng. Asce.,135 (2009) 426-432.
    [26]T. Witoon, Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture, Mater. Chem. Phys.,137 (2012) 235-245.
    [27]K. Wormeyer, M. Alnaief, I. Smirnova, Amino functionalised Silica-Aerogels for CO2-adsorption at low partial pressure, Adsorption,18 (2012) 163-171.
    [28]F. Zheng, D.N. Iran, B.J. Busche, G.E. Fryxell, R.S. Addleman, T.S. Zemanian, C.L. Aardahl, Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent, Ind. Eng. Chem. Res.,44 (2005) 3099-3105.
    [29]H.L. Zhao, J. Hu, J.J. Wang, L.H. Zhou, H.L. Liu, CO2 capture by the amine-modified mesoporous materials, Acta, Phys. Chim. Sin.,23 (2007) 801-806.
    [30]S. Araki, H. Doi, Y. Sano, S. Tanaka, Y. Miyake, Preparation and CO2 adsorption properties of aminopropyl-functionalized mesoporous silica microspheres, J. Coll. Interf. Sci.,339 (2009) 382-389.
    [31]J.A. Wurzbacher, C. Gebald, A. Steinfeld, Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel, Energ. Environ. Sci.,4 (2011) 3584-3592.
    [32]A. Goeppert, M. Czaun, R.B. May, G.K.S. Prakash, G.A. Olah, S.R. Narayanan, Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent, J. Am. Chem. Soc.,133 (2011) 20164-20167.
    [33]Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Amine-bearing mesoporous silica for CO2 removal from dry and humid air, Chem. Eng. Sci.,65 (2010) 3695-3698.
    [34]K.S. Lackner, Capture of carbon dioxide from ambient air, Eur. Phys. J. Spec. Top,176(2009) 93-106.
    [35]S. Choi, J.H. Drese, P.M. Eisenberger, C.W. Jones, Application of Amine-Tethered Solid Sorbents for Direct CO2 Capture from the Ambient Air, Environ.Sci. Techn.,45 (2011) 2420-2427.
    [36]S. Kitagawa, R. Matsuda, Chemistry of coordination space of porous coordination polymers, Coordin. Chem. Rev.,251 (2007) 2490-2509.
    [37]G. Ferey, Hybrid porous solids:past, present, future, Chem. Soc. Rev.,37 (2008) 191-214.
    [38]Z.Q. Wang, S.M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Revi.,38 (2009) 1315-1329.
    [39]J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown, J. Liu, Progress in adsorption-based CO2 capture by metal-organic frameworks, Chem. Soc. Rev.,41 (2012) 2308-2322.
    [40]A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc.,127 (2005) 17998-17999.
    [41]P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J.S. Chang, D.Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101, Langmuir,24 (2008) 7245-7250.
    [42]H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, O.M. Yaghi, Ultrahigh Porosity in Metal-Organic Frameworks, Science,329 (2010) 424-428.
    [43]P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica.5. Triamine grafted material with exceptional CO(2) dynamic and equilibrium adsorption performance, Ind. Eng. Chem. Res.,46 (2007) 446-458.
    [44]R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu, P.G. Boyd, S. Alavi, T.K Woo, Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid, Science,330 (2010) 650-653.
    [45]A.I. Skoulidas, Molecular dynamics simulations of gas diffusion in metal-organic frameworks:Argon in CuBTC, J. Am. Chan. Soc.,126 (2004) 1356-1357.
    [46]A.O. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. LeVan, A.I. Benin, P. Jakubczak, M. Lanuza, D.B. Galloway, J.J. Low, R.R. Willis, Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach,J. Am. Chem. Soc.,131 (2009) 18198-18199.
    [47]J.R Li, Y.G. Ma, M.C. McCarthy, J. Sculley, J.M. Yu, H.K. Jeong, P.B. Balbuena, H.C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coordin. Chem. Rev.,255 (2011) 1791-1823.
    [48]M.T. Ho, G. Leamon, G.W. Allinson, D.E. Wiley, Economics of CO2 and mixed gas geosequestration of flue gas using gas separation membranes, Ind. Eng. Chem. Res.,45 (2006) 2546-2552.
    [49]R. Bounaceur, N. Lape, D. Roizard, C. Vallieres, E. Favre, Membrane processes for post-combustion carbon dioxide capture:A parametric study, Energy,31 (2006) 2556-2570.
    [50]K. Damen, M. van Troost, A. Faaij, W. Turkenburg, A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A:Review and selection of promising conversion and capture technologies, Prog. Energ. Combust., 32 (2006) 215-246.
    [51]M.B. Hagg, A. Lindbrathen, CO2 capture from natural gas fired power plants by using membrane technology, Ind. Eng. Chem. Res.,44 (2005) 7668-7675.
    [52]C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases,J. Membrane Sci.,279 (2006) 1-49.
    [53]T.C. Merkel, H.Q. Lin, X.T. Wei, R. Baker, Power plant post-combustion carbon dioxide capture:An opportunity for membranes,J. Membrane ScL,359 (2010) 126-139.
    [54]J. Huang, J. Zou, W.S.W. Ho, Carbon dioxide capture using a CO2-selective facilitated transport membrane, Ind. Eng. Chem. Res.,47 (2008) 1261-1267.
    [55]T. Kai, T. Kouketsu, S.H. Duan, S. Kazama, K. Yamada, Development of commercial-sized dendrimer composite membrane modules for CO2 removal from flue gas, Separ. Puri. Tech.,63 (2008) 524-530.
    [56]S.H. Duan, T. Kouketsu, S. Kazama, K. Yamada, Development of PAMAM dendrimer composite membranes for CO2 separation,J. Membrane Sci.,283 (2006) 2-6.
    [57]W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.V. Peinemann, CO2-Philic Polymer Membrane with Extremely High Separation Performance, Macromolecules,43 (2010) 326-333.
    [58]J. Zou, W.S.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol), J. Membrane Sci.,286 (2006) 310-321.
    [59]J. Dupont, R.F. de Souza, P.A.Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev.,102 (2002) 3667-3691.
    [60]P. Wasserscheid, W. Keim, Ionic liquids-New "solutions" for transition metal catalysis, Angew. Chem. Int Edit,39 (2000) 3772-3789.
    [61]J.F. Huang, H.M. Luo, C.D. Liang, I.W. Sun, G.A. Baker, S. Dai, Hydrophobic bronsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence, J. Am. Chem. Soc,127 (2005) 12784-12785.
    [62]J.F. Huang, H.M. Luo, S. Dai, A new strategy for synthesis of novel classes of room-temperature ionic liquids based on complexation reaction of cations, J. Electrochem. Soc.,153 (2006) J9-J13.
    [63]T.L. Greaves, C.J. Drummond, Protic ionic liquids:Properties and applications, Chem. Rev.,108 (2008) 206-237.
    [64]W.Z. Wu, B.X. Han, H.X. Gao, Z.M. Liu, T. Jiang, J. Huang, Desulfurization of flue gas:SO2 absorption by an ionic liquid, Angew. Chem. Int Edit, 43 (2004) 2415-2417.
    [65]D.J. Tempel, P.B. Henderson, J.R. Brzozowski, RM. Pearlstein, H.S. Cheng, High gas storage capacities for ionic liquids through chemical complexation,J. Am. Chem. Soc.,130 (2008) 400-4001.
    [66]K. Fukumoto, M. Yoshizawa, H. Ohno, Room temperature ionic liquids from 20 natural amino acids, J. Am. Chem. Soc,127 (2005) 2398-2399.
    [67]M.J. Earle, J.M.S.S. Esperanca, M.A. Gilea, J.N.C. Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, The distillation and volatility of ionic liquids, Nature,439 (2006) 831-834.
    [68]C.M. Wang, L.P. Guo, H.R. Li, Y. Wang, J.Y. Weng, L.H. Wu, Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes, Green Chem.,8 (2006) 603-607.
    [69]C.M. Wang, W.J. Zhao, H.R Li, L.P. Guo, Solvent-free synthesis of unsaturated ketones by the Saucy-Marbet reaction using simple ammonium ionic liquid as a catalyst, Green Chem.,11 (2009) 843-847.
    [70]L.A. Blanchard, J.F. Brennecke, Recovery of organic products from ionic liquids using supercritical carbon dioxide, Ind. Eng. Chem. Res.,40 (2001) 287-292.
    [71]L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature,399 (1999) 28-29.
    [72]L.A. Blanchard, Z.Y. Gu, J.F. Brennecke, High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B.,105 (2001) 2437-2444.
    [73]J.L. Anthony, E.J. Maginn, J.F. Brennecke, Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate,J. Phys. Chem. B.,106 (2002) 7315-7320.
    [74]A.P.S. Kamps, D. Tuma, J.Z. Xia, G. Maurer, Solubility of CO2 in the ionic liquid [bmim][PF6], J. Chem. Eng. Data,48 (2003) 746-749.
    [75]P. Husson-Borg, V. Majer, M.F.C. Gomes, Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure,J. Chem. Eng. Data,48 (2003) 480-485.
    [76]RE. Baltus, B.H Culbertson, S. Dai, H.M. Luo, D.W. DePaoli, Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance, J. Phys. Chem. B,108 (2004) 721-727.
    [77]J.L. Anderson, J.K. Dixon, J.F. Brennecke, Solubility of CO2,CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: Comparison to other ionic liquids, Accounts. Chem. Res.,40 (2007) 1208-1216.
    [78]M.J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, Improving carbon dioxide solubility in ionic liquids, J. Phys. Chem. B, 111 (2007) 9001-9009.
    [79]T.K. Carlisle, J.E. Bara, C.J. Gabriel, R.D. Noble, D.L. Gin, Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach, Ind Eng. Chem. Res.,47 (2008) 7005-7012.
    [80]A.H. Jalili, A. Mehdizadeh, M. Shokouhi, H. Sakhaeinia, V. Taghikhani, Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions,J. Chem. Thermodyn.,42 (2010) 787-791.
    [81]M.B. Shiflett, A. Yokozeki, Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N],J. Phys. Chem. B,111(2007) 2070-2074.
    [82]A. Shariati, C.J. Peters, High-pressure phase behavior of systems with ionic liquids-Part Ⅲ. The binary system carbon dioxide+l-hexyl-3-methylimidazolium hexafluorophosphate, J. Supercrit Fluid,30 (2004) 139-144.
    [83]A. Shariati, C.J. Peters, High-pressure phase behavior of systems with ionic liquids:II. The binary system carbon dioxide+1-ethyl-3-methylimidazolium hexafluorophosphate,J. Supercrit Fluid,29 (2004) 43-48.
    [84]A. Shariati, C.J. Peters, High-pressure phase behavior of systems with ionic liquids:measurements and modeling of the binary system fluoroform+1-ethyl-3-methylimidazolium hexafluorophosphate,J. Supercrit Fluid, 25 (2003) 109-117.
    [85]A. Shariati, C.J. Peters, High-pressure phase equilibria of systems with ionic liquids,J. Supercrit Fluid,34 (2005) 171-176.
    [86]J.E. Bara, C.J. Gabriel, T.K. Carlisle, D.E. Camper, A. Finotello, D.L. Gin, R.D. Noble, Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes, Chem. Eng. J.,147 (2009) 43-50.
    [87]J.E. Bara, C.J. Gabriel, S. Lessmann, T.K. Carlisle, A. Finotello, D.L. Gin, R.D. Noble, Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids, Ind. Eng. Chem. Res.,46 (2007) 5380-5386.
    [88]M.E. Perez-Blanco, E.J. Maginn, Molecular Dynamics Simulations of Carbon Dioxide and Water at an Ionic Liquid Interface,J. Phys. Chem. B,115 (2011) 10488-10499.
    [89]X.C. Zhang, Z.P. Liu, W.C. Wang, Screening of ionic liquids to capture CO2 by COSMO-RS and experiments, Aiche. J.,54 (2008) 2717-2728.
    [90]X.H. Huang, C.J. Margulis, Y.H. Li, B.J. Berne, Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim+] [PF6-],J. Am. Chem. Soc,127 (2005) 17842-17851.
    [91]X.C. Zhang, F. Huo, Z.P. Liu, W.C. Wang, W. Shi, E.J. Maginn, Absorption of CO2 in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): A Molecular View by Computer Simulations, J. Phys. Chem. B,113 (2009) 7591-7598.
    [92]A. Finotello, J.E. Bara, S. Narayan, D. Camper, R.D. Noble, Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids,J. Phys. Chem. B,112 (2008) 2335-2339.
    [93]C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc.,126 (2004) 5300-5308.
    [94]Y. Wang, C.M. Wang, L.Q. Zhang, H.R. Li, Difference for SO(2) and CO(2) in TGML ionic liquids:a theoretical investigation, Phys. Chem. Chem. Phys.,10 (2008) 5976-5982.
    [95]S.G. Kazarian, B.J. Briscoe, T. Welton, Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures, Cham. Commun., (2000) 2047-2048.
    [96]L. Cammarata, S.G. Kazarian, P.A. Salter, T. Welton, Molecular states of water in room temperature ionic liquids, Phys. Chem. Chem. Phys.,3 (2001) 5192-5200.
    [97]L. Crowhurst, P.R. Mawdsley, J.M. Perez-Arlandis, P.A. Salter, T. Welton, Solvent-solute interactions in ionic liquids, Phys. Chem. Chem. Phys.,5 (2003) 2790-2794.
    [98]J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke, Anion effects on gas solubility in ionic liquids, J. Phys. Chem. B,109 (2005) 6366-6374.
    [99]T. Seki, J.D. Grunwaldt, A. Baiker, In Situ Attenuated Total Reflection Infrared Spectroscopy of Imidazolium-Based Room-Temperature Ionic Liquids under "Supercritical" CO2,J. Phys. Chem. B,113 (2009) 114-122.
    [100]P.J. Carvalho,J.A.P. Coutinho, On the Nonideality of CO2 Solutions in Ionic Liquids and Other Low Volatile Solvents, J. Phys. Chem. Lett.,1 (2010) 774-780.
    [101]D.V. Chinn, D. Driver, M. S. Boudreau, L. C., US Patent 0(2005) 598.
    [102]R.P. Quinn, G. P. Appleby, US Patent 5(1994) 521.
    [103]J.M. Zhang, S.J. Zhang, K. Dong, Y.Q. Zhang, Y.Q. Shen, X.M. Lv, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids, Chem. Eur. J., 12(2006)4021-4026.
    [104]G. Gurau, H. Rodriguez, S.P. Kelley, P. Janiczek, R.S. Kalb, R.D. Rogers, Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids, Angew. Chem. Int Edit.,50 (2011) 12024-12026.
    [105]R.W. Alder, P.R. Allen, S.J. Williams, Stable Carbenes as Strong Bases, J. Chem. Soc. Chem. Comm., (1995) 1267-1268.
    [106]T.L. Amyes, S.T. Diver, J.P. Richard, F.M. Rivas, K. Toth, Formation and stability of N-heterocyclic carbenes in water: The carbon acid pK(a) of imidazollum cations in aqueous solution, J. Am. Chem. Soc.,126 (2004) 4366-4374.
    [107]S. Chowdhury, R.S. Mohan, J.L. Scott, Reactivity of ionic liquids, Tetrahedron, 63 (2007) 2363-2389.
    [108]R.A. Olofson, J.S. Michelmay, W.R. Thompson, Heterocyclic Nitrogen Ylides, J. Am. Chem. Soc.,86 (1964) 1865-&.
    [109]A.J. Arduengo, R.L. Harlow, M. Kline, A Stable Crystalline Carbene, J. Am. Chem. Soc.,113 (1991) 361-363.
    [110]A.J. Arduengo, Looking for stable carbenes: The difficulty in starting anew, Accounts. Chem. Res.,32 (1999) 913-921.
    [111]M.B. Shiflett, D.J. Kasprzak, C.P. Junk, A. Yokozeki, Phase behavior of {carbon dioxide plus [bmim][Ac]} mixtures,J. Chem. Thermodyn.,40 (2008) 25-31.
    [112]E.J. Beckman, A challenge for green chemistry: designing molecules that readily dissolve in carbon dioxide, Chem. Commun., (2004) 1885-1888.
    [113]P. Raveendran, S.L. Wallen, Cooperative C-H center dot center dot center dot O hydrogen bonding in CO2-Lewis base complexes: Implications for solvation in supercritical CO2,J. Am. Chem. Soc.,124 (2002) 12590-12599.
    [114]E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid,J. Am. Chem. Soc.,124 (2002) 926-927.
    [115]X.Y. Li, M.Q. Hou, Z.F. Zhang, B.X. Han, G.Y. Yang, X.L. Wang, L.Z. Zou, Absorption of CO(2) by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters, Green Chem.,10(2008) 879-884.
    [116]B. Gurkan, B.F. Goodrich, E.M. Mindrup, L.E. Ficke, M. Massel, S. Seo, T.P. Senftle, H. Wu, M.F. Glaser, J.K. Shah, E.J. Maginn, J.F. Brennecke, W.F. Schneider, Molecular Design of High Capacity, Low Viscosity, Chemically Tunable Ionic Liquids for CO2 Capture, J. Phys. Chem. Lett,1 (2010) 3494-3499.
    [117]C.M. Wang, X.Y. Luo, H.M. Luo, D.E. Jiang, H.R Li, S. Dai, Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture, Angew. Chem. Int. Edit.,50 (2011)4918-4922.
    [118]C.M. Wang, H.M. Luo, H.R. Li, X. Zhu, B. Yu, S. Dai, Tuning the Physicochemical Properties of Diverse Phenolic Ionic Liquids for Equimolar CO2 Capture by the Substituent on the Anion, Chem. Eur.J.,18 (2012) 2153-2160.
    [119]M.D. Soutullo, C.I. Odom, B.F. Wicker, C.N. Henderson, A.C. Stenson, J.H. Davis, Reversible CO2 capture by unexpected plastic-, resin-, and gel-like ionic soft materials discovered during the combi-click generation of a TSIL library, Chem. Mater.,19 (2007) 3581-3583.
    [120]B.E. Gurkan, J.C. de la Fuente, E.M. Mindrup, L.E. Ficke, B.F. Goodrich, E.A. Price, W.F. Schneider, J.F. Brennecke, Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids,J. Am. Chem. Soc,132 (2010) 2116-2117.
    [121]B.F. Goodrich, J.C. de la Fuente, B.E. Gurkan, D.J. Zadigian, E.A. Price, Y. Huang, J.F. Brennecke, Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide, Ind. Eng. Chem. Res.,50 (2011) 111-118.
    [122]C.M. Wang, H.M. Luo, D.E. Jiang, H.R. Li, S. Dai, Carbon Dioxide Capture by Superbase-Derived Protic Ionic Liquids, Angew. Chem. Int Edit,49 (2010) 5978-5981.
    [123]C.M. Wang, Y. Guo, X. Zhu, G.K. Cui, H.R. Li, S. Dai, Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination, Chem. Comm.,48 (2012) 6526-6528.
    [124]D. Camper, J.E. Bara, D.L. Gin, R.D. Noble, Room-Temperature Ionic Liquid-Amine Solutions: Tunable Solvents for Efficient and Reversible Capture Of CO2, Ind. Eng. Chem. Res.,47 (2008) 8496-8498.
    [125]Y.Q. Zhang, S.J. Zhang, X.M. Lu, Q. Zhou, W. Fan, X.P. Zhang, Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture, Chem. Eur. J., 15(2009)3003-3011.
    [126]C.M. Wang, S.M. Mahurin, H.M. Luo, G.A. Baker, H.R. Li, S. Dai, Reversible and robust CO2 capture by equimolar task-specific ionic liquid-superbase mixtures, Green Chem.,12 (2010) 870-874.
    [127]C.M. Wang, H.M. Luo, X.Y. Luo, H.R. Li, S. Dai, Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems, Green Chem.,12 (2010) 2019-2023.
    [128]Z.M. Xue, Z.F. Zhang, J. Han, Y. Chen, T.C. Mu, Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion, Int. J. Greenh. Gas Con.,5 (2011) 628-633.
    [129]A.H. Liu, R. Ma, C. Song, Z.Z. Yang, A. Yu, Y. Cai, L.N. He, Y.N. Zhao, B. Yu, Q.W. Song, Equimolar CO2 Capture by N-Substituted Amino Acid Salts and Subsequent Conversion, Angew. Chem. Int. Edit.,51 (2012) 11306-11310.
    [130]E.M. Mindrup, W.F. Schneider, Computational Comparison of the Reactions of Substituted Amines with CO2, Chemsuschem,3 (2010) 931-938.
    [131]C.M. Teague, S. Dai, D.E. Jiang, Computational Investigation of Reactive to Nonreactive Capture of Carbon Dioxide by Oxygen-Containing Lewis Bases, J. Phys. Chem. A,114(2010) 11761-11767.
    [132]K.E. Gutowski, E.J. Maginn, Amine-Functionalized Task-Specific Ionic Liquids:A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with CO2 from Molecular Simulation,J. Am. Chem. Soc.,130 (2008) 14690-14704.
    [133]G.R. Yu, S.J. Zhang, G.H. Zhou, X.M. Liu, X.C Chen, Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and ab initio calculation, Aiche. J.,53 (2007) 3210-3221.
    [134]Q. Huang, Y. Li, X.B. Jin, D. Zhao, G.Z. Chen, Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids, Energ. Environ. Sci.,4 (2011) 2125-2133.
    [135]P.G. Jessop, D.J. Heldebrant, X.W. Li, C.A. Eckert, C.L. Liotta, Green chemistry-Reversible nonpolar-to-polar solvent, Nature,436 (2005) 1102-1102.
    [136]Y.X. Liu, P.G. Jessop, M. Cunningham, C.A. Eckert, C.L. Liotta, Switchable surfactants, Science,313 (2006) 958-960.
    [137]S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki, F. Kubota, M. Goto, CO(2) separation facilitated by task-specific ionic liquids using a supported liquid membrane,J. Membrane Sci.,314 (2008) 1-4.
    [138]C. Myers, H. Pennline, D. Luebke, J. Ilconich, J.K. Dixon, E.J. Maginn, J.F. Brennecke, High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes,J. Membrane Sci.,322 (2008) 28-31.
    [139]D. Wappel, G. Gronald, R. Kalb, J. Draxler, Ionic liquids for post-combustion CO2 absorption, Int J. Greenh. Gas. Con.,4 (2010)486-494.
    [140]B.F. Goodrich, J.C. de la Fuente, B.E. Gurkan, Z.K. Lopez, E.A. Price, Y. Huang, J.F. Brennecke, Effect of Water and Temperature on Absorption of CO2 by Amine-Functionalized Anion-Tethered Ionic Liquids,J. Phys. Chem. B,115 (2011) 9140-9150.
    [141]J.H. Huang, T. Ruther, Why are Ionic Liquids Attractive for CO2 Absorption? An Overview, Aust J. Chem.,62 (2009) 298-308.
    [142]D.J. Heldebrant, C.R. Yonker, P.G. Jessop, L. Phan, Organic liquid CO2 capture agents with high gravimetric CO2 capacity, Energ. Environ. Sci.,1 (2008) 487-493.
    [143]J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids, Ind. Eng. Chem. Res.,48 (2009) 2739-2751.
    [144]S.A. Forsyth, J.M Pringle, D.R. MacFarlane, Ionic liquids-An overview, Aust. J. Chem.,57(2004) 113-119.
    [145]K. Fukumoto, Y. Kohno, H. Ohno, Chiral stability of phosphonium-type amino acid ionic liquids, Chem. Lett,35 (2006) 1252-1253.
    [146]A.D. Becke, Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior, Phys. Rev. A,38 (1988) 3098-3100.
    [147]C.T. Lee, W.T. Yang, R.G. Parr, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density, Phys. Rev. B, 37 (1988) 785-789.
    [148]A.D. Becke, Density-Functional Thermochemistry. (3). The Role of Exact Exchange,J. Chem. Phys.,98 (1993) 5648-5652.
    [149]P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields,J. Phys. Chem. Us,98 (1994) 11623-11627.
    [150]S. Sowmiah, V. Srinivasadesikan, M.C. Tseng, Y.H. Chu, On the Chemical Stabilities of Ionic Liquids, Molecules,14 (2009) 3780-3813.
    [151]M.S. Shannon, J.E. Bara, Properties of Alkylimidazoles as Solvents for CO2 Capture and Comparisons to Imidazolium-Based Ionic Liquids, Ind. Eng. Chem. Res.,50(2011)8665-8677.
    [152]J.D. Badjic, A. Nelson, S J. Cantrill W.B. Turnbull, J.F. Stoddart, Multivalency and cooperativity in supramolecular chemistry, Acc. Chem. Res.,38 (2005) 723-732.
    [153]C.A. Hunter, H.L. Anderson, What is Cooperativity? Angew. Chem. Int Ed., 48 (2009) 7488-7499.
    [154]G. Ercolani, Assessment of cooperativity in self-assembly,J. Am. Chem. Soc, 125 (2003) 16097-16103.
    [155]P. Thordarson, R.G.E. Coumans, J.A.A.W. Elemans, P.J. Thomassen, J. Visser, A.E. Rowan, R.J.M. Nolte, Allosterically driven multicomponent assembly, Angew. Chem. Int Ed.,43 (2004) 4755-4759.
    [156]Y. Kobayashi, K. Saigo, Periodic ab initio approach for the cooperative effect of CH/pi interaction in crystals: Relative energy of CH/pi and hydrogen-bonding interactions, J. Am. Chem. Soc,127 (2005) 15054-15060.
    [157]N.A. Brunelli, S.A. Didas, K. Venkatasubbaiah, C.W. Jones, Tuning Cooperativity by Controlling the Linker Length of Silica-Supported Amines in Catalysis and CO2 Capture,J. Am. Chem. Soc,134 (2012) 13950-13953.
    [158]C.F. Guerra, F.M. Bickelhaupt, J.G. Snijders, E.J. Baerends, The nature of the hydrogen bond in DNA base pairs:The role of charge transfer and resonance assistance, Chem. Eur. J.,5 (1999) 3581-3594.
    [159]A. Fanidi, E.A. Harrington, G.I. Evan, Cooperative Interaction between C-Myc and Bcl-2 Protooncogenes, Nature,359 (1992) 554-556.
    [160]A. Strasser, A.W. Harris, M.L. Bath, S. Cory, Novel Primitive Lymphoid Tumors Induced in Transgenic Mice by Cooperation between Myc and Bcl-2, Nature, 348(1990)331-333.
    [161]M.F. Perutz, Mechanisms of Cooperativity and Allosteric Regulation in Proteins, Q. Rev. Biophys.,22 (1989) 139-236.
    [162]S.P.H. Mee, V. Lee, J.E. Baldwin, Stille coupling made easier-The synergic effect of copper(Ⅰ) salts and the fluoride ion, Angew. Chem. Int Ed.,43 (2004) 1132-1136.
    [163]W.E. Alvarez, B. Kitiyanan, A. Borgna, D.E. Resasco, Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO, Carbon,39 (2001) 547-558.
    [164]T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene, AppL CataL a-Gen.,244 (2003) 383-391.
    [165]R.E. Mulvey, S-Block metal inverse crowns:synthetic and structural synergism in mixed alkali metal-magnesium (or zinc) amide chemistry, Chem. Commun., (2001) 1049-1056.
    [166]R.E. Mulvey, Modern ate chemistry:Applications of synergic mixed alkali-metal-magnesium or -zinc reagents in synthesis and structure building, Organometallics,25 (2006) 1060-1075.
    [167]D.M. D'Alessandro, B. Smit, J.R. Long, Carbon Dioxide Capture:Prospects for New Materials, Angew. Chem. Int Ed.,49 (2010) 6058-6082.
    [168]S. Choi, J.H. Drese, C.W. Jones, Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources, Chemsuschem,2 (2009) 796-854.
    [169]J.C. Hicks, J.H. Drese, D.J. Fauth, M.L. Gray, G.G. Qi, C.W. Jones, Designing adsorbents for CO(2) capture from flue gas-hyperbranched aminosilicas capable,of capturing CO(2) reversibly, J. Am. Chem. Soc.,130 (2008) 2902-2903.
    [170]A. Danon, P.C. Stair, E. Weitz, FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15:Elucidation of Adsorbed Species, J. Phys. Chem. C, 115 (2011) 11540-11549.
    [171]Y. Kuwahara, D.Y. Kang, J.R. Copeland, N.A. Brunelli, S.A. Didas, P. Bollini, C. Sievers, T. Kamegawa, H. Yamashita, C.W. Jones, Dramatic Enhancement of CO2 Uptake by Poly(ethyleneimine) Using Zirconosilicate Supports, J. Am. Chem. Soc, 134(2012) 10757-10760.
    [172]X.P. Zhang, X.C. Zhang, H.F. Dong, Z.J. Zhao, S.J. Zhang, Y. Huang, Carbon capture with ionic liquids: overview and progress, Energ. Environ. Sci, 5 (2012) 6668-6681.
    [173]P. Singh, J.P.M. Niederer, G.F. Versteeg, Structure and activity relationships for amine-based CO(2) absorbents-II, Chem. Eng. Res. Des.,87 (2009) 135-144.
    [174]W. Kunerth, Solubility of CO2 and N2O in certain solvents, Phys. Rev.,19 (1922)512-524.
    [175]G.W.T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN 03, Gaussian, Inc., Pittsburgh, PA, (2003).
    [176]I. No da, Ozaki, Y., Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy, Chichester, UK, (2004).
    [177]C. Villiers, J.P. Dognon, R. Pollet, P. Thuery, M. Ephritikhine, An Isolated CO2 Adduct of a Nitrogen Base: Crystal and Electronic Structures, Angew. Chem. Int Ed., 49(2010)3465-3468.
    [178]R. Vaidhyanathan, S.S. Iremonger, K.W. Dawson, G.K.H. Shimizu, An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures, Chem. Commun., (2009) 5230-5232.
    [179]R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu, P.G. Boyd, S. Alavi, T.K. Woo, Competition and Cooperativity in Carbon Dioxide Sorption by Amine-Functionalized Metal-Organic Frameworks, Angew. Chem. Int. Ed.,51 (2012) 1826-1829.
    [180]A.M. Plonka, D. Banerjee, W.R. Woerner, Z.J. Zhang, N. Nijem, Y J. Chabal, J. Li, J.B. Parise, Mechanism of Carbon Dioxide Adsorption in a Highly Selective Coordination Network Supported by Direct Structural Evidence, Angew. Chem. Int Ed.,52 (2013) 1692-1695.
    [181]G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture, Adv. Mater.,22 (2010) 853-854.
    [182]R. Dawson, L.A Stevens, T.C. Drage, C.E. Snape, M.W. Smith, D.J. Adams, A.L. Cooper, Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents,J. Am. Chem. Soc,134 (2012) 10741-10744.
    [183]S. Supasitmongkol, P. Styring, High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid), Energ. Environ. Sci.,3 (2010) 1961-1972.
    [184]D.L. Gin, R.D. Noble, Designing the Next Generation of Chemical Separation Membranes, Science,332 (2011) 674-676.
    [185]S.M. Murray, R.A. O'Brien, K.M. Mattson, C. Ceccarelli, RE. Sykora, K.N. West, J.H. Davis, The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids:Dramatic Lowering of the Melting Point by Side-Chain Unsaturation, Angew. Chem. Int Edit,49 (2010) 2755-2758.
    [186]T.L. Merrigan, E.D. Bates, S.C. Dorman, J.H. Davis, New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids, Chem. Comm., (2000) 2051-2052.
    [187]R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of cellose with ionic liquids,J. Am. Chem. Soc.,124 (2002) 4974-4975.
    [188]C.M. Wang, G.K. Cui, X.Y. Luo, Y.J. Xu, H.R. Li, S. Dai, Highly Efficient and Reversible SO2 Capture by Tunable Azole-Based Ionic Liquids through Multiple-Site Chemical Absorption, J. Am. Chan. Soc.,133 (2011) 11916-11919.
    [189]T. Wallin, P. Linse, Monte Carlo simulations of polyelectrolytes at charged micelles.3. Effects of surfactant tail length,J. Phys. Chem. B,101 (1997) 5506-5513.
    [190]B. Sarkar, P. Alexandridis, Self-Assembled Block Copolymer-Nanoparticle Hybrids:Interplay between Enthalpy and Entropy, Langmuir,28 (2012) 15975-15986.
    [191]M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B. Van Horn, Z.B. Guan, G.H. Chen, R.S. Krishnan, General strategies for nanoparticle dispersion, Science, 311 (2006) 1740-1743.
    [192]M.S. Searle, D.H. Williams, The Cost of Conformational Order-Entropy Changes in Molecular Associations, J. Am. Chem. Soc,114 (1992) 10690-10697.
    [193]J.D. Dunitz, Win Some, Lose Some-Enthalpy-Entropy Compensation in Weak Intermolecular Interactions, Chem. BioL,2 (1995) 709-712.
    [194]T.P. Creamer, G.D. Rose, Side-Chain Entropy Opposes Alpha-Helix Formation but Rationalizes Experimentally Determined Helix-Forming Propensities, Proc Natl Acad. Sci. USA,89 (1992) 5937-5941.
    [195]T.P. Creamer, G.D. Rose, Alpha-Helix-Forming Propensities in Peptides and Proteins, Proteins,19 (1994) 85-97.
    [196]A.G. Street, S.L. Mayo, Intrinsic beta-sheet propensities result from van der Waals interactions between side chains and the local backbone, Proc. Natl. Acad. Sci. U. S. A.,96 (1999) 9074-9076.
    [197]R.S. Spolar, M.T. Record, Coupling of Local Folding to Site-Specific Binding of Proteins to DNA, Science,263 (1994) 777-784.
    [198]J.E. Brennecke, B.E. Gurkan, Ionic Liquids for CO2 Capture and Emission Reduction, J. Phys. Chem. Lett.,1 (2010) 3459-3464.
    [199]S.Y. Oh, D.I. Yoo, Y. Shin, H.C. Kim, H.Y. Kim, Y.S. Chung, W.H. Park, J.H. Youk, Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydr. Res.,340 (2005) 2376-2391.
    [200]C.Y. Liang, R.H. Marchessault, Infrared Spectra of Crystalline Polysaccharides.2. Native Celluloses in the Region from 640 to 1700 cm-1,J. Polym. Sci.,39 (1959) 269-278.
    [201]D.J. Skrovanek, P.C. Painter, M.M. Coleman, Hydrogen-Bonding in Polymers.2. Infrared Temperature Studies of Nylon-11, Macromolcules,19 (1986) 699-705.
    [202]S.Y. Lin, K.S. Chen, R.C. Liang, Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water, Polymer, 40 (1999) 2619-2624.
    [203]C. Bracken, P.A. Carr, J. Cavanagh, A.G. Palmer, Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: Implications for the entropy of association with DNA, J. Mol Biol.,285 (1999) 2133-2146.
    [204]R. Zhang, H.R. Li, Y. Lei, S.J. Han, Different weak C-H center dot center dot O contacts in N-methylacetamide-water system: Molecular dynamics simulations and NMR experimental study,J. Phys. Chem. B,108 (2004) 12596-12601.